
  

  

Abstract—A neural network (NN) based output feedback 
controller for a quadrotor unmanned aerial vehicle (UAV) is 
proposed.  The NNs are utilized in the observer and for generating 
virtual and actual control inputs, respectively, where the NNs learn 
the nonlinear dynamics of the UAV online including uncertain 
nonlinear terms like aerodynamic friction and blade flapping.  It is 
shown using Lyapunov theory that the position, orientation, and 
velocity tracking errors, the virtual control and observer estimation 
errors, and the NN weight estimation errors for each NN are all 
semi-globally uniformly ultimately bounded (SGUUB) in the 
presence of bounded disturbances and NN functional reconstruction 
errors while simultaneously relaxing the separation principle.  
 
Index Terms — Neural network, Quadrotor UAV, Lyapunov 
method, Output feedback, Observer 

I. INTRODUCTION 
Quadrotor helicopters have quickly emerged as a popular 

unmanned aerial vehicle (UAV) platform in the recent years.  
Besides surveillance and search and rescue applications, the 
popularity of this platform has stemmed from its simple 
construction as compared with conventional helicopters [1].   

The dynamics of the quadrotor UAV are nonlinear and 
under actuated; characteristics which can make the platform 
difficult to control.  The UAV has six degrees of freedom 
(DOF) and only four control inputs consisting of thrust and 
the three rotational torque inputs.  To solve the quadrotor 
UAV tracking control problem, many techniques have been 
proposed [2-9] where the control objective is to track three 
desired Cartesian positions and a desired yaw angle.   

In [2], [3], and [4], state feedback controllers were 
proposed based on state-dependent Riccati equations and the 
small angle approximations, backstepping, and saturation 
functions, respectively.  A drawback of these controllers is 
the need for full state measurement and knowledge of the 
dynamics beside the aerodynamic friction are either 
simplified or ignored altogether.  However, the above 
simplifications are valid at very low speeds such as 
hovering, and that the impact of the aerodynamic effects can 
become significant even at moderate velocities [1]. 

On the other hand, in [5] and [6], sliding mode observers 
are introduced to estimate the translational and angular 
velocities of the UAV. The authors in [6] propose a sliding 
mode estimator for external disturbances such as wind and 
model uncertainties.  In [7], an output feedback controller is 
developed by strategically introducing an additional constant 
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term into the filtered tracking error.  The constant term is 
then utilized in the design of an auxiliary control input for 
the translational velocities. In addition, the nonlinearities 
were assumed be known and linearly parameterized. 

In [8], an adaptive-fuzzy control method is applied using 
supervised training.  In [9], the approximation property of 
NN [10] is applied to learn the dynamics of the quadrotor 
UAV using offline training with experimentally collected 
data.  However, offline NN training is a major drawback. 

In contrast, the work in this paper seeks to remove the 
assumptions of full state measurement and knowledge of the 
UAV dynamics.  First, a NN observer is utilized to estimate 
the velocities of the UAV so that an output feedback control 
law can be realized. Then, a novel virtual NN control input 
is developed for the roll and pitch which ensures the UAV 
tracks a desired translational velocity while maintaining a 
stable flight configuration.  The virtual control input is well 
defined and provides a means of controlling all six DOF 
using only four control inputs.  The physical meaning of the 
virtual control inputs can be linked to the types of 
trajectories that can be successfully tracked as well.  Finally, 
the inputs of the dynamical system are calculated by 
utilizing the approximation properties of NN to learn the 
complete dynamics of the UAV online, including unmodeled 
dynamics like aerodynamic damping and blade flapping [1] 
and by relaxing the linearly parameterized representation.  

All NNs are tuned online in order to accommodate the 
change in the UAV dynamics and the operating 
environment.  It is shown using Lyapunov theory that the 
position, orientation, and velocity tracking errors, the virtual 
control observer estimation errors, and the NN weight 
estimation errors of each NN are all semi-globally uniformly 
ultimately bounded (SGUUB) while simultaneously relaxing 
the separation principle.  Although not shown, numerical 
results confirm the theoretical conjectures. 

