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Neural Network Output Feedback Control of a Quadrotor UAV !

Travis Dierks and S. Jagannathan

Abstract—A neural network (NN) based output feedback
controller for a quadrotor unmanned aerial vehicle (UAV) is
proposed. The NNs are utilized in the observer and for generating
virtual and actual control inputs, respectively, where the NNs learn
the nonlinear dynamics of the UAV online including uncertain
nonlinear terms like aerodynamic friction and blade flapping. It is
shown using Lyapunov theory that the position, orientation, and
velocity tracking errors, the virtual control and observer estimation
errors, and the NN weight estimation errors for each NN are all
semi-globally uniformly ultimately bounded (SGUUB) in the
presence of bounded disturbances and NN functional reconstruction
errors while simultaneously relaxing the separation principle.

Index Terms — Neural network, Quadrotor UAV, Lyapunov
method, Output feedback, Observer

I. INTRODUCTION

Quadrotor helicopters have quickly emerged as a popular
unmanned aerial vehicle (UAV) platform in the recent years.
Besides surveillance and search and rescue applications, the
popularity of this platform has stemmed from its simple
construction as compared with conventional helicopters [1].

The dynamics of the quadrotor UAV are nonlinear and
under actuated; characteristics which can make the platform
difficult to control. The UAV has six degrees of freedom
(DOF) and only four control inputs consisting of thrust and
the three rotational torque inputs. To solve the quadrotor
UAV tracking control problem, many techniques have been
proposed [2-9] where the control objective is to track three
desired Cartesian positions and a desired yaw angle.

In [2], [3], and [4], state feedback controllers were
proposed based on state-dependent Riccati equations and the
small angle approximations, backstepping, and saturation
functions, respectively. A drawback of these controllers is
the need for full state measurement and knowledge of the
dynamics beside the aerodynamic friction are either
simplified or ignored altogether. However, the above
simplifications are valid at very low speeds such as
hovering, and that the impact of the aerodynamic effects can
become significant even at moderate velocities [1].

On the other hand, in [5] and [6], sliding mode observers
are introduced to estimate the translational and angular
velocities of the UAV. The authors in [6] propose a sliding
mode estimator for external disturbances such as wind and
model uncertainties. In [7], an output feedback controller is
developed by strategically introducing an additional constant
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term into the filtered tracking error. The constant term is
then utilized in the design of an auxiliary control input for
the translational velocities. In addition, the nonlinearities
were assumed be known and linearly parameterized.

In [8], an adaptive-fuzzy control method is applied using
supervised training. In [9], the approximation property of
NN [10] is applied to learn the dynamics of the quadrotor
UAYV using offline training with experimentally collected
data. However, offline NN training is a major drawback.

In contrast, the work in this paper seeks to remove the
assumptions of full state measurement and knowledge of the
UAYV dynamics. First, a NN observer is utilized to estimate
the velocities of the UAV so that an output feedback control
law can be realized. Then, a novel virtual NN control input
is developed for the roll and pitch which ensures the UAV
tracks a desired translational velocity while maintaining a
stable flight configuration. The virtual control input is well
defined and provides a means of controlling all six DOF
using only four control inputs. The physical meaning of the
virtual control inputs can be linked to the types of
trajectories that can be successfully tracked as well. Finally,
the inputs of the dynamical system are calculated by
utilizing the approximation properties of NN to learn the
complete dynamics of the UAV online, including unmodeled
dynamics like aerodynamic damping and blade flapping [1]
and by relaxing the linearly parameterized representation.

All NNs are tuned online in order to accommodate the
change in the UAV dynamics and the operating
environment. It is shown using Lyapunov theory that the
position, orientation, and velocity tracking errors, the virtual
control observer estimation errors, and the NN weight
estimation errors of each NN are all semi-globally uniformly
ultimately bounded (SGUUB) while simultaneously relaxing
the separation principle. Although not shown, numerical
results confirm the theoretical conjectures.

