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Abstract— This paper deals with model predictive control
of uncertain linear discrete-time systems with polytopic con-
straints on the input and chance constraints on the states.
When having polytopic constraints and bounded disturbances,
the robust problem with an open-loop prediction formulation
is known to be conservative. Recently, a tractable closed-loop
prediction formulation was introduced, which can reduce the
conservatism of the robust problem. We show that in the
presence of chance constraints and stochastic disturbances, this
closed-loop formulation can be used together with a tractable
approximation of the chance constraints to further increase
the performance while satisfying the chance constraints with
the predefined probability.

I. INTRODUCTION

This paper deals with solving a model predictive control
(MPC) problem for the class of discrete-time linear systems

subject to stochastic disturbances. The aim is to provide a

method for efficiently finding control policies that ensure to

satisfy a given set of polytopic input constraints and uncer-

tain linear constraints on the state, but which is sufficiently

computationally tractable that it is also applicable to larger

systems. The uncertain linear constraints are of the form

P(Fx + Gw ≤ f) ≥ 1 − α, (1)

where x is the system state and w is the disturbance. f
is a vector, F and G are matrices of appropriate sizes

and α ∈ [0, 1]. This constraint requires that the condition

Fx + Gw ≤ f is fulfilled with probability greater or equal

than 1 − α. Such uncertain constraints that linearly depend

on the disturbance as well as uncertain constraints of a

more complex structure are called chance constraints. If

disturbances are to be accounted for in the formulation of

an MPC problem, it is preferable to have future control

inputs formulated as functions of future measured states.

This is because in the future the disturbance realization and

the system state will be known and, thus, in the future the

controller will have this information available while making

a decision on the control action. Having future control inputs

formulated as functions of future measured states is usually

called closed-loop prediction MPC.

A. Closed-loop prediction MPC

In so-called open-loop prediction MPC the control action

that is predicted to be taken in the future is only a function

of the current state, and not of future disturbance and

state realizations. This is computationally very attractive.
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The disadvantage is that this very often results in highly

conservative control behavior and infeasibility and instability

problems can occur [11]. The reason for this is that a set

of control actions over the entire horizon is chosen such

that the constraints are satisfied for all possible disturbance

realizations. The controller does not take into account that

in the future it will have knowledge about the disturbance

realizations that already happened up to that point and the

prediction effectively assumes that the system will run in

open-loop over the future horizon. In closed-loop prediction

MPC the future control inputs are functions of future mea-

sured states and the decision variables in the resulting MPC

optimization problem are exactly these functions. Optimizing

over arbitrary functions is however in general not tractable. A

popular approximation to this is “prestabilization”, where a

stabilizing linear state feedback is computed off-line and the

online computation is restricted to a sequence of admissible

offsets to the selected control law [2], [3], [12]. Since this

can be quite conservative, an improvement to this approach

would be to optimize over both the linear feedback con-

trol law and the offset sequence online. Unfortunately, this

parametrization leads to a non-convex set of feasible decision

variables. There are recent results given in [1], [10], [19] that

describe one approach to address this problem. The authors

propose to have the control policy parameterized as an affine

function of the disturbances, which leads to a convex set of

feasible decision variables. This affine disturbance feedback

parametrization is shown to be equivalent to the affine state

feedback parametrization in [8] in the sense that it leads to

the same control inputs. In [1], [10] and [8] bounded distur-

bances are assumed, whereas in [19] stochastic disturbances

are considered. Unfortunately, with the method in [19] the

problem that was originally an LP is turned into a second

order cone problem. Consequently, it is not applicable to

large-scale problems, which are our primary interest here.

B. Chance constraints

An example of a control problem, which naturally leads

to a chance constraint of the form given in (1) and which is

the primary motivation for the work, originates from building

climate control. The European standards state that the room

temperature must be kept within a certain range with a

certain probability. The control problem is then to satisfy this

chance constraint while using a minimum amount of energy.

Problems of uncertain linear systems with chance constraints

are very common and can also be found for example in

finance, physics, aeronautics etc. [15].