II. BACKGROUND 

A. Quadrotor UAV Dynamics 
Consider a quadrotor UAV with six DOF defined in the 

inertial coordinate frame , aE , as aT Ezyx ∈],,,,,[ ψθφ  

where aT Ezyx ∈= ],,[ρ  are the position coordinates of 

the UAV and aT E∈=Θ ],,[ ψθφ  describe its orientation 
referred to as roll, pitch, and yaw, respectively.  The 
translational and angular velocities are expressed in the body 
fixed frame attached to the center of mass of the UAV, bE , 
and the dynamics of the UAV in the body fixed frame can be 
written as [7] 
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and m is a positive scalar that represents the total mass of the 
UAV, 33xJ ℜ∈ represents the positive definite inertia 
matrix, 3],,[)( ℜ∈= T

zbybxb vvvtv represents the 

translational velocity, [ ] 3,,)( ℜ∈= T
zbybxbt ωωωω  

represents the angular velocity, 2,1,)( 13 =ℜ∈• iN x
i ,are the 

nonlinear aerodynamic effects, 1
1 ℜ∈u  provides the thrust 

along the z-direction, 3
2 ℜ∈u provides the rotational 

torques, 6
21 ],[ ℜ∈= TT

d
T
dd τττ and 2,1,3 =ℜ∈ idiτ  

represents unknown, bounded disturbances such 
that Md ττ < for all time t , with Mτ being a known positive 

constant, nxn
nxnI ℜ∈ is an nxn  identity matrix, and 

mxl
mxl ℜ∈0 represents an mxl  matrix of all zeros.  

Furthermore, 3)( ℜ∈RG  represents the gravity vector 
defined as z

T EmgRRG )()( Θ= where T
zE ]1,0,0[=  is a unit 

vector in the inertial coordinate frame, 2/81.9 smg = , 
and 33)( xS ℜ∈• is the general form of a skew symmetric 
matrix defined as [7].  It is important to highlight 

0)( =wSwT γ for any vector 3ℜ∈w , and this property is 
commonly referred to as the skew symmetric property [10]. 

The matrix 33)( xR ℜ∈Θ is the translational rotation matrix 
which is used to relate a vector in the body fixed frame to 
the inertial coordinate frame defined as [2] 
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where the abbreviations )(•s  and )(•c have been used for 

)sin(• and )cos(• , respectively.   It is important to note 

that TRR =−1 , )(ωRSR =& and TT RSR )(ω−=& .  It is also 
necessary to define a rotational transformation matrix from 
the fixed body to the inertial coordinate frame as in [7] 
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where the abbreviation )(•t has been used for )tan(• .  The 
transformation matrices R and T are nonsingular as long as 

( ) ( ),22 πφπ <<−   ( ) ( )22 πθπ <<−  and πψπ ≤≤− .  
These regions will be assumed throughout the development 
of this work, and will be referred to as the stable operation 
regions of the UAV.  Under these flight conditions, it is 
observed that maxRR

F
= and maxTT

F
< for known 

constants maxR and maxT   [12]. 

  Now, the kinematics of the UAV can be written as 
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The control inputs to the UAV, 1u and 2u , represent the 
generated thrust and torques, respectively, generated by the 
angular speeds of rotors, 4,3,2,1, =iiϖ , and are related to 
the thrust and drag factors by the following relationship [4] 
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where d is a positive scalar representing the distance from 
the epicenter of the quadrotor to the rotor axes, tc is a 

positive scalar representing the thrust factor, and dc is a 
positive scalar representing the drag factor.   

Once the control inputs to the UAV have been 
determined, the relationship in (5) can be used to determine 
the required rotor speeds in order to achieve the desired 
thrust and rotational torques.  In, [3] and [6], the tracking 
control of the rotor speeds was considered; however, in this 
work, we are concerned with deriving the required thrust and 
rotational torques as in [2], [4], [7], and [8], respectively. 

The nonlinear aerodynamic effects which are considered 
in this effort are in the form of aerodynamic damping [7] and 
blade flapping [1] where the aerodynamic damping terms are 
modeled as in [7].  In [1], aerodynamic effects, like blade 
flapping were studied and revealed to have significant 
impact on the tracking ability of a quadrotor UAV.  The 
flapping of the rotor blades tilts the rotor plane away from 
the direction of motion, thus affecting the thrust and 
rotational torques of the UAV.  For complete details on 
blade flapping and its full effects, please see [1].   

Remark 1: ⋅  and 
F

⋅ will be used interchangeably as the 
Frobenius vector and matrix norms [10]. Next semi-global 
uniformly ultimately boundedness is defined. 