II. BACKGROUND

A. Quadrotor UAV Dynamics
Consider a quadrotor UAV with six DOF defined in the
inertial coordinate frame , E“, as [x,y,z,¢,0,w] € E*

where p =[x, y,z]" € E* are the position coordinates of

the UAV and ® =[¢,0,]" € E* describe its orientation
referred to as roll, pitch, and yaw, respectively. The
translational and angular velocities are expressed in the body
fixed frame attached to the center of mass of the UAV, £ b R
and the dynamics of the UAV in the body fixed frame can be
written as [7]

M{v} _ S(w)[v}{Nl(v)}{G(R)}U v
« « N,(w) 05,

3633



47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008
where
[ml3
M=
03)53

U=[O 0 u, MZT]T e R’
andm is a positive scalar that represents the total mass of the

-mS(w) 0,

0 _
¥ REC S(w) =
J 05,5 S(Jw)

6x6
}e‘ﬁ ,

UAV, J eR*represents the positive definite inertia
matrix, v(t)=[v,, v, v,]" € R’ represents the

. . 7 3
translational velocity, o(t) = [a)xb, @, a)zb] eRn

represents the angular velocity, N,(e) € R*,i = 1,2 ,are the
nonlinear aerodynamic effects, u, R' provides the thrust
along the z-direction, u, € R’ provides the rotational
rdz[rdTl,rde]Te‘Réand Tdieﬂ%3,i=1,2
represents ~ unknown, bounded  disturbances  such
that|z, || < z,, for all timeZ, with7,, being a known positive

torques,

constant, [ ~eR™is an nxn identity matrix, and

0,, € R™ represents an mx/ matrix of all zeros.

Furthermore, G(R)e R’ represents the gravity vector
defined asG(R)=mgR" (®)E,where E, =[0,0,1]" is a unit
vector in the inertial coordinate frame,g=9.81m/s?,
and S(e) e R’ is the general form of a skew symmetric
matrix defined as [7]. It is important to highlight
w’' S(y)w = 0for any vector w € R’ and this property is
commonly referred to as the skew symmetric property [10].
The matrix R(©) e ®***is the translational rotation matrix
which is used to relate a vector in the body fixed frame to
the inertial coordinate frame defined as [2]
CHCW
R(@)=R=|c,s,

—$, 54Cq

$450C, = €4S, CySyC, + 848,

2

84808, FC4C,  Cy4SpS, —54C,
C4Cq

where the abbreviationss, andc, have been used for

sin(e)and cos(e), respectively.

that R =R", R=RS(w)andR" = —S(w)R”. 1t is also

necessary to define a rotational transformation matrix from

the fixed body to the inertial coordinate frame as in [7]

It is important to note

1 S¢t9 C¢t9 (3)
T©)=T=[0 ¢, -s
0 S
Co Co

where the abbreviation, has been used for tan(e). The

transformation matrices R and T are nonsingular as long as
—(z/2)<¢<(x/2), —(n/2)<0<(z)2) and —z <y <.
These regions will be assumed throughout the development
of this work, and will be referred to as the stable operation
regions of the UAV. Under these flight conditions, it is

observed that ||R||F =R . and||T||F <T,,for known
constants R andT  [12].
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Now, the kinematics of the UAV can be written as
p=Ry “)
O=Tw
The control inputs to the UAV, u,andu, , represent the
generated thrust and torques, respectively, generated by the
angular speeds of rotors,@,, i =1,2,3,4, and are related to

the thrust and drag factors by the following relationship [4]
w=-c, o (5)

. T

w, = e (@2 — ), de,(@? ~ @2, ¢, Y (-1
whered is a positive scalar representing the distance from
the epicenter of the quadrotor to the rotor axes, c,is a

positive scalar representing the thrust factor, and c,is a

positive scalar representing the drag factor.

Once the control inputs to the UAV have been
determined, the relationship in (5) can be used to determine
the required rotor speeds in order to achieve the desired
thrust and rotational torques. In, [3] and [6], the tracking
control of the rotor speeds was considered; however, in this
work, we are concerned with deriving the required thrust and
rotational torques as in [2], [4], [7], and [8], respectively.

The nonlinear aerodynamic effects which are considered
in this effort are in the form of aerodynamic damping [7] and
blade flapping [1] where the aerodynamic damping terms are
modeled as in [7]. In [1], aecrodynamic effects, like blade
flapping were studied and revealed to have significant
impact on the tracking ability of a quadrotor UAV. The
flapping of the rotor blades tilts the rotor plane away from
the direction of motion, thus affecting the thrust and
rotational torques of the UAV. For complete details on
blade flapping and its full effects, please see [1].

Remark 1: HH and ||||F will be used interchangeably as the

Frobenius vector and matrix norms [10]. Next semi-global
uniformly ultimately boundedness is defined.