In general, chance constraints are hard to deal with and
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many approximations exist. The interested reader is referred

to [4], [14], [16] for example. There exists a small class of

chance constraints that are easier to deal with. In particular, it

is well known that if the disturbance is normally distributed,

then individual chance constraints (i.e. those for which the

matrices F and G in (1) are vectors) can be equivalently

formulated as deterministic second order cone constraints

[6]. A deterministic second order cone formulation incor-

porated in a standard MPC formulation was used in [17].

As already mentioned, for large-scale problems, that we

are focusing on here, a second order cone formulation

is not applicable. Alternatively, in [4] the authors suggest

to assume that the disturbance is contained in a bounded

set and to approximate the chance constraint with a hard

constraint. The authors describe how this disturbance set has

to be chosen such that a performance guarantee on each

chance constraint can be given. The idea of bounding the

disturbance and approximating the chance constraint with a

hard constraint fits very well into the MPC framework since

it leads to a classic robust control problem. Furthermore, this

approximation has the important advantage that it preserves

the original structure of the problem, so for example an LP

stays an LP. In [5] the authors apply the approximation of

[4] in open-loop prediction MPC. In this paper we suggest

to extend it to closed-loop prediction MPC.

C. Main Idea and Outline

The main idea of this paper is to use the approximation of

the chance constraint in [4] and combine it with the affine

disturbance feedback formulation in [1], [19], [10]. This

enables us to formulate the MPC problem as a classic robust

control problem. Our aim is to reduce the conservativeness

of the control by applying closed-loop prediction MPC and

further by making use of the fact that the chance constraints

may be violated from time to time. For linear systems

with linear constraints the proposed formulation results in

a linear program which makes it applicable to large-scale

systems as used for example in building climate control.

Section 2 states the class of system that is to be con-

sidered throughout the paper and lists a number of standing

assumptions. Section 3 is divided in three parts. The first part

describes the affine disturbance feedback parametrization.

The second part describes the approximation of chance

constrained problems. The third part introduces the new

methodology that combines the affine disturbance feedback

and the chance constraint approximation. In Section 4 simu-

lation results are presented. Section 5 concludes with a

discussion and an outlook.

II. PRELIMINARIES

Consider the following stable discrete-time LTI system

x+ = Ax + Bu + Ew, (2)

where x ∈ R
n is the system state at the current time instant,

x+ is the state at the next time instant, u ∈ R
m is the

control input and w ∈ R
p is a stochastic disturbance. The

disturbances are assumed to be independent and identically

normally distributed random variables (w ∼ N (0, I)). The

system is subject to input constraints

U := {u ∈ R
m | Su ≤ s}, (3)

where S ∈ R
q×m and s ∈ R

q and U ⊂ R
m is a bounded,

polytopic set. There are also polytopic constraints on the

state

X := {x ∈ R
n | Fx ≤ f}, (4)

where F ∈ R
r×n, f ∈ R

r and X ⊂ R
n. The state constraints

are given as chance constraints, i.e.

P(x ∈ X ) ≥ 1 − α. (5)

We introduce the notation Z[k,l] to be the set of integers

{k, k + 1, . . . , l}.

III. METHOD

In this paper we seek to solve a finite horizon MPC

problem with a planning horizon of length N and define

w := [wT
0 . . . wT

N−1]
T , (6)

where w ∈ R
m·N denotes a disturbance sequence over the

interval 0 to N − 1. In order to have an effective control in

the presence of uncertainties, we suggest to apply an affine

disturbance feedback, so the control policy μ is defined by

μ := {μ0, μ1(·), . . . , μN−1(·)}, (7)

where μ0 ∈ U and μi : R
p → U , i = 1, . . . , N − 1

is a mapping from the disturbance realization to the set

of inputs. μ0 is a control action since the current state is

known, whereas each μk(·) is a disturbance feedback control

law. Let φi(x0, μ,w) denote the solution to (2) at time i
when the state is x0 at time 0, the disturbance realization is

w0, . . . , wi−1, and the control law μj is applied at time j.

Then the chance constraints can be written as

Xc = {P(φ(x0, μ,w) ∈ X ) ≥ 1 − α}, (8)

where Xc ⊂ R
n. Now we can state the MPC problem that

we would like to solve. We define an optimal policy to be

one that minimizes the value of a cost function that is linear

in the disturbance free state and input sequences.