Definition 1:  The equilibrium point xe is said to be semi-
global uniformly ultimately bounded (SGUUB) if there exists 
a compact set nS ℜ⊂ so that for all Sx ∈0 there exists a 

bound 0>B and a time ),( 0xBT  such that 

Bxtx e ≤−)( for all Ttt +≥ 0 [10]. 

III. OUTPUT FEEDBACK TRACKING CONTROL 
The overall control objective for the UAV is to track a 

desired trajectory, T
dddd zyx ],,[=ρ , and a desired yaw 

dψ while maintaining a stable flight configuration.  The 

velocity zbv  is directly controllable with the thrust input.  

However, in order to control the translational velocities xbv  
and ybv , the pitch and roll must be controlled, respectively, 
thus redirecting the thrust. With these objectives in mind, the 
control problem statement can be defined as follows.   

Given the desired position, dρ , find the control velocity 
b

d Ev ∈ such that dρρ → . Then, find the desired pitch, 
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dθ , and roll, dφ , as well as the thrust, 1u such that dvv → .  

Next, given T
dddd ][ ψθφ=Θ , find the desired angular 

velocity control b
d E∈ω such that dΘ→Θ .  Finally, find 

the rotational torques, 2u , such that dωω → .  To complete 
the control objective, complete knowledge of the UAV 
dynamics and velocity information is required whereas this 
information is considered not available.  The constant total 
mass and moments of inertia of the UAV are known similar 
to the other works [2]-[7].  Therefore, the universal 
approximation property of NN is utilized in the design of the 
observer, virtual control inputs, and the controller.  

A. NN Observer Design 
To relax the need for velocity measurements and 

knowledge of the dynamics of the quadrotor UAV, a NN 
observer will be utilized.  To begin the observer 
development, define new variables bb ET ∈Θ=Θ −1 , 

( ) 6][ ℜ∈Θ= TTbTX ρ and 6][ ℜ∈= TTTvV ω  whose 
dynamics are given by (4) and (1), respectively, and 
rewritten as 
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where 6
1 ℜ∈ξ represents bounded sensor measurement noise 

such that M11 ξξ ≤ for a known constant M1ξ , 
61

21 )(][ ℜ∈== −
d
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T
dd M ττττ  represents disturbances, 
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 From the previously defined properties 
of R , TAA =−1 and MF

AA ≤ for a positive computable 

constant MA .  Additionally, it is straight forward to 

verify 0=AwAw TT & for any vector 6ℜ∈w . 
 Next, define a change of variable as AVZ = , whose 

derivative with respect to time is given by VAVAZ &&& += , 
and after simplification, written as 

doo AUAMGxAfZ τ+++= −1)(&  

where Vxo = and 

( )( ) ( )[ ] 61
2

1
1 )()()(1)( ℜ∈+== −−

TTT
ooo JSJNJvNmfxf ωωω   (7) 

defines the unknown nonlinear dynamics, and 
with 6]00000[ ℜ∈= TgG  a constant vector containing 
the gravity term.  Then, define the NN observer 
estimates X̂ and Ẑ as well as the observer estimation 

error XXX ˆ~ −= , and for convenience, the proposed 
observer takes the form of 
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where 21, oo KK positive design constants.  The observer 

velocity estimateV̂ is then written as 
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where 3oK  is a positive design constant. 
In (8), the universal approximation property of NN [10] 

has been utilized to estimate the unknown 
function )( oo xf by constant ideal bounded weights T

o
T

o VW ,  
such that

MoFo WW ≤  for a known constant 
MoW , and written 

as oo
T

o
T

ooo xVWxf εσ += )()( where oε  is the bounded NN 

approximation error such that Moo εε ≤ for a known 

constant Moε .  The NN estimate of of  is written 

as o
T

oo
T

o
T

oo WxVWf σσ ˆˆ)ˆ(ˆˆ ==  where T
oŴ is the estimate 

of T
oW , and ox̂ is the NN input written in terms of the 

observer velocity estimates as TTT
o VXx ]ˆˆ1[ˆ = .   

