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Abstract— This article proposes a path following controller
that regulates the center of mass of the planar vertical take-
off and landing aircraft (PVTOL) to the unit circle and makes
the aircraft traverse the circle in a desired direction. A static
feedback controller is designed using the ideas of transverse
feedback linearization, finite time stabilization and virtual
constraints. No time parameterization is given to the desired
motion on the unit circle. Instead, our approach relies on the
nested stabilization of two sets on which the dynamics of the
PVTOL exhibit desirable behavior.

I. INTRODUCTION

Ever since Hauser, Sastry and Meyer’s 1992 paper [1]

pointed out the interesting control problems associated with

the vertical/short takeoff and landing aircraft, this control

system has become a benchmark for controller design. The

bulk of existing research can be partitioned into two main

categories : set-point stabilization [2], [3], [4], [5] and design

of tracking/path following controllers [6], [7], [8], [9], [10],

[11], [12]. This paper falls into the latter category and deals

with the path following problem.

It is well-known that when the center of mass of the

PVTOL is used as an output, the so-called nominal output,

the system is non-minimum phase, i.e. the resulting zero

dynamics are not asymptotically stable. This fact presents

a challenge to controller design. In particular if one is not

careful in designing a tracking controller, the PVTOL will

begin to rotate about its longitudinal axis uncontrollably

making several rotations as the vehicle executes a trajectory.

This is obviously undesirable.

In [6] the authors overcome this problem by using alter-

native outputs which render the system differentially flat or

linear. The flat output is the Huygens center of oscillation,

see also [5]. The resulting time-varying control law does not

solve the tracking problem for the center of mass of the

aircraft.

The fact that the PVTOL has non-minimum phase zero

dynamics associated with its center of mass suggests that

path following controllers may be more appropriate than
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tracking controllers. In the tracking approach, the path to

be followed is parameterized by time. For the PVTOL

this parameterization is not always suitable. Moving along

the path too quickly can lead to the undesirable rotations

mentioned earlier. Path following controllers do not have an

a priori parameterization of the curve to be followed. In fact,

there may not even be any reference points at all.

In [9] the authors use non-causal nonlinear system inver-

sion to design tracking controllers and then convert the result-

ing tracking controller into path following controllers using a

popular projection technique introduced in [13]. The authors

demonstrate their technique on a circular path. The authors

in [11] consider general C2 paths and investigate the problem

of finding a trajectory and an open-loop control such that the

center of mass of the PVTOL is on the path and the roll angle

is bounded. A desired (“quasi-static”) trajectory for the roll

dynamics is defined. A nonlinear optimal control problem is

then solved to numerically compute a bounded roll trajectory

that approximates the quasi-static one. An interesting feature

of this approach is that it doesn’t seem to require the center

of mass of the PVTOL to move “sufficiently” slowly along

the path. On the other hand, it is not clear, from a theoretical

viewpoint, whether the approach avoids complete revolutions

of the PVTOL about its longitudinal axis. In [12], the authors

show that there exists a constant κ such that for every curve

γ with ‖γ̈‖∞ ≤ κ, it is possible to find suitable initial

conditions for the roll angle and velocity such that the center

of mass exactly tracks γ and the aircraft does not overturn.

As a consequence they show that any curve can be exactly

tracked after a suitable reparameterization. This corresponds

to making the center of mass of the PVTOL traverse the

curve “sufficiently” slowly.

In this paper we design a path following controller to

drive the center of mass of the PVTOL to the unit circle

and make it traverse the circle in a desired direction. Rather

than parametrizing the path, we take a nested set stabilization

approach to solve the problem. We first stabilize a four-

dimensional controlled-invariant submanifold of the state

space, Γ⋆
1, on which the center of mass of the PVTOL is

constrained to lie on the circle. We further stabilize a two

dimensional submanifold Γ⋆
2 ⊂ Γ⋆

1 that corresponds to a

“virtual constraint” involving the roll angle and the position

of the PVTOL on the unit circle: at a given point on the

circle, the PVTOL should have a certain roll angle. Our

approach guarantees the key feature of output invariance of

the path, by which we mean that if the PVTOL’s center of

mass starts on the unit circle with initial velocity tangent to

the circle, the PVTOL’s center of mass will remain on the

unit circle for all future time. This is desirable because once
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the aircraft is on the path with the correct velocity vector, the

path is followed exactly, which is essential to avoid collisions

with the ground.