Definition 1: The equilibrium point x, is said to be semi-
global uniformly ultimately bounded (SGUUB) if there exists

a compact set § < R"so that for all x,, € S there exists a
bound B >0and a T(B,x,)
|x(#) - x,| < Bforall ¢ > ¢, + T [10].

time such  that

III. OuTPUT FEEDBACK TRACKING CONTROL

The overall control objective for the UAV is to track a
desired trajectory, p, :[xd,yd,zd]T, and a desired yaw
y , while maintaining a stable flight configuration. The
velocity v, is directly controllable with the thrust input.
However, in order to control the translational velocities v,
and Vi the pitch and roll must be controlled, respectively,

thus redirecting the thrust. With these objectives in mind, the
control problem statement can be defined as follows.

Given the desired position, p,, find the control velocity

v, € E"such thatp — p,. Then, find the desired pitch,
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6, and roll, @, , as well as the thrust, u, such thaty — v, .
Next, given®, =[¢, 6, v,]", find the desired angular
velocity control @, € E” such that® — @, . Finally, find
the rotational torques, u, , such that®w — w,. To complete
the control objective, complete knowledge of the UAV
dynamics and velocity information is required whereas this
information is considered not available. The constant total
mass and moments of inertia of the UAV are known similar
to the other works [2]-[7]. Therefore, the wuniversal

approximation property of NN is utilized in the design of the
observer, virtual control inputs, and the controller.

A. NN Observer Design

To relax the need for velocity measurements and
knowledge of the dynamics of the quadrotor UAV, a NN
observer will be utilized. To begin the observer
development, define new variables @’ =T"'®@cE’,
X=[p" (@)1 eRand V=P 0] eR’
dynamics are given by (4) and (1), respectively, and
rewritten as

X =A@V + &

: [ {Nl(v)} [Gm)D R
V=M"|S(o)V + + +MU~+7,
N,(w) 05,

whose

(6)

6 .
where & € R” represents bounded sensor measurement noise

such that Hfl H <¢&,for a known constant &,/ ,
T, =[t, Th] =M '(z,)eR° represents  disturbances,
R 0
At)y=4 :[ 3"3]
03x3 [3x3
From the previously defined properties

of R, A = 4" andHAHF < A4,, for a positive computable

constant 4,,.  Additionally, it is straight forward to

verify w' A" Aw = 0 for any vector w € R°.

Next, define a change of variable as Z = A}, whose
derivative with respect to time is given by Z=AV + AV,
and after simplification, written as

Z=Af,(x,)+G +AM U + A7,

where x, =V and

fx)=1 :[(l/m)(Nl(v))T (J’lNz(a))+J’1S(Ja))a))T]7 e®® (7)
defines the unknown nonlinear dynamics, and
withG =[00 g 00 0]" eR® a constant vector containing
Then, define the NN
estimates X and Zas well as the observer estimation

the gravity term. observer
error X =X — X, and for convenience, the proposed
observer takes the form of
X=7+K,X (8)
7=47,+G+K,X + AM™U

where K |, K, positive design constants.

ol?

The observer

velocity estimate J" is then written as
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V:{Y}:AT(Z#K”)?) ©
«
where K, is a positive design constant.

In (8), the universal approximation property of NN [10]
has been utilized to estimate the unknown

function f, (x,)by constant ideal bounded weights W, V"

such thatHW H <w,, foraknown constant j7, ,and written
0 F o Mo

as f (x,)=W oV x,)+e where g, is the bounded NN

approximation error such thatHgoH <¢g,,for a known

constant&,, .  The NN estimate of f is written

as fo = WOTO-(VOT %)= WOTCS-O where WOT is the estimate
of WOT , and X is the NN input written in terms of the
observer velocity estimates as X, =[1 X" vy,

NotingZ = AV —Ko3)? from (9) and the definition of Z

above, the observer error dynamics of (8) can be formulated
as

/?:AV_(KM -K )X +§

(10)
Z=dlf,-7)-k,%+4z,
Similarly, noting
V=V-V=dAd"(Z-K,X), (11)

adding and subtracting o(V%,), and using (10), the

observer estimation error dynamics of (9) take the form of
Vel - (K, - K, (K, —K))X (K, I, — A" A +&(12)

where /. =Wé, W, =W, -W,, &, =0, —&,,and

& =¢,+7, - K A" +W,6, e R, Further, |5 <&,

where & =g +M, 7, +K, 4,&, +2W, N, 1sa

positive computable constant with N the number of hidden

layer neurons and where ps, = H A H )
: F

Examining the error dynamics of (10) and (12) reveals
that X,V andfo are equilibrium points wheanlH:O,

|£,]|=0 and ||z, | = 0. Next the following theorem is stated.