 Noting XKVAZ o
~ˆˆ

3−= from (9) and the definition of Z&  
above, the observer error dynamics of (8) can be formulated 
as 
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Similarly, noting 
 )~~(ˆ~

3 XKZAVVV o
T −=−= ,      (11) 

adding and subtracting )ˆ( o
T

o
T

o xVW σ , and using (10), the 
observer estimation error dynamics of (9) take the form of 

( ) ( ) 26633132
~~)(~~ ξ+−−−−−= VAAIKXKKKKAfV T
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o
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where ooo Wf σ̂~~
= , ooo WWW ˆ~ −= , ooo σσσ ˆ~ −= , and 

6
132

~ ℜ∈+−+= oo
T

odo WAK σξτεξ , Further, 
M22 ξξ ≤  

where 
oMoMMoMMMoM NWAKM 2132 +++= ξτεξ  is a 

positive computable constant with oN the number of hidden 
layer neurons and where

FM MM 1−= . 

Examining the error dynamics of (10) and (12) reveals 
that ,~,~ VX and of

~ are equilibrium points when 01 =ξ , 

02 =ξ  and 0=dτ . Next the following theorem is stated. 
Theorem 1:  (NN Observer Boundedness) Let the NN 

observer be defined by (8) and (9), respectively, with the NN 
update law for the observer given by 
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T
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1κσ −=&       (13) 

where 0>= T
oo FF and 01 >oκ are design parameters. Then 

there exists constant positive design parameters 
,, 21 oo KK and 3oK where 31 oo KK > , )( 3132 oooo KKKK −> , 

and ( ) 13 2 ooo NK κ> , such that the observer estimation 

errors X~ ,V~ and the NN observer weight estimation 
errors, oW~ , are SGUUB. 
 Proof:  Due to page length constraints, proof of Theorem 
1 is consider during proof of Theorem 2 using 
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B. NN Virtual Control Input Development 
In this section, a series of virtual control inputs for the 

backstepping control law will be defined to ensure that the 
quadrotor UAV follows a specified trajectory.  To begin the 
development of the UAV tracking controller, we first define 
the tracking errors for the position and translational velocity.  

 For the position, define 
a

d Ee ∈−= ρρρ
.        (15) 

Differentiating (15) and substitution of (4) yields the 
position error dynamics 

Rve d −= ρρ && .                  (16) 
Next, select the desired velocity to stabilize the position 
error dynamics as 

( ) b
d

TT
dzdydxd EeKRvvvv ∈+== ρρρ&][     (17) 

where 33},,{ x
zyx kkkdiagK ℜ∈= ρρρρ

is a diagonal positive 

definite design matrix all with positive design constants. 
Next, the translational velocity tracking error system is 
defined as 
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  The desired velocity dv is a virtual control input to (16), 
and applying (17) to (16) while observing

vd evv −= , reveals 
the closed loop position error dynamics to be rewritten as 

veReKe +−= ρρρ& .                (19) 
Next, the translational velocity tracking error dynamics 

are developed. Since the velocity vector is not measurable in 
this work, it is desirable to rewrite (18) in terms of the 
observer velocity estimates as 

)~(ˆ]ˆˆˆ[ˆ vvvvveeee dd
T

vzvyvxv −−=−==     (20) 

where v~ is the observer estimation error for the translational 
velocity.  Now, differentiating (20), observing 

( )( )RvKRvSv dd
T

dd −++−= ρρω ρ &&&& )(  and substituting the 

translational velocity dynamics in (1) as well as adding and 
subtracting vS ~)(ω  reveals 
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and the observer error dynamics become apart of the 
velocity tracking error dynamics.  Next, we rewrite (2) in 
terms of the desired orientation angles, dΘ , define 

)( dd RR Θ= , and add and subtract mRG d /)(  and 
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T
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is an unknown function which can be rewritten as 
[ ] 3

13121111 )( ℜ∈= T
ccccc fffxf . In the forthcoming 

development, the approximation properties of NN will be 
utilized to estimate the unknown function )( 11 cc xf  by 

bounded ideal weights T
c

T
c VW 11 , such that 

11 McFc WW ≤ for a 

known constant 1McW , and written as 111111 )()( cc
T
c

T
ccc xVWxf εσ +=  

where 1cε  is the bounded NN approximation error.  The NN 

estimate of 1cf  is written as ( ) 111111 ˆˆˆˆˆ
c

T
cc

T
c

T
cc WxVWf σσ ==  

T
c

T
cc

T
cc

T
c WWW ]ˆˆˆˆˆˆ[ 113112111 σσσ= where T

cW 1
ˆ is the NN estimate 

of T
cW 1 , 3,2,1,ˆ

1 =iW T
ic is the thi row of T

cW 1
ˆ ,and 1ˆcx is the NN 

input written in terms of the observer estimates, UAV 
orientation, and derivatives of the desired trajectory. 