II. PATH FOLLOWING PROBLEM

We study the well-known, simplified, model of a V/STOL

aircraft in planar vertical takeoff and landing (PVTOL) mode

as introduced in [1]

ẋ1 = x2

ẋ2 = −u1 sinx5 + ǫu2 cos x5

ẋ3 = x4

ẋ4 = −g + u1 cos x5 + ǫu2 sin x5

ẋ5 = x6

ẋ6 = µu2

y = h(x) = col (x1, x3),

(1)

which we concisely represent as ẋ = f(x) + g(x)u, y =
h(x). The state space of (1) is M := R

4 × S1 × R, the

states (x1, x3) ∈ R
2 represent the coordinates of the center

of mass of the aircraft in the vertical plane and x5 ∈ S1 is

the roll angle. The parameters µ and ǫ are positive constants

and g > 0 is the acceleration due to gravity.

We are interested in designing a path following feedback

control law u(x) for (1) and the unit circle. Let λ : M → R,

x 7→ (x2
1 + x2

3 − 1)/2 and let Γ := {x ∈ M : λ(x) = 0}.

The problem of driving y to the unit circle can be cast as an

output stabilization problem [14] for the system

ẋ = f(x) + g(x)u

ỹ = λ(x).
(2)

It is well-known that the output of the PVTOL can be

made to follow any twice continuously differentiable path.

It is not clear, however, if the path can be followed while

maintaining boundedness of the internal dynamics especially

for arbitrary initial conditions in an open subset of M . The

control objectives of this paper are to design a static feedback

u : U ⊂ M → R
2 such that for all initial conditions in

an open set U the closed loop dynamics of (1) enjoy the

following properties:

G1 ỹ(t) → 0 as t → ∞.

G2 The path is invariant for the nominal output of the

aircraft, as defined in the introduction.

G3 y(t) traverses the entire set {(x1, x3) : x2
1 + x2

3 = 1}
in a desired direction.

G4 ∃t̄ : |x5(t)| < π, ∀t ≥ t̄, that is for t > t̄ the aircraft

does not experience full rotations about its longitudinal

axis.

III. TRANSVERSE FEEDBACK LINEARIZATION

In order to accomplish the objectives listed above, we

will use transverse feedback linearization for multi-input sys-

tems [15]. In this problem, transverse feedback linearization

simply amounts to input-output linearization for system (2).

First, we note that the output λ(x) of (2) yields a well-defined

relative degree of 2 on M\{x : x1 = x3 = 0}. For, the

decoupling matrix

LgLfλ(x) =
[

(x3 cos x5 − x1 sin x5) ǫ(x1 cos x5 + x3 sinx5)
]

has full rank on M\{x : x1 = x3 = 0}. Therefore, in

particular, the zero dynamics manifold of (2) (the largest

controlled invariant manifold contained in Γ) is

Γ⋆
1 := {x ∈ M : λ(x) = Lfλ(x) = 0}

= {x ∈ M : (x2
1 + x2

3 − 1)/2 = (x1x2 + x3x4) = 0}.

From the physical point of view, the set Γ⋆
1 is the collection

of all motions of the PVTOL aircraft that can be made to

lie entirely in Γ by appropriate feedback. We refer to this

manifold as the path following manifold [16]. Solving the

output stabilization problem for (2) amounts to stabilizing

the set Γ⋆
1. We do so by feedback linearizing the dynamics

transversal to Γ⋆
1. System (2) is non-square because it has

one output and two inputs. Hence we first apply a regular

feedback transformation u 7→ β(x)v that decomposes the

inputs into ‘transversal’ and ‘tangential’ groups. Consider the

matrix-valued function β : M → R
2×2 defined as follows

β(x) :=
1

x2
1 + x2

3

·
[

x3 cos x5 − x1 sinx5 ǫ (x1 cos x5 + x3 sinx5)
(1/ǫ) (x1 cos x5 + x3 sinx5) −x3 cos x5 + x1 sin x5

]

.

