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Abstract— Several approaches have been taken in the past
to deal with uncertainty in constrained predictive control. The
major drawbacks of these efforts are usually either conserva-
tiveness and/or on-line computational complexity. In this work
we examine the possibility of dealing with uncertainty through
the use of the primary and the dual Youla parameterizations.
The dual Youla parameter can be seen as a frequency weighted
measure of the uncertainty and the primary Youla parameter
can be seen as a controller for this uncertainty. The work is an
application of the methodology in [12] to constraint control.

I. INTRODUCTION

Model predictive control (MPC) - also commonly denoted

constrained predictive control - is a model based control

method which has attracted a lot of attention partly due

to its popularity in the process industry. The feature which

makes it truly innovative is its ability to handle constraints

on control action and states/output. This is done through

on-line optimization of the future trajectory based on a

cost function. The theoretical foundation of nominal linear

MPC has matured over the last decades and well established

theorems for ensuring stability and feasibility have been

established (See eg. [6], [7]).

There has also been established theories for dealing with

model uncertainty and disturbances in MPC. These methods

are commonly denoted robust MPC (RMPC). Invariant sets

have proved effective to deal explicitly with these challenges

and still leading to computational tractable problems. This

usually leads to optimization problems involving constraints

on the form of linear matrix inequalities [3][4][14]. Using

this framework it is possible to guarantee (under certain

conditions) that the constraints on control actions and states

will never be violated. However, there are drawbacks with

these methods: The optimization problem, although tractable,

can be very complicated compared to basic MPC and there-

fore typically more computationally expensive. Furthermore,

they have a tendency to be overly conservative. Due to the

conservative nature of these methods, the trajectory of the

system will generally not get very close to the constraints.

However, MPC is usually employed in applications where it

is attractive to work near the constraints.

We want to avoid the conservative nature of RMPC and

still be able to deal with the uncertainties in some sense. In

this work we therefore consider a framework with which to

handle uncertainty through identification of the unmodeled
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dynamics. More specifically we identify the dual Youla

parameter which can be considered a frequency weighted

measure of the uncertainty. We then use the inherent relation-

ship between the dual Youla parameter and primary Youla

parameter to design an MPC controller with the objectives of

both reducing sensitivity towards the uncertainty and obeying

constraints. The idea of using the relationship between the

primary and the dual Youla parameter in controller design

has been used to design performance enhancing controllers

for uncertain plants in [12]. The contribution of the work in

this paper is an extension so that it can be incorporated in a

natural way in constrained predictive control.

The Youla parameter has previously been used to design

MPC controllers with reduced sensitivity towards distur-

bances in [9][10]. Since sensitivity toward disturbances is

reduced the predictions are believed to be more reliable dur-

ing constraint control. Although some of the same principles

are used, it is stressed that the framework in [9][10] has little

resemblance to the framework derived in this paper.

II. NOTATION

We make use of the following matrix notation: IN×N

denotes the N -dimensional identity matrix. IN denotes an

N -dimensional column vector with ones. ⊗ denotes the

Kronecker product. We will use the following short notation

for the extended observability matrix and Toeplitz matrix:

ON (A,C) =
[
CT (CA)T (CA2)T · · · (CAN )T

]T

(1)

T N (A,B,C,D) =









D 0 · · · 0 0
CB D · · · 0 0

CAB CB · · · 0 0
...

...
. . .

...
...

CAN−1B CAN−2B · · · CB D










(2)

The notation ‖x‖2
W is used to denote the weighted 2-norm

of a vector x ie.

‖x‖2
W = xT Wx (3)

III. SETUP AND PRELIMINARIES

A. System setup

We consider the following linear discrete time-invariant

system:

Σ =

(
Gqp Gqu

Gyp Gyu

)

(4)
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uk ∈ R
nu is the control input. pk ∈ R

np is the disturbance

input. qk ∈ R
nq is an auxiliary output. yk ∈ R

ny is a

measurable output. The uncertainty enters the system through

the relation

pk = ∆qk (5)

where ∆ is an unknown LTI perturbation. The system is

assumed controlled by the controller K

uk = Kyk (6)

It is assumed that K has been designed such that the system

is robustly stable for

‖∆‖∞ = sup
|z|=1

σmax(∆(z)) ≤ 1 (7)

where σmax is the maximum singular value. The setup is

illustrated in Fig. 1. The auxiliary signal vk ∈ R
nu shown

in the figure will be used to avoid constraint violation.

