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Abstract— Traditionally resource allocation problems are
approached in a centralized manner; however, often central-
ized control is impossible. We consider a distributed, non-
cooperative approach to resource allocation. In particular, we
consider the situation where the global planner does not have
the authority to assign players to resources; rather, players are
self-interested. The question that emerges is how can the global
planner entice the players to settle on a desirable allocation with
respect to the global welfare? To study this question, we focus on
a class of games that we refer to as distributed welfare games.
Within this context, we investigate how the global planner
should distribute the global welfare to the players. We measure
the efficacy of a distribution rule in two ways: (i) Does a
pure Nash equilibrium exist? (ii) How efficient are the Nash
equilibria as compared with the global optimum? We derive
sufficient conditions on the distribution rule that ensures the
existence of a pure Nash equilibrium in any single-selection
distributed welfare game. Furthermore, we derive bounds on
the efficiency of these distribution rules in a variety of settings.
Lastly, we highlight the implications of these results in the
context of the sensor coverage problem.

I. INTRODUCTION

Resource allocation problems have garnered significant
research attention across many disciplines, e.g., [2]–[5] and
references therein. One example, which we will focus on
throughout this paper, is sensor coverage. The goal of the
sensor coverage problem is to allocate a fixed number of
sensors across a given “mission space” so as to maximize
the probability of detecting a particular event [6]. A second
example is task assignment where the objective is to assign
people to tasks so as to maximize profit or minimize comple-
tion time. Regardless of the specific application domain, the
underlying goal of any resource allocation problems remains
the same; a global planner desires to distribute resources so
as to maximize a global objective.

Traditionally, researchers have aimed at developing algo-
rithms to determine near optimal allocations for resource
allocation problems [7]–[9]. In this paper, we will approach
the problem from a different, game-theoretic, perspective.
Suppose that a global planner does not have, or possibly
want, the authority to assign players to resources; rather,
players are self-interested. In many environments, such as
transportation systems, a global planner does not have the
authority to assign players to resources. There are also many
cases where a global planner may not want the authority
to assign players to resources. For example, in the case
of sensor coverage, one can design sensors as autonomous
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self-interested entities as opposed to centrally controlled
resources.

There are wide-ranging advantages to this game-theoretic
form of a distributed architecture, including robustness to
agent failures and environmental disturbances, reducing com-
munication requirements, improving scalability, etc. How-
ever, several challenges arise when seeking to design and
implement such a distributed system [10], [11]. The primary
challenge is: how can a global planner entice the players
to settle on something desirable with regards to the global
welfare? Equivalently, in the case of engineered systems,
such as sensor coverage, how can a global planner design
local utility functions so that players will settle on a desirable
allocation?

The goal of this paper is to establish a general framework,
independent of any specific application domain, for (i) inves-
tigating the feasibility of non-cooperative resource allocation
and (ii) designing desirable utility functions. To that end, in
this paper we will consider a class of resource allocation
games that we refer to as distributed welfare games. A
distributed welfare game is a resource allocation game where
each player’s utility is defined as some fraction of the
total welfare garnered (see Section III). Therefore, designing
a utility function is equivalent to defining a distribution
rule that depicts how the welfare garnered from a specific
allocation is distributed to the players. The primary goal is
to design distribution rules for distributed welfare games that
guarantee the following two properties.

(i) Existence: A distribution rule should guarantee that a
(pure) Nash equilibrium exists. A Nash equilibrium
represents an individually agreeable allocation.

(ii) Efficiency: A distribution rule should guarantee that all
Nash equilibria are efficient with respect to the global
objective.

In addition to the two properties above, which are of primary
importance, in many applications there are additional require-
ments that distribution should satisfy. We will investigate
four alternative features of distribution rules including (iii)
tractability, (iv) low informational requirement, (v) budget-
balance, and (vi) whether the distribution rule results in the
formulation of a potential game [12].