Theorem 1: (NN Observer Boundedness) Let the NN
observer be defined by (8) and (9), respectively, with the NN
update law for the observer given by

W,=F6,X" —k,FW,

0”0

13)
where F, = F| > 0andx, > 0are design parameters. Then

there exists constant positive design parameters
K, K, andK ,whereK >K ,.K,>K (K —K,),

ol>

and g . > @nN,)/x,, such that the observer estimation

errors X ,Vand the NN observer weight estimation
errors, VT/O ,are SGUUB.

Proof: Due to page length constraints, proof of Theorem
1 is consider during proof of Theorem 2 using

V(, = %X/T(Koz - 03(K01 7K03)))? +%I7TV+%W{VT/QTE;[W;} (14)
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B. NN Virtual Control Input Development

In this section, a series of virtual control inputs for the
backstepping control law will be defined to ensure that the
quadrotor UAV follows a specified trajectory. To begin the
development of the UAV tracking controller, we first define
the tracking errors for the position and translational velocity.

For the position, define

e,=p,—pek’- (15)
Differentiating (15) and substitution of (4) yields the
position error dynamics
(16)
Next, select the desired velocity to stabilize the position
error dynamics as

v, =[v, Va vdZ]T :RT(pd +erp)eEb (17)

where K, =diagik, .k, .k, } R3*3is a diagonal positive

e,=p,—Rv-

definite design matrix all with positive design constants.
Next, the translational velocity tracking error system is
defined as

e v v
X dx xb
- - (18)
e, = evy de - Vyb =V, —V
e vV, VY,

vz lz

The desired velocity v, is a virtual control input to (16),
and applying (17) to (16) while observingy =y, ¢, reveals
the closed loop position error dynamics to be rewritten as

é,=-K,e, +Re,- (19)
Next, the translational velocity tracking error dynamics
are developed. Since the velocity vector is not measurable in

this work, it is desirable to rewrite (18) in terms of the
observer velocity estimates as

A A A A AT A ~
ev:[evx evy e\fz] :vd_v:vd_(v_v)

(20)

where V is the observer estimation error for the translational
velocity. Now, differentiating  (20), observing
v, ==S(w)v, +R" (bd + Kp(/? , — Rv)) and substituting the

translational velocity dynamics in (1) as well as adding and
subtracting S(w)V reveals

A 1 1 1

e, =-S(w)e, _;N](v)_;G(R)_;u]Ez (21)
+R" (B, +K,p, —K,Rv) =7, =V + S(0)V

and the observer error dynamics become apart of the

velocity tracking error dynamics. Next, we rewrite (2) in

terms of the desired orientation angles, ®,, define

R,=R(®,), and add and subtract G(R,)/m and
R} (B, +K,p, ~ K, R) 10 €, toyield
A | 1 _
e, =-S(we, ~—G(R,)) ——uE. -7, (22)
m m

+ R (By +K,py— K, RO+ f,(x,))
where
[1G5) =R, (~(GR)~G(R, ) m+(R~R,) (5, +K )
+R,(S(@P-R"K Rv+RIK Ry~ N, (v)/m)

WeC15.1

is an unknown function which can be rewritten as
f“(xcl):[f(‘“ Lo fm]Tegﬁ. In the forthcoming

development, the approximation properties of NN will be
utilized to estimate the unknown function f (x,) by

1

bounded ideal weights [,V such that HVVCIHF <W,., for a

known constant 7, , and written as £, (x,)=Wio(Vx,)+¢,

where ¢ is the bounded NN approximation error. The NN
. . . b, 1T T A _ 7T &
estimate of f, is written as f = VV(:IG(VCIX(:l)_ W.o,
T A ST A T A~ 1T AT :
=[W.6.4 Wiy Wos6, ] Where I is the NN estimate

of Wi, Wl

¢ cli»

i=1,2,3is the i"row of J#! and % is the NN

input written in terms of the observer estimates, UAV
orientation, and derivatives of the desired trajectory.