B. Model predictive control

Model predictive control (MPC) [6] or constrained pre-

dictive control is a receding horizon methodology where an

optimization problem is solved at every sample time k. We

introduce MPC in the context of the prestabilized system

in Fig. 1. The basic idea is to find the control sequence

Vk = {vk, vk+1, . . . , vk+N} which minimizes a finite

horizon cost. One then uses the first element of Vk as the

control action. In the nominal case ∆ = 0 the cost is

commonly a quadratic cost on output yk and input vk

Jk =

N+k∑

i=k

‖yi‖
2
Wy

+ ‖vi‖
2
Wv

(8)

where Wy ≥ and Wv > 0 are suitable weighting matrices.

Linear constraints on output and input are usually included

and can be written on the form

Pyyi+1 ≤ Incy
k ≤ i ≤ N − 1 (9)

Puui ≤ Incu
(10)

over the finite control horizon. The ncy and ncu denotes

the number of output and input constraints respectively.

∆

u y

qp

Σ
v

Σ

K
yc

Fig. 1: System setup: The system is controlled by the

feedback controller K which stabilizes Σ subject to the

unknown LTI system ∆.

The basic optimization problem is easily written explicitly

as a problem in the control sequence Vk ie. as a static

optimization problem. The problem with constraints can then

be solved using a quadratic programming (QP) solver.

C. The Youla parameterizations

The Youla parameterization of all stabilizing controllers is

well known and has been used to large extend in controller

synthesis (See eg. [13]). With reference to Fig. 1 we consider

the system G ≡ Gyu and stabilizing controller K (both

transfer matrices). System and controller can be written as

left or right co-prime factorizations:

G = NrM
−1
r = M−1

l Nl (11)

K = UrV
−1
r = V −1

l Ul (12)

where Nr,Mr, Ur, Vr, Nl,Ml, Ul, Vl ∈ RH∞ and satisfy the

double Bezout identity
(

I 0
0 I

)

=

(
Vl −Ul

−Nl Ml

)(
Mr Ur

Nr Vr

)

(13)

=

(
Mr Ur

Nr Vr

)(
Vl −Ul

−Nl Ml

)

(14)

Then all controllers which stabilizes G are given as:

K(Q) = (Ur + MrQ)(Vr + NrQ)−1 (15)

K(Q) = (Vl + QNl)
−1(Ul + QMl) (16)

where Q ∈ RH∞ is called the Youla parameter.

The dual of the Youla parameterization is all systems stabi-

lized by a given controller [8][12]. This is commonly denoted

the dual Youla parameterization. The parameterization can be

written as follows:

G(S) = (Nr + VrS)(Mr + UrS)−1 (17)

G(S) = (Ml + SUl)
−1(Nl + SVl) (18)

where S ∈ RH∞ is the dual Youla parameter. The nominal

system G is naturally attained for S = 0. A useful inter-

pretation of S is that of a frequency shaped version of the

uncertainty [12]. Provided that K robustly stabilizes G there

exist a map between ∆ and S ∈ RH∞ [8]:

S(∆) = T3∆(I − T1∆)−1T2 (19)

where

T1 = Gqp + GquUrMlGyp (20)

T2 = GquMr, T3 = MlGyp (21)

An interesting property of the parameterization is that

the Youla parameter Q looks directly into the dual Youla

parameter S [8][12]:

ǫk = Sηk (22)

where ǫk and ηk are the input and output of Q respectively.

One can therefore think of Q as a controller for the dual

Youla parameter S. This also has the interpretation of Q

controlling the model uncertainty. Actually, it turns out that

the pair (G(S),K(Q)) is stabilizing if and only if the

pair (S,Q) is stabilizing. The work in [12] is devoted to

exploiting this principle.
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IV. METHOD

The main observation which we will take advantage of

in MPC is the fact that the dual Youla parameter S can

be regarded as the uncertainty of the system. Hence, if the

performance of the system is unsatisfactory (eg. if constraints

are violated), we can use an identification scheme to gain

information about S and make actions accordingly ie. recon-

figure the controller. Since standard identification procedures

exist for solving this problem, we will only briefly cover this

problem in the paper.