With the goal of developing distribution rules that satisfy
the above properties, we first focus on developing distribution
rules that guarantee the existence of a Nash equilibrium
(property i) while satisfying as many of (iii)-(vi) as possible.
To accomplish this, we begin by investigating the applicabil-
ity of cost-sharing methodologies [13]–[15]. Building upon
results from [15], we show that one can use cost sharing
methodologies as distribution rules in distributed welfare
games. However, we demonstrate that these approaches do
not satisfy all of the desirable properties above. For example,
rules that are budget balanced and guarantee the existence
of a Nash equilibrium, often come with significant informa-
tional and computational costs.
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The natural question that emerges is whether there exists
special classes of distributed welfare games where one can
establish distribution rules satisfying the above properties.
Our second set of results (Section V) investigates this
question. We identify three easily verifiable properties of
distribution rules, see Conditions 1–3, that guarantee the
existence of a Nash equilibrium in any distributed welfare
game where players are restricted to selecting a single
resource.

In Section VI we explore the efficiency of Nash equilibria
(property ii). We measure the efficiency of a Nash equilib-
rium using the price of anarchy. The price of anarchy is
defined as the worst-case ratio between the global welfare
evaluated at the worst Nash equilibrium and the optimal
welfare. In general, the price of anarchy in distributed
welfare games can be arbitrarily close to 0; however, when
we restrict our attention to submodular welfare functions,
which is a common assumption in many resource allocation
problems [16], [17], we can develop distribution rules that
obtain a welfare within 1/2 of that of the optimal assignment.
Furthermore, we tighten this price of anarchy bound in a
variety of settings. This compares favorably with the best
known results of centralized approximations for resource al-
location problems with submodular welfare functions, which
guarantee welfare within 1 − 1/e ≈ 0.6321 of the optimal
[7]–[9].

To illustrate the impact of the results described above,
in Section VII we apply our results to the sensor coverage
problem.

It should be noted that this paper predominantly focuses
on equilibrium behavior in distributed welfare games; how-
ever another natural question is “how do players reach an
equilibrium in a distributed fashion?” While not focusing on
this question in detail, we do illustrate the potential of the
theory of learning in games [11], [18]–[21] as a local control
mechanism for coordinating group behavior.

II. BACKGROUND

In this paper we consider resource allocation games that
consist of a set of players N := {1, ..., n} and a finite set
of resources R that are to be shared by the players. Each
player i ∈ N is assigned an action set Ai ⊆ 2R and a utility
function of the form Ui : A → R where 2R denotes the
power sets of R and A := A1 × · · · × An is referred to
as the set of joint actions. Therefore, a player may have the
option of selecting multiple resources and the player’s utility
may be influenced by the actions of other players.

For an action profile a = (a1, a2, ..., an) ∈ A, let a−i

denote the profile of player actions other than player i, i.e.,
a−i = (a1, . . . , ai−1, ai+1, . . . , an). With this notation, we
will sometimes write a profile a of actions as (ai, a−i).
Similarly, we may write Ui(a) as Ui(ai, a−i). Furthermore,
let A−i :=

∏
j 6=i Aj denote the set of possible collective

actions of all players other than player i.
We will focus on analyzing equilibrium behavior in such

games. A well-known equilibrium concept that emerges in
non-cooperative games is that of a pure Nash equilibrium.
An action profile a∗ ∈ A is called a pure Nash equilibrium if
for all players i ∈ N , Ui(a

∗
i , a

∗
−i) = maxai∈Ai

Ui(ai, a
∗
−i).

A pure Nash equilibrium represents a scenario for which no
player has an incentive to unilaterally deviate. We will refer
to a pure Nash equilibrium as simply an equilibrium.

One class of games discussed in this paper is potential
games [12]. In a potential game, the change in a player’s
utility that results from a unilateral change in strategy equals
the change in some global potential function. Specifically,
there is a function φ : A → R such that for every player
i ∈ N , for every a−i ∈ A−i, and for every a′

i, a
′′
i ∈ Ai,

Ui(a
′
i, a−i) − Ui(a

′′
i , a−i) = φ(a′

i, a−i) − φ(a′′
i , a−i). (1)

When this condition is satisfied, the game is called a potential
game with the potential function φ. In potential games,
any action profile maximizing the potential function is an
equilibrium, hence every potential game has at least one
equilibrium.

For a more comprehensive review of the game-theoretic
concepts introduced in this section, we refer the readers to
[18], [22]–[24].