It is easily seen that β(x) is nonsingular on M\{x1 = x3 =
0}. Moreover, the first column of β(x) is the right inverse of

the decoupling matrix LgLfλ(x), and the second column of

β(x) is a basis for the kernel of LgLfλ(x). Now consider

the regular feedback transformation u = β(x)v, where v =
col(v1, v2), and the map Ξ : M\{x : x1 = x3 = 0} →
S1 × R × S1 × R

3, x 7→ (z, ξ) = (z1, z2, z3, z4, ξ1, ξ2),
defined as

z1 := x5

z2 := x6

z3 := arg(x1 + ix3)

z4 := x1x4 − x2x3

ξ1 := (x2
1 + x2

3 − 1)/2

ξ2 := x1x2 + x3x4.

(3)

This transformation is easily seen to be a diffeomorphism

onto its image. Moreover, in transformed coordinates the set

Γ⋆
1 is given by Ξ(Γ⋆

1) = {(z, ξ) : ξ = 0}. Consider next, the

regular feedback transformation,

v1 = gx3 − x2
2 − x2

4 + v⋔, v2 =
1

ǫ
(x1g + v‖).
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z1

z3

Fig. 1. Physical interpretation of the states z1 ∈ S1 (roll angle) and
z3 ∈ S1 (PVTOL’s position on the unit circle) when ξ = 0.

In (z, ξ) coordinates, using the two feedback transformations

defined above, system (2) assumes the normal form

ż1 = z2

ż2 =
µ

ǫ

[

g sin z1

− 1

(1 + 2ξ1)3/2
cos(z1 − z3)(z

2
4 + ξ2

2)

+
1√

1 + 2ξ1

(cos(z1 − z3)v
⋔ + sin(z1 − z3)v

‖)
]

ż3 =
z4

1 + 2ξ1

ż4 = v‖

ξ̇1 = ξ2

ξ̇2 = v⋔,

(4)

with output ỹ = ξ1.

The singularity set {x : x1 = x3 = 0} is mapped by Ξ
to the point ξ1 = −1/2. Hence, (4) is valid on {(z, ξ) :
ξ1 > −1/2}. This normal form is particularly insightful

as pertains to the path following problem. First, stabilizing

the ξ-subsystem to zero corresponds to driving the center of

mass (x1, x3) of the aircraft to the unit circle and making

its velocity vector (x2, x4) tangent to it. For this reason, we

refer to the ξ-subsystem as the transversal subsystem. When

ξ = 0, the z-subsystem models the dynamics on the path

following manifold. Specifically, z1 and z2 represent the roll

angle and velocity, while z3 and z4 determine the position

of the center of mass on the unit circle, and its angular

velocity; see Figure 1. Therefore, physically, when ξ = 0 the

z subsystem describes the motion of the PVTOL as it slides

on the circle. We refer to the z-subsystem as the tangential

subsystem. The normal form (4) illustrates another type of

decomposition: the transversal subsystem is only driven by

the control input v⋔. On the other hand, when ξ(t) ≡ 0 (and

thus v⋔(t) ≡ 0), the tangential subsystem is only driven by

v‖. Accordingly, we refer to v⋔ and v‖ as the transversal

and tangential control inputs, respectively.

IV. TRANSVERSAL CONTROL DESIGN

To simplify the subsequent stability analysis, we define a

continuous feedback yielding stabilization to Γ⋆
1 (and hence

meeting goals G1 and G2) in finite time. To this end,

we follow the finite-time stabilization theory developed in

[17], [18].

v⋔(ξ) = − 1

k1

(

sgn (k1ξ2)|k1ξ2|
1

2 + sgn (φ(ξ))|φ(ξ)| 13
)

(5)

where k1 > 0 is a design parameter, and

φ(ξ) = k1ξ1 +
2

3
sgn (k1ξ2)|k1ξ2|

3

2 .