The key step in the development of the virtual control
input for the dynamic system is identifying the desired
closed loop wvelocity tracking error dynamics.  For
convenience, the desired translational velocity closed loop
system is selected as

6, =—(K, +S(0)e, -7, (23)
where K, = diagik,, cos(0,),k,, cos(4,), k,;}is a diagonal
positive definite design matrix with eacht, >0, i=1,2,3.
In the following development, it will be shown that
0,e(-x/2,x/2) andg, e (—x/2,7/2); therefore, it is
clear thatKk >0. Then, equating (22) and (23) while

considering the only the first two velocity error states reveals
“Sa k,1€.Co

-g + +
CoaSp k\=zev‘-0¢zz

CarSya

(24)
g x1l+kpx‘xd_‘;Rl+ﬁll 0
“ Vot kpyyd - ‘st + fl‘lz =
SpCoa 0

CaiCya
SrSatCt = CarSi SsaSarSya T CiCoa

Zytkzy = Vps+ fus

wherev, = [V, Vp, ‘7R3]T = KpRﬁ. Then, applying basic
math operations, the first line of (24) can be solved for the
desired pitch @, while the second line reveals the desired

rollg, . Using the NN estimates, fc .» The desired pitch

0, =atan N
Dﬂl
where

Ny :Cw(jéd +kﬂx5€d Vi +fcll)+s|/,d (j}d +kgv)>d VR +f012)+kvlevx

Dy =2, +k/zéd —Vps — &+ S

6, can be written as

(25)

Similarly, the desired roll angle, ¢, , is found to be
N
¢, =a tan[ ‘MJ
Dy,

Ny =5, (xd +kp\‘xd “Va t, z-u)*cwd (j}d +kpyyd Vet 2 )7k\'zevy
Dw =Cq (2.1 +kpzz.d —Vps _g+f<:l3)+sadcw (jéd +kmxd Vg +fm)

+ S80S ya (yd +k/_p‘yd Ve Tt clz)

(26)

where
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Remark 3: The expressions for the desired pitch and roll
in (25) and (26) lend themselves very well to the control of
quadrotor UAV. The expressions will always produce
desired values in the stable operation regions of the UAV.
Finally, the virtual control inputs reveal the types of desired
trajectories, which can be tracked in the steady state. That is,
that there exist desired trajectories which will result in
operating regions near the unstable operating points of the
UAV since atan(e) approaches + /2 as its argument

increases. Additionally, large values of & and k ,, can push

an UAV toward instability.
Now that the desired orientation has been found, next
define the attitude tracking error as

o =0,-@cE" (27)
where dynamics are found using (4) to be¢, =0, - Tw. In
order to drive the orientation errors (27) to zero, the desired
angular velocity, @, , is selected as
(28)

a diagonal

0, =T"(O, +K,e,)e E"
where Ko = diagike,, ke, koy} € R™ s

positive definite design matrix all with positive design
constants. Define the angular velocity tracking error as

e,=uw, —w, (29)
and observingw =@, —e,, the closed loop orientation

tracking error system can be written as

¢o =—Koeo +Te, - (30)

Examining (28), calculation of the desired angular
velocity requires knowledge of ® ;> however, Q) ;18 not

known in view of the fact that\A; and fL , are not available.

Further, development of u,in the following section, will

reveal @, is required which in turn implies v and £, must be

known. Since these requirements are not practical, the
universal approximation property of NN is invoked to

estimate @, and @, .

To aid in the NN virtual control development, the desired
orientation, ® L €E, is reconsidered in the fixed body frame,
E”, using the relationg’ —=7'@,. Rearranging (28), the
dynamics of the proposed virtual controller when the all
dynamics are known are revealed to be

0] =, - T 'Kqeq

d)d = Tﬁl(é)d + K(—)e(-)) + Tﬁl(c:)d + K(—)é(-))
For convenience, we define a change of variable
asQ, =aw, - T"K®e®, and the dynamics (31) become
Qd :Til(;)d +T71®d =fo(xq)=fo (32)
Defining the estimates of ®)andQ, to be (:)2 and Q) g

. 31

b
0,=9,,

respectively, and the estimation error @z = ®Z - @Z , the
dynamics of the proposed NN virtual control inputs become
@3 :éd +Kméﬁ;» éd :J}Q +K§22(:)2 (33)
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where K, and K,, are positive constants. The estimate

@, is then written as
&, =Q, +K 0% +T'K e, (34)
where K ., is a positive constant.