III. DISTRIBUTED WELFARE GAMES

A distributed welfare game is a non-cooperative formal-
ization of a resource allocation game with a specific struc-
ture enforced on player utility functions. The formalization
includes a wide variety of resource allocation problems
including network routing, wireless power management, sen-
sor coverage, and others. To illustrate the applicability of
distributed welfare games, we will focus in detail on the
sensor coverage problem in Section VII.

To define distributed welfare games, consider a resource
allocation game with a global welfare function, W : A →
R+. Each player’s utility is defined as some portion of the
welfare and must satisfy the following properties: for any
player i ∈ N and action profile (allocation) a ∈ A

(i) Ui(a) ≥ 0,
(ii)

∑
i∈N Ui(a) ≤ W (a).

This structure permits the total global welfare to be dis-
tributed arbitrarily to the players.

An example of a utility function that satisfies these con-
ditions is equally distributing the global welfare

Ui(a) =
1

n
W (a). (2)

This utility design guarantees that any allocation that maxi-
mizes the welfare is an equilibrium. However, a player needs
to know the selections of all other players in addition to the
structural form of the global welfare function in order to
evaluate her utility, which is typically impractical.

Our focus in this paper is on understanding the degree
to which players’ utility functions can be localized while
at the same time guaranteeing both existence and efficiency
of equilibria. To this end, we will restrict our attention to
separable welfare functions of the form

W (a) =
∑

r∈R

W r(ar),

where W r : 2N → R+ is the welfare function for resource
r and ar denotes the subset of players that selected resource
r in the joint allocation a, i.e., ar := {i ∈ N : r ∈ ai}.
To simplify notation, we will commonly write W r(ar) as
just W r(a). Because the welfare function is assumed to be
separable, we will also restrict player utility functions to be
local and separable, i.e., of the form

Ui(ai, a−i) =
∑

r∈ai

fi(r, a) W r(a), (3)
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where {f1(r, a), ..., fn(r, a)} defines how the global reward
garnered from resource r is distributed across the players.
We will refer to {f1(r, a), ..., fn(r, a)}r∈R,a∈A as the dis-
tribution rule. A distribution rule must satisfy the following
properties: for any player i ∈ N , resource r ∈ R, and action
profile a ∈ A

(i) fi(r, a) ≥ 0,
(ii) r /∈ ai ⇒ fi(r, a) = 0,

(iii)
∑

i∈N fi(r, a) ≤ 1.

We will refer to distribution rules that satisfy (iii) with
equality as budget balanced distribution rules.

IV. METHODS FOR DISTRIBUTING WELFARE

We will now explore several natural approaches for de-
signing distribution rules in distributed welfare games. These
approaches are derived from methodologies in the cost
sharing literature [13], such as the Shapley value [14], [15].
It turns out that cost sharing methodologies can be effective
as distribution rules in distributed welfare games; however,
there are several issues that limit their applicability. Resul-
tantly, we will discuss alternative approaches to designing
distribution rules for distributed welfare games in the Section
V.

A. Equally Shared Utilities

The utility design in (2) disseminates the total welfare
equally to all players and guarantees the existence of efficient
equilibria. Unfortunately, it requires players to use global
(rather than local) information and thus it is not a local
distribution rule of the form (3).

Suppose the welfare from each resource is divided equally
amongst the players that selected the resource, i.e.,

Ui(ai, a−i) =
∑

r∈ai

(
1∑

j I{r ∈ aj}

)
W r(a), (4)

where I{·} is the usual indicator function. In general, such
a design cannot guarantee the existence of an equilibrium as
the following example illustrates.

Player 1

Player 2
∅ r

1
r
2

∅ 0 4 1

r
1

6 6 7

r
2

5 9 10

Separable Welfare

Player 2
∅ r

1
r
2

∅ 0, 0 0, 4 0, 1

r
1

6, 0 3, 3 6, 1

r
2

5, 0 5, 4 5, 5

Payoffs

One problem with equally shared utilities is that players’
utility functions are not aligned with their contribution to
the global welfare. However, if players are anonymous with
regards to their impact on the global welfare then the
equally shared utilities in (4) guarantee the existence of an
equilibrium since the resulting game is a congestion game
[1].1

1Players are anonymous with regards to their impact on the global welfare
function if for any action profiles a, a′ ∈ A, and any resource r ∈ R
σr(a) = σr(a′) ⇒ W r(a) = W r(a′), where σr(a) := |{i ∈ N : r ∈
ai}| denotes the number of players utilizing resource r given the allocation
a. Hence, the welfare generated by a particular resource depends only on the
number of players utilizing that resource, not the specific players utilizing
the resource.