A control law analogous to v⋔(ξ) is used in [19] and is based

on the controllers introduced in [17].

Proposition 4.1: The control law (5) globally stabilizes

ξ to 0. Furthermore, there exists a continuous function

Tξ(ζ, k1), R≥0 × R≥0 → [0,+∞), with the following

properties:

(i) For all ‖ξ(0)‖ < ζ, ξ(t) = 0 for all t ≥ Tξ(ζ, k1).
(ii) Tξ(ζ, k1) → 0 as k1 → 0+, and Tξ(0, k1) = 0.

The existence and properties of Tξ follow from the proof of

Proposition 1 in [17], and utilizes [18, Theorem 4.2].

V. TANGENTIAL CONTROL DESIGN

In this section we design a tangential controller v‖ meeting

design goals G3 and G4. In light of the results of the previous

section, for all t greater than Tξ(‖ξ(0)‖, k1), we have ξ(t) =
0 and therefore also v⋔(t) = 0. Therefore, for sufficiently

large t, the tangential dynamics of the PVTOL restricted to

the path following manifold are

ż1 = z2

ż2 =
µ

ǫ

(

g sin z1 − z2
4 cos (z1 − z3) + sin (z1 − z3)v

‖
)

ż3 = z4

ż4 = v‖

(6)

with (z1, z2, z3, z4) ∈ S1 × R × S1 × R.

A. Virtual constraint: the roll dynamics manifold

In order to meet design goals G3 and G4, we will impose

a “virtual constraint” z1 = f(z3), where f : S1 → S1

is a function to be determined that satisfies the following

constraints

1) f is smooth (at least C2).

2) f(z3 + 2π) = f(z3).
3) |f | ≤ π so that while traversing the unit circle, the

PVTOL does not perform complete revolutions along

its longitudinal axis.

In order for z1 = f(z3) to be a feasible constraint for (6)

we need
ż1 = z2 = f ′(z3)z4

z̈1 = ż2 = f ′′(z3)z
2
4 + f ′(z3)v

‖

which holds if and only if

µ

ǫ

(

g sin z1 − z2
4 cos (z1 − z3) + sin (z1 − z3)v

‖
)∣

∣

∣

z1=f(z3)

= f ′′(z3)z
2
4 + f ′(z3)v

‖,
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or,

v‖ =
µ

ǫ

(

g sin z1 − z2
4 cos (z1 − z3) − ǫ

µf ′′(z3)z
2
4

)

f ′(z3) − µ
ǫ sin (z1 − z3)

.

If the denominator of v‖ is never zero when z1 = f(z3) and

z2 = f ′(z3)z4 then the set Γ⋆
2 defined by

Ξ(Γ⋆
2) := {(z, ξ) : z1 = f(z3), z2 = f ′(z3)z4, ξ = 0} (7)

is a controlled invariant subset of the path following man-

ifold Γ⋆
1. We refer to Γ⋆

2 as the roll dynamics manifold.

Therefore, the problem now becomes: find a function f(z3)
satisfying properties (1)-(3) above and such that f ′(z3) −
µ
ǫ sin (f(z1) − z3) is never zero. We take the simplest ap-

proach and impose that f ′(z3)− µ
ǫ sin (f(z1) − z3) be equal

to a non-zero constant,

f ′ =
µ

ǫ
sin (f(z3) − z3) − δ, δ > 0. (8)

Equation (8) is an ODE of the form

x′ =
µ

ǫ
sin (x − t) − δ

whose solution can be found explicitly as1

x = t + 2arctan

(

1

1 + δ

(

λ tan

(

K − λ

2
t

)

+
µ

ǫ

))

,

with λ =
√

(1 + δ)2 − (µ/ǫ)2 and K ∈ R a constant.