The key step in the development of the virtual control 
input for the dynamic system is identifying the desired 
closed loop velocity tracking error dynamics.  For 
convenience, the desired translational velocity closed loop 
system is selected as 

1ˆ))((ˆ dvvv eSKe τω −+−=&       (23) 
where }),cos(),cos({ 321 vdvdvv kkkdiagK φθ= is a diagonal 
positive definite design matrix with each 0>vik , 3,2,1=i .  
In the following development, it will be shown that 

)2/,2/( ππθ −∈d  and )2/,2/( ππφ −∈d ; therefore, it is 
clear that 0>vK .  Then, equating (22) and (23) while 
considering the only the first two velocity error states reveals  
 

       (24) 
 
 
 
 
where vRKvvvv T

RRRR ˆ]ˆˆˆ[ˆ 321 ρ== .  Then, applying basic 
math operations, the first line of (24) can be solved for the 
desired pitch dθ while the second line reveals the desired 

roll dφ .  Using the NN estimates, 1ĉf , The desired pitch 

dθ can be written as 
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 Remark 3:  The expressions for the desired pitch and roll 
in (25) and (26) lend themselves very well to the control of 
quadrotor UAV.  The expressions will always produce 
desired values in the stable operation regions of the UAV.  
Finally, the virtual control inputs reveal the types of desired 
trajectories, which can be tracked in the steady state. That is, 
that there exist desired trajectories which will result in 
operating regions near the unstable operating points of the 
UAV since )tan(•a  approaches 2π±  as its argument 
increases. Additionally, large values of xkρ and ykρ can push 
an UAV toward instability. 
 Now that the desired orientation has been found, next 
define the attitude tracking error as 

a
d Ee ∈Θ−Θ=Θ

          (27) 
where dynamics are found using (4) to be ωTe d −Θ=Θ

&& .  In 
order to drive the orientation errors (27) to zero, the desired 
angular velocity, dω , is selected as  

a
dd EeKT ∈+Θ= ΘΘ

− )(1 &ω         (28) 

where 33
321 },,{ xkkkdiagK ℜ∈= ΘΘΘΘ  is a diagonal 

positive definite design matrix all with positive design 
constants.  Define the angular velocity tracking error as 

ωωω −= de ,          (29) 
and observing ωωω ed −= , the closed loop orientation 
tracking error system can be written as 

ωTeeKe +−= ΘΘΘ& .       (30) 
Examining (28), calculation of the desired angular 

velocity requires knowledge of dΘ& ; however, dΘ& is not 

known in view of the fact that v&̂ and 1
ˆ

cf& are not available.  
Further, development of 2u in the following section, will 

reveal dω& is required which in turn implies v&&̂ and 1
ˆ

cf&& must be 
known.  Since these requirements are not practical, the 
universal approximation property of NN is invoked to 
estimate dω and dω& . 
 To aid in the NN virtual control development, the desired 
orientation, a

d E∈Θ , is reconsidered in the fixed body frame, 
bE , using the relation

d
b
d T Θ=Θ −1 .  Rearranging (28), the 

dynamics of the proposed virtual controller when the all 
dynamics are known are revealed to be 

)()( 11

1

ΘΘ
−

ΘΘ
−

ΘΘ
−

+Θ++Θ=

−=Θ

eKTeKT

eKT

ddd

d
b
d

&&&&&&

&

ω

ω .   (31) 

For convenience, we define a change of variable 
as ΘΘ

−−=Ω eKTdd
1ω , and the dynamics (31) become 

ΩΩΩ
−− ==Θ+Θ=ΩΩ=Θ fxfTT dddd

b
d )(, 11 &&&&&&  (32) 