Definition 1 (MPC problem):

J(x0) := min
μ

N−1∑
i=0

‖Qφi(x0, μ,0)‖p + ‖Rμi(x0,0)‖p

s.t. Sμi(x0,w) ≤ s, ∀i ∈ Z[0,N−1]

P (Fφi(x0, μ,w) ≤ f) ≥ 1 − α ∀i ∈ Z[1,N ]

w ∼ N (0, I),

(9)

where ‖ · ‖p can be any polytopic norm. The problem in (9)

cannot be solved for the following reasons:

• We cannot optimize over arbitrary functions.

• A chance constraint as in (9) is non-convex and general-

ly intractable [4].
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In order to tackle the above mentioned problems we propose

to find approximations. The first approximation defines an

appropriate structure for the control policies that enables us

to formulate a tractable optimization problem. The second

approximation replaces the chance constraints with conserva-

tive simple linear bounds while guaranteeing the satisfaction

of the chance constraint with the predefined probability and

disposing of the stochastic description of the disturbances.

The proposed approximations are introduced in the next two

sections.

A. Affine Disturbance Feedback

Consider a simplified version of the problem in (9):

Definition 2 (Simplified MPC problem):

Jsp(x0) = min
μ

N−1∑
i=0

‖Qφi(x0, μ,0)‖p + ‖Rμi(x0,0)‖p

s.t. Sμi(x0,w)) ≤ s, ∀i ∈ Z[0,N−1]

Fφi(x0, μ,w) ≤ f, ∀i ∈ Z[1,N ]

∀w ∈ BN ,

(10)

where B := {w | ‖w‖ ≤ b} and BN := B × . . . × B. This

is the same problem as in (9), but with the disturbance w
bounded in the set BN and the chance constraint replaced

by a hard constraint.

Remark 1: Throughout the paper we will assume for
brevity the inclusion of appropriate terminal sets and
weights such that (10) generates a stabilizing control law
when applied in a receding horizon fashion. See [8] for
details.

Recently, a tractable formulation to solve robust optimiza-

tion problems with hard constraints, the so called adjustable
robust counterpart, was presented in [1], [19], [10]. The

authors propose the control policy to be parameterized as an

affine function of past disturbances, which leads to a convex

set of feasible decision variables.

Definition 3 (Affine disturbance feedback):

μi(x0,w) :=
i−1∑
j=0

Mi,jwj + hi, (11)

with Mi,j ∈ R
m×p and hi ∈ R

m. Define

π :=
[
μT

0 μ1(·)T . . . μT
N−1(·)

]T
and (12)

M :=

⎡
⎢⎢⎢⎢⎣

0 . . . . . . 0

M1,0 0
. . . 0

...
. . .

. . .
...

MN−1,0 · · · MN−1,N−2 0

⎤
⎥⎥⎥⎥⎦ ,h :=

⎡
⎢⎢⎢⎢⎣

h0

...

...

hN−1

⎤
⎥⎥⎥⎥⎦ .

Then the inputs can be written as π = Mw + h.

Remark 2: Note that with the definitions in (7) and (12),
μi clearly equals the m · i+1-th up to the (i+1) ·m-th row
of π.

Theorem 4: [8]

Let the set B from (10) be a polytope and the receeding
horizon control law μi(·) be defined as in (11). Then
the origin can be shown to be input-to-state stable for
the closed-loop system under the additional standard
requirement that the final state xN is constrained to lie in
an appropriately defined terminal set and the cost includes
a standard final weighting term VN (xN ).

To summarize, the affine disturbance feedback

parametrization in (11) gives us a tractable approximation

for the problem in (10), which is often close to optimal [8].

The results in Section 4 also show a significant improvement

compared to the open-loop prediction MPC. However, the

closed-loop prediction formulation is dealing with bounded

disturbances and does not contain chance constraints. In

order to tackle the problem in (9) we will next look at

approximations of chance constraints that can be used with

the affine disturbance formulation.

B. Approximation of chance constraints

In this section we will first investigate the structure of the

chance constraint, reformulate it and then use the approxi-

mation in [4].