This solution satisfies property (2) (i.e., it is 2π-periodic)

if tan (K − λt/2) is 2π-periodic. This is true if λ/2 is an

integer multiple of 1/2. We therefore impose that λ = 1 and

solve for δ to obtain

δ = −1 +

√

1 +
(µ

ǫ

)2

. (9)

In summary we have obtained that the function

f(z3) = z3 + 2arctan

(

1

1 + δ

(

tan (K − z3/2) +
µ

ǫ

)

)

(10)

with δ as in (9) satisfies properties (1) and (2). To check

if (3) is satisfied, note that the salient properties of the

function (10) are

(i) The maximum excursion of f is

∆f = max
z3∈S1

(f(z3)) − min
z3∈S1

(f(z3))

= 4 arcsin

(

ǫ

µ
δ

)

.

(ii) The extrema are at (z⋆
3)1,2 = 2K−2 arctan

(

φ1,2 − µ
ǫ

)

where φ1,2 are the solutions to

ǫ

µ
δy2 − 2(1 + δ)y +

ǫ

µ
δ(1 + δ)2 = 0.

The solutions are both real and positive. We let φ1 < φ2.

1Note that, when the argument of tan(·) is ±π/2 modulo 2π, the
function x(t) has a jump of 2π. However, x(t) is taken to be in S1, and
so x(t) is actually continuous, and in fact smooth.

(iii) The values of f at the extrema are

f⋆
1,2 = (z⋆

3)1,2 + 2arctan

(

1

1 + δ
φ1,2

)

and f⋆
1 is a maximum, f⋆

2 is a minimum.

We select the parameter K so that f⋆
1 = −f⋆

2 . Physically

this means that as the PVTOL moves around the circle, the

maximum tilt of the aircraft to the left and to the right is the

same. Using properties (i)-(iii) above we find

K = arctan
(

φ2 −
µ

ǫ

)

− arctan

(

φ2

1 + δ

)

− arcsin

(

ǫδ

µ

)

.

(11)

B. Stabilization of the roll dynamics manifold Γ⋆
2

The foregoing analysis shows that the set Γ⋆
2 ⊂ Γ⋆

1

is controlled-invariant and, on it, design goal G4 is met.

Therefore, the next step is to choose the tangential control

such that the set Γ⋆
2 is stabilized in finite time. To this end,

let e1 := z1 − f(z3) ∈ S1, e2 := z2 − f ′(z3)z4 ∈ R, and

e = (e1, e3). Then,

ė1 = e2

ė2 =
µ

ǫ

(

g sin (e1 + f(z3)) − z2
4 cos (e1 + f(z3) − z3)−

ǫ

µ
f ′′(x3)z

2
4

)

−
(

f ′(z3) −
µ

ǫ
sin (f(z3) − z3 + e1)

)

v‖.

(12)

Therefore we choose as our tangential control law

v‖ =

µ
ε

(

g sin (z1) − z2
4 cos (z1 − z3) − ε

µf ′′(z3)z
2
4

)

− ϕ(e)

f ′(z3) − µ
ǫ sin (z1 − z3)

(13)

with f given by (10), δ given by (9), K given (11) and

ϕ(e) a function yet to be determined. Note that, on Γ⋆
2, the

denominator of v‖ is given by f ′(z3)− µ/ǫ sin(z1 − f(z3))
which, by construction, is equal to −δ < 0. Hence, v‖ in (13)

is well-defined on a neighborhood of Γ⋆
2. It is useful to

estimate the size of this neighborhood. To this end, note

that a sufficient condition for the denominator of (13) to

be bounded away from zero is |1 − cos e1| + | sin (e1)| <
ǫδ/µ = −ǫ/µ +

√

(ǫ/µ)2 + 1. After application of the

control law (13) the dynamics (12) become

ė1 = e2

ė2 = ϕ(e).
(14)

Just as we did for the transversal controller, we again define

a continuous control for ϕ(e) yielding stabilization of Γ⋆
2 in

finite time based on the control law for the rotational double

integrator from [17]

ϕ(e) = − 1

k2

(

sgn (k2e2)|k2e2|
1

2

+k
1

3

2 sgn (sin (φ(e))) | sin (φ(e))| 13
)