In (33), universal approximation property of NN has
been utilized to estimate the unknown function

fo(x)=T"0,+T7'0, by bounded ideal

weights W 7 such that HWQH <w,,, for a known constant
F

W, and written as fQ(xQ)=VV£O'(V£§XQ)+EQ where g, is

the  bounded NN  approximation
that HgQH < &gy for a known constant g, .

error such
The NN

estimate of f, is written as f,, = W,/ o-(VQT )%Q)= W6, where
VIA/QT is the NN estimate of ¥ and %, is the NN input written

in terms of the virtual control input estimates and the NN
observer velocity estimates. The NN input is chosen to take

the form of %, =[1p, 2} 51 i () € V"7
Observing @, =, — &, =0, - K,,0', (33)
from (32) and adding and subtracting WQT G, the virtual
controller estimation error dynamics are found to be
0 =8, — (Ko~ Ky O, =fo— Kol +&, (39
whereQ), =@, _Qd’};‘) =360, VT/(Z Z%T _Wg’ &=a+M3,
&l <&, with &, =g, DN, a

positive computable constant and y,, the number of hidden

subtracting

and g,=q,—q,- Furthermore,

layer neurons in the virtual control NN. Similarly, the
estimation error dynamics of (34) are found to be

GN)d = _KmaN)d + J7(z _(Km _Km(Km - Km))@z + ggz (36)
Examination of (35) and (36) reveals @Z ,®, , and ]79 to be

equilibrium points of the estimation error dynamics
when||&,|=0.

C. NN Output Feedback Control Law

In the previous section, the desired translational velocity
was formulated to ensure the quadrotor UAV tracked a
desired trajectory, and the roll and pitch angles were
determined to guarantee the desired translational velocities

Ve Vg, WeTE tracked. Then, using the NN virtual controller,

the desired angular velocity was found so that the desired
orientation of the UAV is tracked. In this section, the actual

inputsy, and u, to the dynamic system (1) are calculated so
that the desired lift velocity v, and desired angular velocity

@, are tracked and the overall control objective is met.
First, the thrust control input,s,, will be addressed.

Consider again the translational velocity tracking error
dynamics written in terms of the observer velocity estimates

(22). Considering the dynamics of the third error state évz
in (22), the thrust control input is found to be
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Uy =mcyCy (Zd +k/x24 —Vis _g+fcl3)
+m(c¢dst9d's|//d =S4 Cya Xyd +kpyj}d Vet Jen )+ mk ;e

+m(c¢dsgdcwd 5408 )(Xd +k X, —Vg +fc”)

(37

where £ is the NN estimate previously defined in Section

III.B. Next, substituting the virtual control inputs (25) and
(26) as well as the thrust (37) into (22) reveals the closed
loop translational velocity tracking dynamics to be

¢, =K, +S(@)e, + RIW;6/ + &, (38)
after adding and subtracting R!W'S!,  where
‘fcl = RjWi&ch + 6‘cl - zTdl 4 Wcl = Wcl - Wcl 4 and
5,=0,-6,. Further, HRdH =R, for a known

F max

constantR, ., and <¢,, for a computable constant

égcl
§Mcl =8Mcl +2RdmaxWMcl\/Vc+MMTM Where MM was deﬁned
in Section Ill.A, and N is the number of hidden layer

neurons.
Next, the rotational torques, u,, will be addressed.

Consider again the angular velocity tracking error (29).
Similar to (22), the angular velocity tracking error is
rewritten in terms of the NN virtual control estimate of

@, in (34) and NN observer estimate of @ in (9) as
6, =, — 0 (39)
Multiplying both sides of (39) by J, the angular velocity
tracking error dynamics become

Jéw = fu(xo)—uy, =7y, (40)
where £, (x.,) = f., = Ja, - S(Jo)w— N, (o) —J@, + Joe R,
and unknown. Therefore, the wuniversal approximation
property of NN is utilized to estimate the function f, (x,,)

by bounded that

HW<2H <W,., for a known constant p, , and written
p :

ideal weights i’ ch such

c2

as f (x,)=W5o(Vix,,)+e&, whereg ,is the bounded NN

functional reconstruction error such thatHg ‘g &,,,for a

52‘
known constantg,,,. The NN estimate of £, is given by

f,=WloWl%,)=W:6, where W is the NN
. n n A ~; T . .
estimate of w’ and %, =[1 &" Q) ©) el]"is the input
to the NN written in terms of the observer and virtual
controller estimates. By the construction of the virtual

controller, & , is not directly available; therefore, observing

(44), the terms fz; , @ZT, and ¢/ have been included
instead.
Using the NN estimate f;’Z , the rotational torque control
input is written as
u, = fd +K,e,> (41)
and substituting the control input (41) into the angular

velocity dynamics (40) as well as adding and subtracting
w16, the closed loop dynamics become

WeC15.1

Je,=-K,e,+ V,ﬁcgé-CQ +&.,
wherei % I,
Further, chzH <¢&,., for a
Evrr = Earer + 2Wpes \/Nic2 +7, Where N, is the number of

hidden layer neurons.
As a final step, we define an augmented translational

(42)