In constraint predictive control an optimization problem

is setup by deriving explicitly how the trajectory of the

system evolves over a finite horizon. Hence, in this section

we establish how the trajectory of the system depends on

the dual Youla parameter S. Furthermore, we show how to

include the Youla parameter Q in the predictions.

Since the Youla parameterization is non-unique we need

to introduce a specific realization. In this work we use an

observer form of the Youla parameterization. The realization

is shown in Fig. 2 where the observer is based on the nominal

system G ≡ Gyu (For details see [2]). The realization is

only valid for K ∈ RH∞. All stabilizing controllers for the

nominal systems is hence parameterized by Q ∈ RH∞ with

input ǫk and output ηk. We have included the auxiliary signal

vk which was used as the MPC control signal in section

III. Looking at the input-output connection vk-ǫk we look

directly into the controlled dual Youla parameter Š:

ǫk = Švk = (I − SQ)−1Svk (23)

This follows immediately from the theory presented in sec-

tion III-C. We will show how this can be used when deriving

the predictions for the MPC optimization problem.

A. Predictions in presence of the dual Youla parameter S

We will now derive the prediction equations in the pres-

ence of the assumed knowledge about S = S(∆). We will for

simplicity assume that Q = 0 for which relation (23) reduces

K

u y

v

ǫ
observer

Q

Σ

Σ

η

G(S)

yc

+

−

(a) Observer form of Youla parameteri-
zation

=

v ǫ

η
Q

SΣ

(b) Equivalent representation

Fig. 2: The Youla parameterization is realized in the observer

form [2]. It follows from the theory that the dynamic system

from vk to ǫk is the closed loop connection of S and Q.

to ǫk = Svk Later we show how the result immediately

generalizes to the case with non-zero Q.

The dynamics of the nominal system G ≡ Gyu, controller

K and observer Go are:

G =

{
xk+1 = Axk + Buk

yk = Cxk
(24)

K =

{
xc

k+1 = Acx
c
k + Bcyk

yc
k = Ccx

c
k + Dcyk

(25)

Go =

{
x̂k+1 = Ax̂k + Buk + Lǫk

ŷk = Cx̂k
(26)

uk = vk + yc
k , ǫk = yk − Cx̂k (27)

where xk ∈ R
nx is the state vector of the nominal system,

xc
k ∈ R

nk is the state vector of the controller and x̂k ∈ R
nx

is the state vector of the observer. The output injection gain

L is naturally chosen such that (A,CL) is a stabilizing pair.

The equations (24)-(26) represents the nominal dynamics

∆ = 0 (S(∆) = 0). Disregarding transients caused by

disturbances and initial conditions the observer estimation

error will be ǫk = 0 no matter what the input sequence vk

is. In the presence of uncertainty ∆ 6= 0 (S(∆) 6= 0) the

deterministic dynamic response of ǫk given the input vk is

determined by the dual Youla parameter S. We assume that

S has the following state space representation:

S ≡ S(∆) =

{
xs

k+1 =Asx
s
k + Bsvk

ǫk = Csx
s
k

(28)

where xs
k ∈ R

ns is the state vector of S. For the sake

of simplicity we have assumed that there is no direct term

in S. Combining equations (25)-(26) we get the following

expression governing the evolution of yk and uk:

[
xc

k+1

x̂k+1

]

=

[
Ac BcC

BCc A + BDcC

]

︸ ︷︷ ︸

Ā

[
xc

k

x̂k

]

+

[
0
B

]

︸︷︷︸

B̄

vk +

[
Bc

BDc + L

]

︸ ︷︷ ︸

H

ǫk (29)

yk =
[
0 C

]

︸ ︷︷ ︸

C̄y

[
xc

k

x̂k

]

+ ǫk (30)

uk =
[
Cc DcC

]

︸ ︷︷ ︸

C̄u

[
xc

k

x̂k

]

+ vk + Dcǫk (31)

The residual ǫk has a natural interpretation as a correction

term due to the perturbation S. Disregarding transients

caused by disturbances and initial conditions the determinis-

tic evolution of yk and uk is therefore completely described

by equations (29)-(31) and the dual Youla parameter (28).

