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Abstract— In this paper we demonstrate how one can re-
formulate the MPC problem for LPV systems to a series of
mpLPs by a closed-loop minimax MPC algorithm based on
dynamic programming. A relaxation technique is employed to
reformulate constraints which are polynomial in the scheduling
parameters to parameter-independent constraints. The algo-
rithm allows the computation of explicit control laws for
linear parameter-varying systems and enables the controller
to exploit information about the scheduling parameter. This
improves the control performance compared to a standard
robust approach where no uncertainty knowledge is used,
while keeping the benefits of fast online computations. The
off-line computational burden is similar to what is required for
computing explicit control laws for uncertain or nominal LTI
systems. The proposed control strategy is applied to an example
to compare the complexity of the resulting explicit control law
to the robust controller.

I. INTRODUCTION

The study of Linear Parameter-Varying (LPV) systems is

motivated by their use in gain-scheduling control techniques,

[1], [2]. Classical gain-scheduling approaches work with

an interpolation of the controller gains among a family of

LTI controllers, which are based on linearized models of

the system. While those techniques work surprisingly well

in practice, it is hard to give precise stability/performance

statements taking changes in the system dynamics into

account. LPV systems account for changes in the system

dynamics by parameter-varying system matrices. Contrary

to systems with parametric uncertainties, the current values

of the scheduling parameters are known. The parameters lie

in a bounded set, such that an LPV system describes a family

of linear systems. The LPV framework constitutes a useful

theoretical foundation and allows statements on stability

and performance which take variations of the scheduling

parameter directly into account, [3].

Linear parameter-varying systems were also considered in

the Model Predictive Control (MPC) community, and various

approaches were developed for discrete-time LPV systems.

These include quasi-min-max MPC, [4], which demands the

solution of semi-definite programs, interpolation-based MPC,

[5], which relies on the existence of robustly stabilizing
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controllers, or gain-scheduling MPC, [6], where non-convex

optimization is avoided by using a modified cost objective.

The introduction of multi-parametric programming into

the field of model predictive control around the millennium

now allows the computation of explicit solutions for the

optimal control problem of constrained linear and piecewise

affine systems, [7], [8], [9], [10], [11]. Instead of solving an

optimization problem at each sampling instance, the optimal

input is obtained from a look-up table, which significantly

reduces the online computational effort. In [12], [13], the

computation of explicit control laws was extended to linear

discrete-time systems with parametric uncertainty, i.e., when

the parameter is bounded, but unknown. The computation of

explicit control laws for LPV systems - when the scheduling

parameter is known - was presented recently for the case

of constant input matrices, [14], [15]. In order to tackle the

whole class of LPV systems, a more demanding procedure

is needed due to the occurrence of polynomials in the

scheduling parameter.

In the following we are proposing an MPC scheme for

LPV systems which results in a series of multi-parametric

linear programs (mp-LPs), i.e., multi-parametric program-

ming can be employed to pre-compute the explicit solution

offline.

The paper is structured as follows: In Section II, the con-

sidered problem is stated. The main results are presented in

Section III, followed by a brief discussion on the relaxation

technique in Section IV. The aspect of stability is treated in

Section V, before an numerical example illustrates the ap-

plication of the algorithm in Section VI. Finally conclusions

are drawn.

A. Notation

The set of non-negative real numbers is denoted by R+.

The positive orthant in the n-dimensional Euclidean space

is denoted by R
n
+. A polyhedron is a set described by the

intersection of finitely many half-spaces. A polytope is a

closed and bounded polyhedron. An upper index in brackets

denotes the element of a vector or the row in a matrix.

II. PROBLEM STATEMENT

We consider linear discrete-time LPV systems with a

parameter-varying state transition and parameter-varying in-

put matrix

xk+1 = A(θk)xk + B(θk)uk . (1)
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The variables xk ∈ R
nx , uk ∈ R

nu and θk ∈ R
nθ

+ denote the

state, control input and time-varying scheduling parameter,

respectively. Furthermore, the system is constrained, xk ∈ X

and uk ∈ U. The constraint sets X and U are assumed to be

polytopes including the origin in its interior,

X = {x : Exx ≤ fx} , (2a)

U = {u : Euu ≤ fu} . (2b)

Remark 1: We restrict ourselves to separate constraints on

the state and inputs in (2) solely for ease of notation. It is

straight-forward to modify the presented algorithm in this

paper to the case of mixed constraints, i.e. Exx+Euu ≤ fxu.