B. Marginal Contribution Utilities

By conditioning a distribution rule not only on the welfare
garnered, but also on each player’s marginal contribution to
the existing welfare, we can guarantee the existence of an
equilibrium even when players are not anonymous. Specif-
ically, suppose each player’s utility is set as his marginal
contribution to the global welfare, i.e.,

Ui(ai, a−i) = W (ai, a−i) − W (a0
i , a−i), (5)

where a0
i designate the null action for player i, i.e, a0

i = ∅;
however, in general a0

i could be set as any fixed action in
the player’s action set. We will refer to the utility design
in (5) as the wonderful life utility (WLU) [25]. It is well
known that assigning each player a utility as in (5) results in
a potential game with potential function W ; hence any action
profile that maximizes the global welfare is an equilibrium.
However, other equilibria may also exist under the wonderful
life utility design.

There are two limitations of the the marginal contribution
utility design. First, each player needs to be able to compute
his marginal contribution to the welfare in order to evaluate
his utility. Second, the wonderful life utility may distribute
more (or less) welfare than is gathered; hence, it may not
satisfy condition (iii) of distributed welfare games. While the
first limitation cannot be relaxed in this setting, it remains
an open question as to whether the second limitation can be
addressed utilizing a similar informational requirement.

C. The Shapley Value

While WLU guarantees the existence of an equilibrium
in all settings, it may distribute more or less reward than
the welfare garnered. It turns out that this problem can be
rectified using a common cost sharing methodology known

as the Shapley value [14]. For any subset of players Ñ ⊆ N ,

resource r ∈ R, and player i ∈ Ñ , the Shapley value of
player i is defined as [14], [15], [26]

Shr
i (Ñ) :=

∑

S⊆Ñ :i∈S

(|Ñ | − 2)!(|S| − 1)!

|Ñ |!
(W r(S) − W r(S \ {i})) . (6)

Suppose each player’s utility function is defined as

Ui(ai, a−i) :=
∑

r∈ai

Shr
i (a

r), (7)

where Shr
i (a

r) is player i’s Shapley value at resource r given
the allocation of players ar.

Using the Shapley value as in (7) to distribute welfare
leads to a potential game, and thus the existence of an
equilibrium.

Proposition 1. Consider any resource allocation game. If
each player is assigned a utility of the form (7), then
the ensuing game is a budget balanced distributed welfare
game. Furthermore, it is a potential game with the following
potential function φ : A → R

φ(a) :=
∑

r∈R

∑

S⊆ar

1

|S|



∑

T⊆S

(−1)
|S|−|T |

W r(T )


 . (8)

Unfortunately, there are two limitations of the Shapley
value utility design that may prevent it from being applicable.
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First, there is a high informational requirement as each player
must be able to compute his marginal contribution to all
action profiles in order to evaluate his utility. Second, in
general computing a Shapley value is intractable in games
with a large number of players. This is highlighted explicitly
in (6) where computation of the Shapley value requires a
weighted summation over all subsets of players. However, it
should be noted that this computational cost is lessened dra-
matically if there are a limited number of distinct “classes”
of players, e.g., if players are anonymous then the Shapley
value is equivalent to the equal share distribution rule in (4).

V. SINGLE SELECTION DISTRIBUTED WELFARE GAMES

The previous section provided a number of distribution
rule designs; however they all suffered from significant
limitations, such as intractability and high informational re-
quirements. In this section, we restrict the setting in the hopes
of deriving distribution rules that avoid these limitations. In
particular, we focus on a simplified setting where players
are only allowed to select a single resource, i.e., Ai ⊆ R as
opposed to Ai ⊆ 2R.