Remark 1: It is evident from equation (30) that ǫk only

can be used to correct the predictions of yk and not general

linear combinations of xk. Therefore, we can only handle

constraint on the measurable output yk and not general

constraints on the states.
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Remark 2: The states xs
k of S are naturally not accessible

in general. Therefore, we have to rely on estimated states x̂s
k

obtained through an observer:

x̂s
k+1 = Asx̂

s
k + Bsvk + Ls(ǫk − Csx̂

s
k) (32)

ǫ̂k = Csx̂
s
k (33)

where x̂s
k ∈ R

ns is the state vector of the dual Youla

parameter. Hence, when referring to the state xs
k in the

following it is implicitly implied that it could be an estimate.

Based on the state xs
k of the dual Youla parameter, the

observer state x̂k and the state of the controller xc
k we can

find (through iterations) the future trajectory of yk, uk and

ǫk given the trajectory of vk. Let Yk, Uk, Ek, Vk denote the

corresponding stacked vectors of N step trajectories eg.:

Yk =
[
yT

k yT
k+1 yT

k+2 · · · yT
k+N

]T
(34)

We can write the future N predictions of yk, uk and ǫk as

Yk = Ayzk + ByVk + HyEk (35)

Uk = Auzk + BuVk + HuEk (36)

Ek = Asx
s
k + BsVk (37)

zk =
[
xc

k
T x̂T

k

]T
(38)

where Ay, By, Hy, Au, Bu, Hu, As, Bs are defined as

the following extended observability and Toeplitz matrices

(See definition of ON and T N in section II).

Ay = ON (Ā, C̄y) , By = T N (Ā, B̄, C̄y, 0) (39)

Au = ON (Ā, C̄u) , By = T N (Ā, B̄, C̄u, 0) (40)

As = ON (As, Cs) , Bs = T N (As, Bs, Cs, 0) (41)

Hy = T N (Ā,H, B̄, I) , Hu = T N (Ā,H, B̄,Dc) (42)

The closed form prediction of Yk hence becomes

Yk = Ayzk + ByVk
︸ ︷︷ ︸

Nominal

+Hy (Asx
s
k + BsVk)

︸ ︷︷ ︸

Perturbation

(43)

= Y
(G,K)
k + Y S

k (44)

where Y
(G,K)
k is the contribution owing to the nominal

dynamics and Y S
k is the contribution owing to the dual

Youla parameter. Likewise the closed loop predictions of uk

becomes:

Uk = Auzk + BuVk
︸ ︷︷ ︸

Nominal

+Hu (Asx
s
k + BsVk)

︸ ︷︷ ︸

Perturbation

(45)

= U
(G,K)
k + US

k (46)

where U
(G,K)
k is the contribution owing to the nominal

dynamics and US
k is the contribution owing to the dual Youla

parameter.

Remark 3: A nice property of the derived predictions is

the separability into the nominal contribution (S(∆) = 0)

and the contribution due to S(∆) 6= 0. Hence, there is no

need for total reconfiguration of the MPC controller to take S

into account, it should simply be able to take the corrections

into account through a plug-in mechanism.

Remark 4: The future knowledge of a reference or set-

point is easily incorporated in the predictions. The important

thing to remember is that the reference should be input to

the dual Youla parameter.

B. Adding a Youla parameter Q for controlling S

Knowing the perturbation S ≡ S(∆) the closed-loop

performance can be enhanced by including a Youla parameter

Q for controlling S. We assume that the Youla parameter has

the following state space realization:

Q =

{
x

q
k+1 = AQx

q
k + BQǫk

ηk = CQx
q
k + DQǫk

(47)

where x
q
k ∈ R

nq is the state vector of the Youla parameter.