,
(15)

where k2 > 0 is a design parameter and

φ(e) = e1 +
2

3
k

1

2

2 sgn(e2) |e2|
3

2 .
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The equilibrium e = (0 mod 2π, 0) in the closed-loop double

integrator in (14) is not globally finite-time stable2, for the

continuous control law (15) introduces a saddle point at e =
(π mod 2π, 0). However, the equilibrium e = (0 mod 2π, 0)
of (14) is almost globally finite-time stable, as for any initial

condition on S := S1 × R\{e : φ(e) = π mod 2π} the

solution converges to the equilibrium in question in finite

time. Finally, there exists a continuous “settling time” func-

tion Te(ζ, k2), R≥0 × R≥0 → [0,+∞), with the following

properties:

(i) For all e(0) ∈ Γ⋆
2 such that ‖e(0)‖ < ζ, e(t) = 0 for

all t ≥ Te(ζ, k2).
(ii) Te(0, k2) = 0.

Consider the closed-loop error subsystem (12) with v‖ as

in (13) and ϕ(·) as in (15). We have obtained that all

solutions (e1(t), e2(t)) contained in the set {e ∈ S1 × R :
|1 − cos e1| + | sin e1| < −ǫ/µ +

√

(ǫ/µ)2 + 1, φ(e) 6= π}
converge to the origin in finite time. In particular, since

the origin e = (0 mod 2π, 0) is stable, and since the set

{φ(e) = π} is disjoint from the origin, the above implies

that for all e(0) in a sufficiently small neighborhood of the

origin, the solution e(t) is well-defined and converges to zero

in finite time. Now we go back to the tangential subsystem

in (6) with control law v‖ as above, and draw the implications

of this result. Suppose that the PVTOL is initialized on the

circle with velocity tangent to it, so that the PVTOL remains

on the path and its motion is described by the tangential

subsystem. If the initial roll angle z1 and roll velocity z2 of

the aircraft are not too far from their desired values f(z3)
and f ′(z3)z4, then as the PVTOL slides on the circle, its

roll angle and velocity converge in finite time to the desired

values or, what is the same, x(t) → Γ⋆
2 in finite time. After

this time, the motion of the PVTOL is entirely described by

the restriction of the closed-loop tangential dynamics to Γ⋆
2,

and therefore goal G4 is met. What remains to be ascertained

is whether goal G3 is met, i.e., whether the PVTOL traverses

the circle.

C. Motion on the roll dynamics manifold

In this section we analyze the restriction to Γ⋆
2 of the

closed-loop tangential subsystem in (6), with v‖ as in (13),

and ϕ(·) as in (15). We begin by noticing that Γ⋆
2 is a

two-dimensional closed, embedded submanifold of Γ⋆
1. This

follows directly from the definition of Γ⋆
2 in (7), since Γ⋆

2

is the graph of the map F : (z3, z4) 7→ (f(z3), f
′(z3)z4).

Moreover, the motion on Γ⋆
2 is described by

ż3 = z4

ż4 = v‖
∣

∣

∣

Γ⋆

2

=

µ

εδ

(

−g sin (f(z3)) + z2
4 cos (f(z3) − z3) +

ε

µ
f ′′(z3)z

2
4

)

.

(16)

Hence, the dynamics of the closed-loop tangential subsystem

on Γ⋆
2 are completely characterized by those of the system

2This is hardly surprising, though, as it is well-known that no continuous

control law can globally stabilize an equilibrium on the cylinder.
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Fig. 2. Phase portrait of the PVTOL constrained to the set Γ⋆

1
with µ/ǫ = 1

and K given by (11). Note that z3 ∈ S1 so the points z3 = nπ, n ∈ Z

are identified.

in (16), with state space S1 × R. Figure 2 shows the phase

portrait of system (16) when3 µ/ǫ = 1 and K is calculated

according to (11). The equilibria on this cylinder are given by

(z̄3, 0), where z̄3 are the values of z3 such that f(z3) in (10)

is either 0 mod 2π or π mod 2π. For the value of K calculated

by (11) these values are exactly z̄3 = {π/2,−π/2}mod 2π
regardless of the value of µ/ǫ. The eigenvalues of the

Jacobian of (16) at (z̄3, 0) are given by

λ = ±
√

−gµ

ǫδ
f ′(z̄3) = ±

√

gµ

ǫ

√

µ

ǫδ
sin (z̄3) + 1.