To this end, we identify three sufficient conditions that de-
termine whether a distribution rule guarantees the existence
of an equilibrium for a particular game. These sufficient
conditions translate to pairwise comparisons of players’
utility functions. We will illustrate the applicability of these
conditions using the sensor coverage problem in Section VII.

Before stating the conditions, we will introduce the fol-
lowing notation. The allocation (r(i), r(j), a−ij), denotes

the situation where player i selects resource r(i), player j
selects resource r(j), and all other player select resources
according to a−ij ∈ A−ij :=

∏
k 6=i,j Ak. Likewise, let

Ui(r
(i), r(j), a−ij) and Uj(r

(i), r(j), a−ij) denote player i
and j’s respective utilities for the given allocation.

Condition 1. Let i and j be any two players. If for any
resource r ∈ R and any allocation a−ij ∈ A−ij

Ui(r, r, a−ij) > Uj(r, r, a−ij),

then for all resources r′ ∈ R and all allocations a′
−ij ∈

A−ij

Ui(r
′, r′, a′

−ij) ≥ Uj(r
′, r′, a′

−ij).

In this situation, we will say that player i is stronger than
player j. Furthermore, we will require that player strengths
are a transitive property, that is if player i is stronger than
player j who is stronger than player k, then player i is also
stronger than player k.

Condition 2. Suppose player i is stronger than player j. For
any resource r ∈ R and any action profile a−ij ∈ A−ij , the
following holds

Ui(r, a
0
j , a−ij) ≥ Ui(r, r, a−ij).

Condition 3. Suppose player i is stronger than player j. For
any resources r ∈ R and action profile a−ij ∈ A−ij , the
following holds

Uj(a
0
i , r, a−ij)

Ui(r, a0
j , a−ij)

≥ max
r∗∈R

Uj(r
∗, r∗, a−ij)

Ui(r∗, r∗, a−ij)
.

Theorem 2. Consider any single selection resource alloca-
tion game. If each player’s utility function satisfies Condi-
tions 1, 2, and 3 then an equilibrium exists.

Proof: We begin by renumbering the players in order of
strengths with player 1 being the strongest player. This is
possible because of Condition 1.

We will construct an equilibrium by letting each player
select his action one at a time in order of strength. The
general idea of the proof is that once a player selects an
action, the player will never seek to deviate regardless of the
other player’s action. First, player 1 selects the resource r(1)

according to

r(1) ∈ arg max
r∈R

U1(r, a
0
−1) (9)

Next, player 2 selects action r(2) according to

r(2) ∈ arg max
r∈R

U2(r
(1), r, a0

−12).

If r(1) 6= r(2), then by (9) and Condition 2 we know that

U1(r
(1), a0

−1) ≥ U1(r
(2), a0

−1) ≥ U1(r
(2), r(2), a0

−12).

Therefore, player 1 can not improve his utility by switching
his strategy, i.e.,

U1(r
(1), r(2), a0

−12) ≥ U1(r, r
(2), a0

−12), ∀r ∈ R.

If r(1) = r(2) = r, then by Condition 3, we know that for
any resource r̃ ∈ R, r̃ 6= r,

U2(r̃, r, a
0
−12)

U1(r, r̃, a0
−12)

=
U2(a

0
1, r, a

0
−12)

U1(r, a0
2, a

0
−12)

≥
U2(r, r, a

0
−12)

U1(r, r, a0
−ij)

.

Using the above inequality, we can conclude that for any
resource r̃ ∈ R, U2(r, r, a

0
−12) ≥ U2(r, r̃, a

0
−12) implies

U1(r, r, a
0
−12) ≥ U1(r̃, r, a

0
−12). Therefore, player 1 cannot

improve his utility by switching his strategy.
If n = 2, then a = (r(1), r(2)) would be an equilibrium.

Otherwise this argument could be repeated n times to con-
struct an equilibrium.
2

It remains an open question as to whether Conditions 1 – 3
guarantee additional properties pertaining to the structure of
the game besides existence of an equilibrium. For example,
if each player’s utility function satisfies Conditions 1 – 3, is
the game a potential game or some variant?