Since Q looks directly into S the corrected predictions will

now be made on the basis of the controlled dual Youla

parameter:

Š = (I − SQ)−1S (48)

It is straightforward to derive the predictions with the

controlled dual Youla parameter. The predictions are simple

made using Š with state vector xš
k =

[

xs
k

T x
q
k

T
]T

instead

of S. The prediction of yk and uk can now be written on

the following form over the prediction horizon:

Yk = Y
(G,K)
k + Y

(S,Q)
k (49)

Uk = U
(G,K)
k + U

(S,Q)
k (50)

where the notation (S,Q) has been used to indicate the

contribution owing to the controlled dual Youla parameter.

C. Identification of S

Using well established system identification methods it

is possible to identify S using the auxiliary signal vk as

excitation signal. So far we have not considered noise,

however, in the general noisy case the signal ǫk is related

to the signal vk through the following equation:

ǫk = Švk + ek (51)

where ek is the noise contribution. With vk persistently

exiting and uncorrelated with ek it is possible to get an

unbiased estimate of Š using eg. an output-error method [5].

Since Q is user defined S is then easily established from Š:

S = (I + ŠQ)−1Š (52)

For a more rigorous treatment the reader is referred to

[1][12].

Remark 5: Identification of S should be done only when

the constrained control action is inactive. When the con-

strained control is active we effectively have an extra non-

linear loop around the system. As will be shown shortly, we

setup an MPC strategy where the constrained control action

is active only when strictly necessary.
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D. MPC strategy

The predictions derived so far can be used to implement a

MPC scheme which ensures satisfaction of constraints given

the assumed knowledge of S ≡ S(∆).
The cost for the MPC controller could in general be given

by the cost in equation (8). If Wy > 0 this will give a

control signal vk which is active even though no constraints

are violated over the prediction horizon. This is unattractive

since we already assume that the controller K and the

Youla parameter Q have been designed to deliver desired

performance. It will basically interfere with the criteria on

which the controllers K and Q were designed.

To make sure that the MPC controller only interferes when

necessary we set Wy = 0 and the cost reduces to:

Jk =

N∑

i=k

‖vi‖
2
Wv

(53)

We minimize this objective subject to the constraints (9)-

(10) and the dynamics of the closed loop system consisting

of the pair (G(S),K(Q)). The deterministic evolution of the

trajectory is naturally described by the prediction equations

given in the previous sections. Therefore, the constrained

optimization problem can in the usual way be written as a

constrained static optimization problem in the decision vector

Vk and solved using a QP solver.

Under certain assumptions the suggested receding horizon

control will guarantee stability: There exists a finite horizon

N ∈ N for which cost (53) is equal to the infinite horizon

cost. The infinite horizon problem is guaranteed stable if we

know the system perfectly (ie. we have identified S) and the

state estimation errors are sufficiently small. This is a special

case of the results in [11] for prestabilized systems. In [11]

an algorithm is given for choosing N online.

In practice these assumptions are unlikely to hold, and as

is common practice in real applications, we might simply

accept that situations could theoretically occur which leads

to instability or infeasibility of the optimization problem.

E. Extensions

The true potential of the setup introduced so far lies

in the extensions. The framework provides the basis for

using the powerful ideas described in [12] together with

constrained control action. We will confine ourself to a short

description of one immediate extension possibility: The so-

called iterative (S,Q) design. The framework derived so far

is actually the first step of the iterative design.

1) Iterative design: After the first Q = Q1 has been

designed for the identified S the iterative method proceeds

as follows: If performance is unacceptable we re-identify the

uncertainty. However, this time it is the controlled dual Youla

parameter we are looking into:

Š = (I − SQ)−1S (54)

we then simply design an extra controller Q2 for dealing

with Š. The total controller is hence Q = Q1 + Q2. These

v ǫ

η

SΣ

Σ Q1

Qk

Fig. 3: Visualization of iterative design

steps are repeated until acceptable performance is attained.

The design is illustrated in Fig. 3.

After the kth iteration we have the Youla parameter

Q = Q1 + Q2 + · · · + Qk, (55)

which is the sum of Youla parameters identified at each

iteration. S can be derived from the controlled dual Youla

parameter Š identified at the kth iteration using equation

(52).