Chance constraint problems are a well studied topic in

optimization theory. The chance constraint of the MPC

problem in (9) can be rewritten as

P(Fφi(x0, μ,w) − f ≤ 0)

=
∫
w∈{w|Fφi(x0,μ,w)−f≤0}

pdf(w)dw ≥ 1 − α
(13)

where pdf is the probability density function of w. In ge-

neral, one distinguishes between individual and joint chance
constraints. Given a set of n chance constraints, individual

chance constraints mean that each chance constraint has to

be fulfilled with the given probability whereas joint chance

constraints mean that all of the n constraints have to be

fulfilled with the given probability [7]. In (13) the chance

constraint has to be satisfied for each time step i in the

future individually, however, since at each time step there

are r inequalities that have to be fulfilled, we have a joint

chance constraint at each time step. Since individual chance

constraints are far easier to handle, the usual procedure is

to approximate the joint chance constraints with individual

chance constraints and set the probability level by defining

αk = α/r, where r is the number of rows [13]. This gives

P(Fkφi(x0, μ,w) − fk ≤ 0) ≥ 1 − αk = 1 − α/r

k ∈ Z[1,r]

(14)

where Fk and fk denote the k-th row of F and f respectively.

When using the affine disturbance parametrization in (11)

and defining

Φ := [φT
1 (·), . . . , φT

N (·)]T , (15)

we can write

Φ = Ax0 + Hh + LMw + Ew, (16)
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and the chance constraints on the future states can then be

written (by omitting the probability) as

F(Ax0 + Hh + LMw + Ew) − f , (17)

where the matrices F,A,H,L,E and f are derived from the

system equation and constraint matrices and can be found in

the appendix. The constraints on the states in the first time

step are represented by the first r rows. The constraints on

the state in the second time step in the next r rows and so

on. Each row of (17) can be written as

Fk(Ax0 + Hh + LMw + Ew) − fk ≤ 0
k ∈ Z[1,r·N ],

(18)

which we write in the simpler form

(a0 + ΔAw)T z + (b0 + Δbw)T ≤ 0, (19)

where a0 is a vector of length m·N ·p·N , ΔA is a matrix of

size m·N ·p·N×p·N , b0 is a scalar, Δb is a vector of length

p·N and z is a vector of length m·N ·p·N+m·N containing

the decision variables M and h in vectorized form. The

only difficulty in the derivation of the equivalence of (18)

and (19) is to get M on the right hand side in FkLMw.

The derivation of that can be found in the appendix. In

[4] the authors propose to replace the normally distributed

disturbance w with a bounded disturbance v ∈ R
p. We can

then write the resulting uncertainty set as

UΩ =
{[

a0

b0

]
+

[
ΔA
Δb

]
v, ‖v‖ ≤ Ω

}
. (20)

Thus, the chance constraint of the form (19) can be approxi-

mated with a hard constraint of the form

max
‖v‖≤Ω

(a0 + ΔAv)T z + (b0 + Δbv) ≤ 0 (21)

The authors in [4] proved the following very useful theorem.

Theorem 5: [4]

With the model of uncertainty in (20) and under the assump-
tion that w ∼ N (0, I), we have the probability bound:

P((a0 + ΔAw)T z + (b0 + Δbw)T > 0)

≤ √
e · Ω · exp

(
−Ω2

2

)
.

(22)

This theorem gives us a performance guarantee in the fol-

lowing sense. If we choose Ω according to Theorem 5 and

bound the disturbance w as per (20), then it is guaranteed

that the constraint in (14) is fulfilled.

As a result, and this is the main idea of this paper, we

can use this approximation and solve a classic robust control

problem. This is shown in the next section.

C. Closed loop prediction with chance constraints

With the combination of the two approximations, the affine

disturbance feedback parametrization and the approximation

of the chance constraint, we can now state a tractable

approximation of the MPC problem in (9).

Jcc(x0) = min
M,h

N−1∑
i=0

‖ [QAx0 + QHh]i·n+1 : (i+1)·n ‖p

+ ‖ Rhi ‖p

s.t. max
‖v‖≤Ω

SMv + Sh ≤ s

max
‖v‖≤Ω

F(Ax0 + Hh + LMv + Ev) − f ≤ 0,

(23)

where S := I ⊗ S and ⊗ is the Kronecker product. The

constraints involving maximization in (23) involve products

of the disturbance v and the decision variable M. We follow

the approach made standard in robust programming and

take the duals of these linear optimization problems. This

dualization is shown for one example. Each constraint has

to be considered row-wise. We have for example

max FkAx0 + FkHh − fk + (mGk + FkEk)T v ≤ 0
s.t. − Ω1 ≤ v ≤ Ω1,

(24)

where Gk is a matrix resulting from rearranging FkLMw,

m is a vectorized version of M and both can be found in

the appendix. The dual of this optimization problem is

min Ω(1T λk
l + 1T λk

u) + FkAx0 + FkHh − fk ≤ 0

s.t. λk
l − λk

u = mGk + FkEk

λj
l , λj

u ≥ 0, ∀k ∈ Z[1,r·N ]