VI. EFFICIENCY OF EQUILIBRIA

We will measure the efficiency of equilibria using the price
of anarchy [24]. The price of anarchy (or more appropriately
in this context the “price of localization”) is defined as
the worst case ratio between the global welfare at any
equilibrium and the optimal global welfare. Formally, for
any equilibrium ane and optimal allocation aopt, W (ane) ≥
γ W (aopt) where γ is the price of anarchy.

Unfortunately, without any assumptions on the global
welfare function W , the price of anarchy can be arbitrarily
bad in distributed welfare games. However, when the welfare
function is submodular it is possible to attain a much better
price of anarchy.2 We can utilize Theorem 3.4 in [16] in the
context of distributed welfare games to prove the following
proposition.

2A set valued function W : 2A → R is submodular if W (X)+W (Y ) ≥
W (X∩Y )+W (X∪Y ) for all X, Y ⊆ 2A. Submodularity corresponds to
the notion of a decreasing marginal contribution and is a common in many
resource allocation problems, e.g., [16], [17]. Further, it is a key property
underlying the design of many centralized algorithms for these problems.
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Proposition 3. Consider any distributed welfare game with
a submodular global welfare function. If

(i) players are anonymous and assigned an equally shared
utility as in (4), or

(ii) players are assigned a wonderful life utility as in (5),
or

(iii) players are assigned a Shapley value utility as in (7),
or

(iv) players are assigned a utility function that satisfies
Condtions 1–3 (single-selection)

then an equilibrium exists and the price of anarchy is 1/2.

See [1] for the proof of this proposition and examples
illustrating that the bound is tight. To provide a basis for
comparison, computing the optimal assignment for a general
distributed welfare game is NP-complete [5]. Further, the
best known approximation algorithms guarantee only to
provide a solution that is within 1 − 1/e ≈ 0.6321 of
the optimal [7]–[9]. Thus, the 1/2 price of anarchy in this
scenario is comparable to the best centralized solution.

VII. THE SENSOR COVERAGE PROBLEM

Consider the sensor coverage problem in [6], [27]. There
exists a finite set of sectors denoted as R and a value function
V : R → R+. Note that V (r) often has a very intuitive
meaning, e.g., in the case of enemy submarine tracking, V (r)
represents the a priori probability that an enemy submarine
is situated in sector r.

There are a finite number of autonomous sensors (or
players) denoted as N = {1, ..., n} allocated to the mission
space. Each sensor i is capable of sensing activity in (moni-
toring) possibly multiple sectors simultaneously based on its
chosen location. The set of possible monitoring choices for
sensor i is denoted as Ai ⊆ 2R. Let A =

∏
i∈N Ai be the set

of joint actions, or monitoring choices, for all players. The
probability that sensor i detects an event in sector r given
his current monitoring choice ai is denoted as pi(r, ai). We
will assume that the detection probabilities satisfy:

r ∈ ai ⇔ pi(r, ai) > 0,

r /∈ ai ⇔ pi(r, ai) = 0,

For a given joint action profile a := {a1, ..., an}, the joint
probability of detecting an event in sector r is

P (r, a) = 1 −
∏

i∈N

[1 − pi(r, ai)].

The goal of the global planner in this scenario is to
allocate the sensors in a way that maximizes the probability
of detecting an event, which is characterized by the following
global welfare function [6]

W (a) =
∑

r∈R

V (r)P (r, a). (10)

A. The Sensor Coverage Game

Rather than view the sensor coverage problem as a cen-
tralized optimization problem, our focus is on the design of
autonomous sensors that are individually capable of making
their own independent decision in response to local infor-
mation. We will model the interactions of the sensors as a
non-cooperative resource allocation game where each sensor
i is assigned a utility function Ui : A → R that defines his
payoff (utility) for each monitoring profile.

We will refer to the non-cooperative game theoretic formu-
lation of the sensor coverage problem as the sensor coverage
game. The sensor coverage game is a simple example of a
distributed welfare game. Thus, we can apply our results
in order to design distribution rules that guarantee the exis-
tence of an equilibrium. In particular, we can immediately
conclude that the wonderful life and the Shapley value
utility designs will guarantee the existence of an equilibrium.
Further, since the welfare function is submodular, both rules
yield a price of anarchy of 1/2. However, both rules come
with their respective limitations as previously discussed.