_ T~ ~ _ _
Gr =0 W50, — 745> and G, =0,70,"

c

computable constant

: R A7 AT T
and angular velocity error system as és :[ef ér ] whose

closed loop dynamics are described by (38) and (42),
respectively, and written as

jés = AdTi - (Ks + Ss(a)))és +¢.
where J = (11 055505, J]e R™ is a
Ky =[K, 0,3:0,; K,]>0€ R, A;=[R; 0555055 I55]€ RO
S¢(w)=[S(w) 0, 550, 0, ;1€ R™, ers (wye, =0,
E=[& £ eR®, and Hg{H < ¢, for a positive computable

constant £ =.[£2 +&2 . Additionally, 7 =

where

(43)

constant,

.
76, e R

0o W

c2

i :{W 0} and 6, =[6% 64T

Examining (43) reveals ¢, andfc to be equilibrium points of

the augmented error dynamics wheancH =(. Further, a

single NN is utilized to estimate f( = [fj ﬁg]T e RS.

In the final theorem, the stability of the entire system is
considered. In other words, the position, orientation, and
velocity tracking errors are considered along with the
estimation errors of the observer and virtual controller and
the NN weight estimation errors of each NN. Considering

the entire system in a single Lyapunov candidate allows the
separation principle to be relaxed.

Theorem 2: (Quadrotor UAV System Stability) Given the
dynamic system of a quadrotor UAV in (1), let the NN
observer be defined by (8) and (9), respectively, with the NN
update law for the observer given by (13). Given a smooth
desired trajectory, let the desired translational velocity for
the UAV to track be defined by (17) with the desired pitch
and roll defined by (25) and (26), respectively. Let the NN
virtual controller be defined by (33) and (34), respectively,
with the NN update law given by

Wy = Fo60(0! ) — ko Foll (44)

where - p 7 5 o andk,, >0are design parameters. Let

the dynamic NN controller be defined by (37) and (41),
respectively, with the NN update given by

W, =F.6.(4e,) —x.FI, (45)
where . = F > 0andk,, > 0are constant design
parameters. Then there exists positive design
constants K K _,, K ., K,,,Kq,, K5y, and  positive

such that

definite constant design matrices K p,KQ,KV, K

w’
observer estimation errors X ,17 and the NN observer
weight estimation errors,I/IN/'O, the wvirtual controller
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estimation errors @Z ,@, and the virtual control NN weight

estimation errors,W,,, the position, orientation, and

translational and angular velocity tracking errors, e »>€0> e»
respectively, and the dynamic controller NN weight
estimation errors, W, , are all SGUUB.

Proof:  Consider the following positive definite
Lyapunov candidate
Voar =V, +Vo +V.,
where V| was defined in (14) and

|y e 1 oo (46
VQ:5®fI (Koz7K93(K91*Km))®(h1+560,4rw,4+5”{WQTFQIWQ} ( )

V. =%e;ep +%ege® + %é;jés +%ZF{VI~/CTF['VI7C}' (47)

The first derivative of V,

vy With respect to time is given

by VU uy = Vo + VQ + K , and substitution of the closed loop

observer and virtual control estimation error dynamics (10),
(12), (35) and (36), respectively, the closed loop position,
orientation, and velocity tracking errors (19), (30), and (43),
respectively, as well as the NN update laws (13), (44), and
(45) reveals the upper bound of VU v can be written as

N K, N, H)?HZ (Ks Ny T HVHZ
vAv = P K, 2 Ko 2K g in
N, 7 _Nalg
b CR LS Cl

_ &7&7 Hi]ax ~ |2 7&‘N H2 7Kl(min 2
( 2KK min ]a)d H 4 VVQ d 4 Hek H
512 K

2 2KK min 2
wheree, = [e; e@T)]T’KK =[K, 053055 Ko] JII=[R 0,30, T]
WithHHHF < ,K, . andK

(4%)

/4

o

2

W. F + Moy

N

are the minimum singular

max > ** K min Smin

values of K, andK, respectively, and 7, is a

computable constant dependent on¢, , &,,.,&,,, andg, .