(25)

By duality, we have that any feasible λ in (25) will upper

bound the maximization in (24). We are therefore free to

drop the minimization in the constraint of (25) and by strong

duality on linear programming, this relaxation will be tight.

This results in the following linear program.

Definition 6: Closed loop prediction MPC with chance
constraints

Jcd(x0) = min
M,h

N−1∑
i=0

‖ Q[Ax0 + Hh]i·n+1 : (i+1)·n ‖p

+ ‖ Rhi ‖p

s.t. Ω(1T κj
l + 1T κj

u) + Sjh − sj ≥ 0

κj
l − κj

u = mSj

κj
l , κj

u ≥ 0 ∀j ∈ Z[1,q·N ]

Ω(1T λk
l + 1T λk

u) + FkAx0 + FkHh − fk ≥ 0

λk
l − λk

u = mGk + FkEk

λk
l , λk

u ≥ 0, ∀k ∈ Z[1,r·N ]

(26)

This is a linear program, where the number of decision

variables is m · p ·N · (N +1)/2+m ·N +2pN(r + q) plus

the cost slack variables, which are linear in N .

We know however, that ‖v‖ ≤ Ω is just an artificial bound

on the disturbance w and the actual disturbance is normally

distributed w ∼ N (0, I). It is therefore possible for ‖w‖ to

be larger than Ω by a sufficient amount that it drives the

initial state x0 outside of the feasible set of (26).
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Even if ‖w‖ > Ω, it can happen that we still remain in the

feasible set of the constraints. However, if we do not and the

controller in (26) does not provide a feasible solution, then

we have to apply a backup controller.

In the case that we are driven out of the feasible set, we

suggest to soften the constraints and to solve the open-loop

problem, which will act to drive the state back to the feasible

set of (26). It is reasonable to soften the state constraints

when necessary because, being chance constraints, we are

free to violate them on occasion (although in this case, the

chance constraints will temporarily not be met).

IV. EXAMPLE

To test the proposed methods we look at a small building

example in the form of (2). The idea here is to take weather

and occupancy forecasts into account in the control. The

system has three states. Let x1 be the room temperature,

x2 the temperature in the wall connected with another room

and x3 the temperature in the wall connected to the outside.

The system is subject to disturbances w1 being the outside

temperature, w2 being the solar radiation and w3 being

internal heat gains like people, computers etc. There is

a forecast of these disturbances available that is subject

to uncertainty. Consequently, the disturbance realization is

the predicted disturbance plus a random value. The control

objective is to keep the room temperature above 21◦C with

minimum energy. The single available constrained input u1

is the heating. The system matrices are a simplified version

of the building example investigated in [9] and are given as

A =

⎡
⎣0.8511 0.0541 0.0707

0.1293 0.8635 0.0055
0.0989 0.0032 0.7541

⎤
⎦ , B =

⎡
⎣0.0035

0.0003
0.0002

⎤
⎦

E = 10−3 ·
⎡
⎣ 22.2170 1.7912 42.2123

1.5376 0.6944 2.9214
103.1813 0.1032 196.0444

⎤
⎦

C =
[
1 0 0

]
.

(27)

Please note that this is a highly simplified version of a

building presented here for illustrative purposes. Future in-

vestigations will examine the applicability of the proposed

approach in more realistic scenarios. An extract of ten days

of the predicted disturbances can be found in Figure 1.

Fig. 1. Outside temperature, solar radiations and internal heat gains.
The outside temperature fluctuates within the day. The internal heat gains
consist of a constant part and a part that is changing with the daytime. This
is because an office building is assumed with people being absent during
the night and on weekends. Solar radiation is equal to 0 at night.