 Defining the estimates of b
dΘ and dΩ to be b

dΘ̂ and dΩ̂ , 

respectively, and the estimation error b
d

b
d

b
d Θ−Θ=Θ ˆ~ , the 

dynamics of the proposed NN virtual control inputs become 
b
dd

b
dd

b
d KfK Θ+=ΩΘ+Ω=Θ ΩΩΩ

~ˆˆ,~ˆˆ
21

&&    (33) 

where 1KΩ and 2ΩK are positive constants.  The estimate 

dω̂ is then written as 

ΘΘ
−

Ω +Θ+Ω= eKTK b
ddd

1
3
~ˆω̂       (34) 

where 3ΩK is a positive constant.   
In (33), universal approximation property of NN has 

been utilized to estimate the unknown function 
dd TTxf Θ+Θ= −−

ΩΩ
&&&& 11)(  by bounded ideal 

weights TT VW ΩΩ , such that 
ΩΩ ≤ MF

WW for a known constant 

ΩMW , and written as ( ) ΩΩΩΩΩΩ += εσ xVWxf TT)(  where Ωε is 
the bounded NN approximation error such 
that

MΩΩ ≤ εε for a known constant MΩε .  The NN 

estimate of Ωf is written as ( ) ΩΩΩΩΩΩ == σσ ˆˆˆˆˆ TTT WxVWf where 
TWΩ

ˆ is the NN estimate of TWΩ and Ωx̂ is the NN input written 
in terms of the virtual control input estimates and the NN 
observer velocity estimates.  The NN input is chosen to take 
the form of ( ) TTT

d
Tb

d
T
d

T
d

T
dd Vx ]ˆˆ1[ˆ ΩΘ=Ω ρρρρ &&&&&& .   

Observing b
ddddd K Θ−Ω=−= Ω

~~ˆ~
3ωωω , subtracting (33) 

from (32) and adding and subtracting ΩΩ σ̂TW , the virtual 
controller estimation error dynamics are found to be 

ΩΩΩΩΩ +Θ−=ΩΘ−−=Θ ξω b
dd

b
dd

b
d KfKK ~~~,~)(~~

231
&&  (35) 

where
ddd Ω−Ω=Ω ˆ~ , ΩΩΩ = σ̂~~ TWf , TTT WWW ΩΩΩ −= ˆ~ , ΩΩΩΩ += σεξ ~TW , 

and ΩΩΩ −= σσσ ˆ~ . Furthermore, MΩΩ ≤ξξ with ΩΩΩΩ += NWMMM 2εξ  a 
positive computable constant and

ΩN the number of hidden 
layer neurons in the virtual control NN.  Similarly, the 
estimation error dynamics of (34) are found to be 

( ) ΩΩΩΩΩΩΩ +Θ−−−+−= ξωω b
ddd KKKKfK ~)(~~~

31323
&  (36) 

Examination of (35) and (36) reveals d
b
d ω~,~Θ , and Ωf

~ to be 
equilibrium points of the estimation error dynamics 
when 0=Ωξ . 

C. NN Output Feedback Control Law 
In the previous section, the desired translational velocity 

was formulated to ensure the quadrotor UAV tracked a 
desired trajectory, and the roll and pitch angles were 
determined to guarantee the desired translational velocities 

dydx vv ,  were tracked.  Then, using the NN virtual controller, 
the desired angular velocity was found so that the desired 
orientation of the UAV is tracked.  In this section, the actual 
inputs 1u  and 2u  to the dynamic system (1) are calculated so 
that the desired lift velocity dzv  and desired angular velocity 

dω  are tracked and the overall control objective is met. 
First, the thrust control input, 1u , will be addressed.  

Consider again the translational velocity tracking error 
dynamics written in terms of the observer velocity estimates 
(22).  Considering the dynamics of the third error state vze&̂   
in (22), the thrust control input is found to be 
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ρψφψθφ

ρψφψθφ
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where 1ĉf is the NN estimate previously defined in Section 
III.B.  Next, substituting the virtual control inputs (25) and 
(26) as well as the thrust (37) into (22) reveals the closed 
loop translational velocity tracking dynamics to be 

( ) 111 ˆ~ˆ)(ˆ c
T
c

T
c

T
dvvv WReSKe ξσω +++−=& ,    (38) 

after adding and subtracting T
c

T
c

T
d WR 11σ̂ , where 

11111
~

dc
T
c

T
c

T
dc WR τεσξ −+= , 111

ˆ~
ccc WWW −= , and 

111 ˆ~
ccc σσσ −= .  Further, 

maxdFd RR = for a known 

constant maxdR , and 11 Mcc ξξ ≤  for a computable constant 

MMcMcdMcMc MNWR τεξ ++= 1max11 2  where MM was defined 
in Section III.A, and 1cN is the number of hidden layer 
neurons. 