The algorithm is easily used together with the setup in

section IV due to the modularity of the setup. The predictions

of Yk and Uk for the kth iteration are simply corrected based

on the kth identified (closed-loop) dual Youla parameter and

kth Youla parameter.

V. ILLUSTRATIVE EXAMPLE

In this section we illustrate the potential performance

enhancement when using the presented framework. We con-

sider a two cart system shown in Fig. 4. The left cart (cart

1) represents the nominal dynamics and the cart to the

right (cart 2) represents the perturbation. The objective is

to regulate the position x of the left cart by applying a force

u to the cart. We introduce the regulation constraint:

|x| ≤ 1 (56)

Introducing the following state vectors

z =
[
x ẋ

]T
, z∆ =

[
x∆ ẋ∆

]T
(57)

and putting the system description in the form in Fig. 1 we

get the following continuous time description of the nominal

m m∆

k∆k

d d∆

x x∆

Fig. 4: Sketch of the two cart system
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dynamics:

Σ =







ż=

[
0 1

− k
m

− d
m

]

z +

[
0
1

]

p +

[
0
1
m

]

u

q=z

y=z

(58)

and the following description of the perturbation:

∆ =







ż∆=

[
0 1

− k∆

m∆
− d∆

m∆

]

z∆ +

[
0 0

k∆

m∆

d∆

m∆

]

q

p =
[

k∆

m
d∆

m

]
z∆ +

[
−k∆

m
−d∆

m

]
q

(59)

The chosen parameter values are as follows: m = 1 kg. k =
1 N/m. d = 1 N/m·s. m∆ = 0.5 kg. k∆ = 1 N/m. d∆ = 0.01
N/m·s. For simulation purposes we consider the discretized

dynamics of (58)-(59) where the sample time Ts = 1.2s

has been chosen. In the example we will assume perfect

knowledge about S which can be found through the relation

(19). In practice we would naturally be confined to identify

S through an identification scheme as stated in section IV-C.

However, this is not the focus of this example. The minimal

representation of S ≡ S(∆) is a sixth order system.

To illustrate the potential improvements with the presented

framework, we increase the complexity of the controller

step by step. The following four control configurations are

tested: Nominal (robust) feedback controller K (Labeled K1).

Additional nominal constraint handling (K2). Additional

correction of predictions based on the dual Youla parameter

S (K3). Additional Youla parameter Q to control the dual

Youla parameter (K4).

The nominal feedback controller is an LQ controller

designed for the nominal dynamics ie. the dynamics of cart

1 which provides robust stability in the presence of the

perturbation ∆. The state cost is Wz = I2×2 and the control

cost is Wu = 10. The dual Youla parameter Q is designed

as an LQG controller based on the dynamics of S. The

LQ state cost is Wxs = I6×6 and the LQ control cost is

Wη = 0.1. The state noise covariance matrix is chosen as

Rxs = I6×6 and the output noise covariance matrix is chosen

as Rǫ = I2×2.

The MPC controller is designed for the system as de-

scribed in section IV-D. The control horizon is chosen to

N = 10 and the control cost is Wv = 1.

In the simulations we step the reference from 0 to 1.

This means that we want the position of cart 1 to end

at x = 1 but without violating the constraint |x| ≤ 1.

The simulations are shown in Fig. 5. The controller K1

does not satisfy the constraint, which is expected since

constraint handling is not included in its design criteria.

Constraints are still not met with nominal constraint handling

due to erroneous predictions (K2). Correcting the predictions

(K3) based on the dual Youla parameter constraints are

respected. Performance is increased by the addition of the

Youla parameter for controlling the dual Youla parameter

(K4).

VI. CONCLUSION

We have presented a framework for taking advantage of

the primary and the dual Youla parameter in constrained
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Fig. 5: Simulation with stepped reference

predictive control. Based on a specific realization of the

Youla parameterization we derive explicitly the predictions

on which the MPC optimization should be made. It is shown

that the predictions consist of a nominal contribution owing

to the nominal dynamics and a contribution owing to the

Youla parameterizations. The MPC problem is formulated

such that the MPC controller is active only when there is

danger of constraint violation. An example illustrated the

potential performance enhancement in using the framework.
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