B. Single Selection Sensor Coverage Games

Consider the situation where each sensor is only capable of
selecting a single sector, i.e., Ai = R. Furthermore, suppose
each sensor has an invariant detection probability pi > 0
such that pi(r, ai) = pi if r = ai, otherwise pi(r, ai) = 0.

Utilizing Conditions 1-3, one can prove the following [1].

Corollary 4. Consider any single selection sensor coverage
game where each sensor has an invariant detection probabil-
ity. An equilibrium is guaranteed to exist under the following
distribution rules:

Ui(r, a−i) =
pi∑

j∈N :aj=r pj
P (r, a)V (r), (11)

Ui(r, a−i) =

(
pi

1−pi∑
j∈N :aj=r

pj

1−pj

)
P (r, a)V (r).(12)

Furthermore, the price of anarchy in each case is 1/2.

C. Anonymous Sensor Coverage Games

If we specialize further to the case of anonymous sensors,
that is all sensors have the same detection probability p,
we can obtain a tighter bound on the price of anarchy
that illustrates the impact of the number of sensors and the
detection probability [1].

Theorem 5. Consider a single-sector anonymous sensor
coverage game with n sensors each having invariant de-
tection probability p. Under the equal share utility design
(4) and equilibrium is guaranteed to exist, and the price of
anarchy is bounded by

W (ane)

W (aopt)
≥

(
a∗

n
+

1 − (1 − p)n−a∗

1 − (1 − p)n

)−1

where a∗ =

{
n − 1, p = 1;

n −
log(n

log(1/(1−p))
1−(1−p)n )

log(1/(1−p)) , p < 1.

D. Simulation Experiments

Consider a single selection sensor coverage game with 100
sensors with invariant detection probability p = 0.25. The
mission space is R = {r1, ..., r25}. The value for each sector
is randomly assigned from a uniform distribution; two sectors
according to U [0, 6], four sectors according to U [0, 3], and
the remaining according to U [0, 1]. Each sensor is capable
of monitoring any of the 25 sectors, i.e., Ai = R and uses
the equal share utility design (4).

There is a large body of literature analyzing distributed
learning algorithms in congestion games, or equivalently po-
tential games [11], [18]–[21]. We will apply fading memory
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Fig. 1. Simulation results for sensor coverage game.

joint strategy fictitious play with inertia, which guarantees
convergence to an equilibrium in any (generic) congestion
game while maintaining computational tractability even in
large-scale games. We refer the reader to [20] for the details
of the learning rule. We use the following discount factor
and inertia: λ = 0.5 and ǫ = 0.02.

Figure 1(a) illustrates the evolution of the number of
sensors at each sector. The identity of the sectors is unim-
portant as the key observation is that behavior settles down
at an equilibrium. Figure 1(b) illustrates the evolution of
the global welfare in addition to the efficiency gap between
the equilibrium and the optimal. The results illustrate that
Theorem 5 provides a very conservative estimate of the price
of anarchy since the observed efficiency is 0.936.

VIII. CONCLUDING REMARKS

In this paper, we focus on a class of games that we
refer to as distributed welfare games. These games are
formulated to study how the method used to divide the
global welfare among participating players impacts the exis-
tence and efficiency of equilibria. We derive three sufficient
conditions on distribution rules that guarantee the existence
of an equilibrium in the setting where players are only
allowed to select a single resource. Further, we illustrate the
applicability of these conditions in the case of the sensor
coverage problem. In general, designing a distribution rule
that guarantees the existence of an equilibrium in distributed
welfare games is an open problem. We also derive general
bounds on the price of anarchy in distributed welfare games
and application specific bounds on the price of anarchy for
the sensor coverage problem. Importantly, the structure of
the welfare function W for sensor coverage parallels those
for many other problems, e.g., weapon targeting and fault
detection.

An important open question that remains involves the
use of learning rules for distributed welfare games. When
players are anonymous, we demonstrated that there are
several distributed learning algorithms that guarantee players
will reach an equilibrium. However, it remains to design
learning algorithms for the distributed welfare games with
players that are not anonymous.
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