Finally, V;,,, is less than zero provided the controller gains
are selected so that the following inequalities are satisfied
2
_ 4 _
Kn >%’ Ka3 >2‘N0 + I—[mﬁx ’ Kal > ]vﬂ ’ Igl >&’ (49)
K;l Kol 2KKmin KSmin
2 2
KQ_} > 2NQ + 1—Lmax and KSmin> IInax
KQI 2KK min KKmin

Therefore, it can be concluded that VU 418 less than zero

provided the following inequalities hold:
H)?H N or ‘(f)f»i > | T or
(K(1/27N0/l(;11) Ko~ No/Kq

w| > /T or
4 K('l

3

v S TS /P
WF> Kol/4_No/KSmm 7 H31<H> KKmin 7

or

@,/ > or HéSH>

T/ K i

‘max min

~ an, ., ~ v
ol (o Ve e

Thus, using standard Lyapunov extensions [10] VUAVis

\/ MTyav
Koy/2 7NQ/KQI -T1; /2KK

WeC15.1

less than zero outside of a compact set revealing that all the
signals are SGUUB.

Remark 4: The above error bounds can be decreased
through the appropriate selection of the design parameters.
Further, using definitions of V,®, and@,, the velocity

tracking errors (18) and (29) can be rewritten as
e, =v,—v=y,-v-v=¢ -V
e, =0, - 0=, +@0,—O-D=¢,+@, — D
From Theorem 2, v, @,é,,é,, o, are all SGUUB,; therefore it

can be concluded e ,e, are also SGUUB. Thus, v >v,,

@

w—>a,.

IV. CONCLUSIONS

A new NN output feedback control law was developed for
an underactuated quadrotor UAV which utilizes the natural
constraints of the underactuated system to generate virtual
control inputs to guarantee the UAV tracks a desired
trajectory without the knowledge of dynamics. All six DOF
are successfully tracked using only four control inputs while
in the presence of unmodeled dynamics and bounded
disturbances. Lyapunov analysis guarantees SGUUB of all
the signals while relaxing the separation principle. Although
not shown, numerical results confirm the theoretical
conjectures [11].

V. REFERENCES

[1] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, "Quadrotor
helicopter flight dynamics and control: theory and experiment," Proc.
of the AIAA Guidance, Navigation and Control Conference and
Exhibit, South Carolina, pp. 1-20, August 2007.

[2] H. Voos, "Nonlinear state-dependent Riccati equation control of a
quadrotor UAV," Proc. of the IEEE Int. Conf. on Control
Applications, pp. 2547-2552, October 2006.

[3] T. Madani and A. Benallegue, "Control of a quadrotor mini-helicopter
via full state backstepping technique," Proc. of the IEEE Conf. on
Decision and Control, pp. 1515-1520, December 2006.

[4] N. Guenard, T. Hamel, and V. Moreau, "Dynamic modeling and
intuitive control strategy for an X4-flyer," Proc. of the IEEE Int. Conf.
on Control and Automation, pp. 141-146, June 2005.

[S] T. Madani and A. Benalleque, "Sliding mode observer and
backstepping control for a quadrotor unmanned aerial vehicles," Proc.
of the American Control Conf, pp. 5887-5892, July 2007.

[6] L. Besnard, Y. Shtessel, and B. Landrum, "Control of a quadrotor
vehicle using sliding mode disturbance observer," Proc. of the
American Control Conference, pp. 5230-5235, July 2007.

[71 D. Timothy, T. Burg, B. Xian, and D. Dawson, "Output feedback
tracking control of an underactuated quad-Rotor UAV," Proc. of the
American Control Conference, pp. 1775-1780 July 2007.

[8] C. Cosa and C.J.B. Macnab, "A new robust adaptive-fuzzy control
method applied to quadrotor helicopter stabilization," Fuzzy
Information Processing Society, Annual meeting of the North
American, pp.454-458, June 2006.

[9] J. Dunfied, M. Tarbouchi, and G. Labonte, "Neural network based
control of a four rotor helicopter," Proc. of the IEEE Int. Conf. on
Industrial Technology, pp. 1543-1548, Dec. 2004.

[10] F.L. Lewis, S. Jagannathan, and A. Yesilderek, Neural Network
Control of Robot Manipulators and Nonlinear Systems, Taylor &
Francis, London, 1999.

[11] T. Dierks and S. Jagannathan, "Output feedback control of a
quadrotor UAV using neural networks," Internal Report, Missouri
University of Science and Technology, 2008.

[12] A.E. Neff, L. DongBin, V.K. Chitrakaran, D.M. Dawson, and T.C.
Burg, "Velocity control for a quad-rotor uav fly-by-camera interface,"
Proc. of the SoutheastCon, pp. 273-278, March 2007.

3639