We use the proposed method and calculate a controller

using (26). Two variants are considered, an open-loop pre-

diction MPC (M = 0) and a closed-loop prediction MPC

based on affine disturbance feedback as suggested in this

paper. Both controllers are subject to stochastic disturbances

but assume a bound on the disturbance. The magnitude

of this bound is changed in order to investigate the effect

on the energy consumption. In all simulations the system

is subject to the same disturbance realizations. Figure 2

Fig. 2. Controller comparison. Open-loop control leads to a very
conservative control behavior. Room temperature is often high above 21◦C.
Closed-loop prediction MPC is less conservative. If we put a smaller bound
on the disturbance, the conservativeness of the closed-loop prediction MPC
is significantly further decreased at the expense of the room temperature
slightly being below 21◦C from time to time.

shows an extract of open-loop prediction MPC with pro-

bability of constraint violation 0.5% (OLP0.5), of closed-

loop prediction MPC with probability of constraint violation

0.5% (CLP0.5), and of closed-loop MPC with probability of

constraint violation 5% (CLP5.0). For OLP0.5 and CLP0.5

the room temperature is often much above 21◦C. However,

CLP0.5 ensures that the room temperature is not as much

over 21◦C as for OLP0.5, so it leads to a less conservative

control behavior. CLP5.0 leads to a room temperature that is

often just very little over 21◦C at the expense of violating the

21◦C more often than the other two controllers. Numerical

results of the simulations can be found in Table I.

TABLE I

Overview of controller performances.

Controller Energy usage [kW/m2] Constraint violation [%]

OLP MPC 401.375 0.1
CLP MPC 353.704 0.1
CLP MPC 326.542 0.7
CLP MPC 267.097 6.5

It can be seen from Table I that there is a tradeoff between

having a low energy consumption and a high degree of

constraint satisfaction. This tradeoff-curve is depicted in

Figure 3. From the tradeoff-curve in Figure 3 we see that the

energy consumption can be reduced allowing more constraint

violations. Decreasing the degree of constraint satisfaction

just by a small amount leads to a large effect in the energy

consumption. If the degree of constraint satisfaction is further

decreased this effect saturates.
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Fig. 3. Tradeoff curve for energy consumption and constraint violation.
The curve depicts the tradeoff between a low energy consumption and a high
degree of constraint satisfaction.

V. CONCLUSIONS

We have shown a new method for solving a model

predictive control (MPC) problem for the class of discrete-

time linear systems subject to polytopic input constraints and

chance constraints on the states in the presence of stochastic

disturbances. This method combines an approximation for

closed-loop prediction MPC, the affine disturbance feedback,

and an approximation of the chance constraints. We have

shown that by using this method the conservativeness of a

solution can be significantly reduced. This improvement is

due on the one hand to the closed-loop prediction formulation

and on the other to the flexibility given by the chance

constraints.
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VII. APPENDIX

A :=

⎡
⎢⎣

A
A2

A3

...
AN

⎤
⎥⎦ H :=

⎡
⎣ B 0 ... ... 0

AB B 0 ... 0
A2B AB B 0 ...

...
...

...
...

. . .

⎤
⎦

L :=

⎡
⎣ 0 0 ... ... 0

0 B 0 ... 0
0 AB B 0 ...
...

...
...

...
. . .

⎤
⎦ E :=

⎡
⎣ E 0 ... 0

AE E 0 ...
A2E AE E ...

...
...

...
. . .

⎤
⎦

F = I ⊗ F f := [ fT ...fT ]T

Let FkLMv = gT Mv, where Fk is the k-th row of

F. In order to apply Theorem 5, we need to have gT Mv,

where v is uncertain and M is the decision variable, in the

form (ΔAw)T z, where w is uncertain and z is the decision

variable. Let us show that gT Mv = mGkv: With gT =
[g1 . . . gN ], we have that glMi,j = [mT

∗0 . . .mT
∗p]

T (I ⊗ gl),
where m∗j is the j-th column of Mi,j . Then the multiplica-

tion of each column of M is

MT
∗j

[
I⊗g0
I⊗g1

...

]
= MT

∗jĜ
k

and we can write [MT
∗0 . . .MT

N ]T (I ⊗ Ĝ) =: mGk.
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