Next, the rotational torques, 2u , will be addressed. 
Consider again the angular velocity tracking error (29).  
Similar to (22), the angular velocity tracking error is 
rewritten in terms of the NN virtual control estimate of 

dω̂ in (34) and NN observer estimate of ω̂  in (9) as 

ωωω ˆˆˆ −= de .         (39) 
 Multiplying both sides of (39) by J, the angular velocity 

tracking error dynamics become 
2222 )(ˆ dcc uxfeJ τω −−=&       (40) 

where 3
2222

~~)()()( ℜ∈+−−−== ωωωωωω &&& JJNJSJfxf ddccc , 
and unknown. Therefore, the universal approximation 
property of NN is utilized to estimate the function )( 22 cc xf  
by bounded ideal weights T

c
T

c VW 22 , such that 

22 McFc WW ≤ for a known constant 2McW  and written 

as 222222 )()( cc
T

c
T

ccc xVWxf εσ += where 2cε is the bounded NN 
functional reconstruction error such that 22 Mcc εε ≤ for a 
known constant 2Mcε .  The NN estimate of 2cf  is given by 

222222 ˆˆ)ˆ(ˆˆ
c

T
cc

T
c

T
cc WxVWf σσ ==  where T

cW 2
ˆ  is the NN 

estimate of T
cW 2  and TTTb

d
T
d

T
c ex ]~ˆˆ1[ˆ2 ΘΘΩ= &ω is the input 

to the NN written in terms of the observer and virtual 
controller estimates.  By the construction of the virtual 
controller, dω&̂ is not directly available; therefore, observing 

(44), the terms T
dΩ&̂  , Tb

dΘ~ , and TeΘ have been included 
instead.   

Using the NN estimate 2ĉf , the rotational torque control 
input is written as 

ωωeKfu c ˆˆ
22 += ,           (41) 

and substituting the control input (41) into the angular 
velocity dynamics (40) as well as adding and subtracting 

c
T

cW σ̂2 , the closed loop dynamics become 

222 ˆ~ˆˆ cc
T

cWeKeJ ξσωωω ++−=&      (42) 
where T

c
T

c
T

c WWW 222
ˆ~ −= , 2222

~
dc

T
ccc W τσεξ −+= , and 222 ˆ~

ccc σσσ −= .  
Further, 22 Mcc ξξ ≤  for a computable constant 

dMcMcMcMc NW τεξ ++= 2222 2 where 2cN is the number of 
hidden layer neurons. 

As a final step, we define an augmented translational 
and angular velocity error system as [ ]TTT

vS eee ωˆˆˆ = whose 
closed loop dynamics are described by (38) and (42), 
respectively, and written as 

   ( ) cSSSc
T
dS eSKfAeJ ξω ++−= ˆ)(~&̂     (43) 

where 66
333333 ]0;0[ x

xxx JIJ ℜ∈= is a constant, 
66

3333 0]0;0[ x
xxvS KKK ℜ∈>= ω

, 66
333333 ]0;0[ x

xxxdd IRA ℜ∈=  
66

333333 ]00;0)([)( x
xxxS SS ℜ∈= ωω , 0ˆ)(ˆ =SS

T
S eSe ω , 

6
21 ][ ℜ∈= TT

c
T
cc ξξξ , and 

Mcc ξξ ≤ for a positive computable 

constant 2
2

2
1 McMcMc ξξξ += .  Additionally, 6ˆ~~

ℜ∈= c
T

cc Wf σ  
where 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1
~0
0~

~

c

c
c W

W
W   and  TT

c
T
cc ]ˆˆ[ˆ 21 σσσ = .    

Examining (43) reveals Sê and cf
~ to be equilibrium points of 

the augmented error dynamics when 0=cξ .  Further, a 

single NN is utilized to estimate 6
21 ]ˆˆ[ˆ ℜ∈= TT

c
T

cc fff . 
 In the final theorem, the stability of the entire system is 
considered.  In other words, the position, orientation, and 
velocity tracking errors are considered along with the 
estimation errors of the observer and virtual controller and 
the NN weight estimation errors of each NN.  Considering 
the entire system in a single Lyapunov candidate allows the 
separation principle to be relaxed.   