Hence we obtain that the equilibrium (π/2 mod 2π, 0) is a

saddle while the equilibrium at (−π/2 mod 2π, 0) is a center,

see Figure 2.

Next note that, based purely on the phase portrait in

Figure 2, there are two homoclinic orbits departing from the

saddle point (π/2 mod 2π, 0). One of these corresponds to

positive z4 or counterclockwise motion along the unit circle,

while the other one corresponds to negative z4, or clockwise

motion on the unit circle. These two homoclinic orbits divide

the cylinder into three components. Call R0 the region of the

cylinder enclosed by the homoclinic orbits. Let R+ denote

the component of the cylinder corresponding to η4 > 0, and

R− the component corresponding to η4 < 0; see Figure 2.

For our purposes, the key to these distinctions is that as long

as the state remains in R+ or R− the z3 dynamics make

full rotations and hence the PVTOL is able to traverse the

entire unit circle. Region R0 is to be avoided because in it

the motion on Γ⋆
2 corresponds to the PVTOL not traversing

the entire unit circle in output space.

Let us summarize what we have obtained so far. If

properly initialized, the PVTOL reaches the set Γ⋆
2 at time

T = max (Tξ(|ξ(0)|, k1), Te(|e(0)|, k2)). If at time T we

have (z3(T ), z4(T )) ∈ R−, then the PVTOL traverses the

circle in the clockwise direction. If (z3(T ), z4(T )) ∈ R+,

3The discussion in this section deals specifically with the case µ/ǫ = 1
but the qualitative observations remain unchanged for other values of µ/ǫ.
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Fig. 3. Three different simulations of the PVTOL approaching and then
traversing the unit circle with control gains k1 = 0.05 (transversal) and
k2 = 0.1 (tangential).

then the PVTOL traverses the circle in the counterclockwise

direction. In the next section, we use this fact to assert the

existence of a region of the state space of the PVTOL such

for all initial conditions in this region, goals G1-G4 are met.

VI. STABILITY ANALYSIS

The following notation will be useful for the subsequent

development. Given (z3, z4) ∈ S1 × R let ‖(z3, z4)‖R0 :=
infp∈R0 ‖(z3, z4) − p‖. Note that if ‖(z3, z4)‖R0 6= 0 then

(z3, z4) belongs to one of the regions R+ or R−. Let π(z)
be the projection map z 7→ (z3, z4).

Proposition 6.1: Consider system (1) with transversal

controller v⋔ in (5), tangential controller v‖ in (13), (15),

variables z and ξ defined in (3), and variables e1 = z1 −
f(z3), e2 = z2 − f ′(z3)z4. For all ε2 > ε1 > 0, there exist

ζ > 0, such that for all initial conditions such that

ε1 < ‖(z3(0), z4(0))‖R0 < ε2

‖e(0)‖ < ζ, ‖ξ(0)‖ < ζ
(17)

there exists T > 0 yielding ξ([T,+∞)) = 0, e([T,+∞)) =
0, and, for all t ≥ 0,

‖(z3(t), z4(t))‖R0 > 0.

Due to space limitations, we omit this straightforward proof.

VII. SIMULATIONS

Figure 3 shows simulation results for the PVTOL (1)

following a unit circle for various initial conditions. The

simulation parameters are µ = ǫ = 1, g = 9.81. The control

parameters are k1 = 0.05, k2 = 0.1.

The salient feature of these simulations is that the circle is

stabilized without following any particular reference point.

Instead, a set is stabilized with the tangential control v‖

controlling the motion on the set. This causes the resulting

motion on the path to depend on the region, R+ or R−, that

the initial conditions (z3(0), z4(0)) start in.
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