 
Theorem 2:  (Quadrotor UAV System Stability) Given the 

dynamic system of a quadrotor UAV in (1), let the NN 
observer be defined by (8) and (9), respectively, with the NN 
update law for the observer given by (13).  Given a smooth 
desired trajectory, let the desired translational velocity for 
the UAV to track be defined by (17) with the desired pitch 
and roll defined by (25) and (26), respectively.  Let the NN 
virtual controller be defined by (33) and (34), respectively, 
with the NN update law given by 

( ) ΩΩΩΩΩΩ −Θ= WFFW
Tb

d
ˆ~ˆˆ

1κσ&      (44) 

where 0>= ΩΩ
TFF and 01 >Ωκ are design parameters. Let 

the dynamic NN controller be defined by (37) and (41), 
respectively, with the NN update given by 

( ) ccc
T

Sdccc WFeAFW ˆˆˆˆ
1κσ −=&        (45) 

where 0>= T
cc FF and 01 >cκ are constant design 

parameters.  Then there exists positive design 
constants ,, 21 oo KK 3oK , ,, 21 ΩΩ KK 3ΩK , and positive 
definite constant design matrices ωρ KKKK v ,,, Θ , such that 

observer estimation errors X~ ,V~  and the NN observer 
weight estimation errors, oW~ , the virtual controller 
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estimation errors b
dΘ~ , dω~  and the virtual control NN weight 

estimation errors, ΩW~ , the position, orientation, and 
translational and angular velocity tracking errors, Seee ˆ,, Θρ , 
respectively, and the dynamic controller NN weight 
estimation errors, cW~ , are all SGUUB. 

Proof:  Consider the following positive definite 
Lyapunov candidate 

coUAV VVVV ++= Ω
 

where oV  was defined in (14)  and 

( ) }~~{
2
1~~

2
1~)(~

2
1 1

3132 Ω
−

ΩΩΩΩΩΩΩ ++Θ−−Θ= WFWtrKKKKV T
d

T
d

b
d

Tb
d ωω   (46) 

{ }cc
T

cS
T
S

TT
c WFWtreJeeeeeV ~~

2
1ˆˆ

2
1

2
1

2
1 1−

ΘΘ +++= ρρ
.         (47) 

The first derivative of UAVV  with respect to time is given 

by coUAV VVVV &&&& ++= Ω , and substitution of the closed loop 
observer and virtual control estimation error dynamics (10), 
(12), (35) and (36), respectively, the closed loop position, 
orientation, and velocity tracking errors (19), (30), and (43), 
respectively, as well as the NN update laws (13), (44), and 
(45) reveals the upper bound of UAVV& can be written as 
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where TTT eee ][ ΘΚ = ρ , ]0;0[ 3333 Θ= KKK xxK ρ , ]0;0[ 3333 TR xx=Π

with maxΠ<Π
F

, minKK and minSK are the minimum singular 

values of KK and SK , respectively, and UAVη is a 
computable constant dependent on

M1ξ , M2ξ , MΩξ , and
Mcξ .  

Finally, UAVV& is less than zero provided the controller gains 
are selected so that the following inequalities are satisfied 

1

02
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K

S K
K Π

>             

Therefore, it can be concluded that UAVV& is less than zero 
provided the following inequalities hold: 
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 Thus, using standard Lyapunov extensions [10] UAVV& is 

less than zero outside of a compact set revealing that all the 
signals are SGUUB.   

Remark 4:  The above error bounds can be decreased 
through the appropriate selection of the design parameters.  
Further, using definitions of ω~,~v , and dω~ , the velocity 
tracking errors (18) and (29) can be rewritten as 

ωωωωωωωω ωω
~~ˆ~ˆ~ˆ

~ˆ~ˆ
−+=−−+=−=

−=−−=−=

dddd

vddv

ee
vevvvvve . 

From Theorem 2, dv eev ωω ω
~,ˆ,ˆ,~,~ are all SGUUB; therefore it 

can be concluded ωeev ,  are also SGUUB.  Thus, dvv → , 

dωω → . 

IV. CONCLUSIONS 
A new NN output feedback control law was developed for 

an underactuated quadrotor UAV which utilizes the natural 
constraints of the underactuated system to generate virtual 
control inputs to guarantee the UAV tracks a desired 
trajectory without the knowledge of dynamics.  All six DOF 
are successfully tracked using only four control inputs while 
in the presence of unmodeled dynamics and bounded 
disturbances.  Lyapunov analysis guarantees SGUUB of all 
the signals while relaxing the separation principle.  Although 
not shown, numerical results confirm the theoretical 
conjectures [11]. 
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