The scheduling parameter vector θk = [θ
[1]
k , . . . , θ

[nθ ]
k ]T is

measured online. Future values are however only known to

be the barycentric coordinates of a standard nθ-simplex Θ
in the parameter space,

Θ := {θk ∈ R
nθ

+ :

nθ
∑

j=1

θ
[j]
k = 1} . (3)

The parameter-varying matrices A(θk) and B(θk) are

known to lie in polytopes,

A(θk) =

nθ
∑

j=1

Ajθ
[j]
k , B(θk) =

nθ
∑

j=1

Bjθ
[j]
k , (4)

where Aj and Bj denote the j-th vertices of the polytopes.

This polytopic description is a common assumption in the

LPV framework, see e.g. [2]. For the control problem to

make sense, it is assumed that the system (1) is controllable

(and observable) for all θk ∈ Θ, see [16], [17]. For this class

of systems we want to compute an explicit state-feedback

control law

uk = µk(xk, θk), (5)

which makes use of knowledge of the current scheduling

parameter θk. In order to compute this control law (5) within

a Model Predictive Control scheme, a cost function is to

be minimized. The control objective is to stabilize the LPV

system (1) to the origin. According to standard MPC, our

cost function is defined as

J = ‖Pxk+N‖p +

N−1
∑

i=0

‖Qxk+i‖p + ‖Ruk+i‖p , (6)

where p denotes a piecewise linear norm, either the 1-norm

or the ∞-norm. Piecewise linear norms1 enable a parametric

solution to the stated problem using dynamic programming.

For the minimization of the cost function (6) we have to

consider the current as well as the unknown future scheduling

parameter values, as the state trajectories are parameter-

dependent.

1Quadratic cost functions are not possible since our procedure relies
on epigraph reformulations, which would render the original problem a
multiparametric quadratically constrained quadratic program, for which no
efficient solution techniques are available.

III. MAIN RESULTS

Before starting the actual computation of the control law

(5), the polynomial dependency of the control law µ on the

scheduling parameter has to be decided. This dependency

can chosen to be affine

µk(xk, θk) =

nθ
∑

j=1

θ
[j]
k µj

k(xk) , (7)

but note that in principle any polynomial in the parameter

θk is possible with our proposed method. In the case of the

affine parametrization (7), the function µj
k(xk) corresponds

to the control law in the j-th vertex of the parameter

simplex (3). In order to simplify notation, we introduce the

basis Uk := {µ1
k, µ2

k, . . . , µ
nµ

k }.

In a closed-loop MPC approach, one would assume that

the future control law µk+i is calculated optimally over the

horizon N−i not until xk+i and θk+i are available. But as the

future values of the scheduling parameters are unknown, all

possible cases must be considered in order to accommodate

for the worst-case scenario. This way constraint satisfaction

is assured and the actual cost function will be less or equal to

the computed one, no matter how the scheduling parameters

evolve. The optimization problem to solve in closed-loop

minimax MPC is thus

µk(xk, θk) = argmin
Uk

max
θk

· · · min
Uk+N−1

max
θk+N−1

J (8)

Here we propose a dynamic programming (DP) procedure

to solve (8) by iterating backwards in time. For more details

on dynamic programming, see [18]. We start at the prediction

horizon N with the initial cost function

J∗

N (xk+N ) = ‖Pxk+N‖p . (9)

Then at each iteration we use

xk+i+1 = A(θk+i)xk+i + B(θk+i)µk+i(xk+i, θk+i) (10)

to substitute xk+i+1 in J∗

i+1(xk+i+1). As θk+i is unknown

at time instance k, we consider the worst case, which leads

to

J∗

i (xk+i) = min
Uk+i

max
θk+i

‖Qxk+i‖p + ‖Ruk+i‖p

+ J∗

i+1(xk+i+1) . (11)

In order to determine the worst-case parameters of (11),

we first apply an epigraph reformulation to the optimization

problem in order to transfer the parameter dependence to

the constraints. This leads to the following semi-infinite

optimization problem

J∗

i (xk+i) = min
Uk+i

t (12a)

s.t. ∀θk+i ∈ Θ:

‖Qxk+i‖p + ‖Ruk+i(θk+1)‖p +
J∗

i+1(A(θk+i)xk+i + B(θk+i)µk+i(xk+i, θk+i)) ≤ t ,
(12b)

xk+i ∈ X , uk+i ∈ U . (12c)
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Remark 2: Depending on the structure of (10), the assur-

ance of constraint satisfaction differs. If the control law (5) is

chosen to be parameter-independent, the constraints in (12)

are convex in the scheduling parameters and the maximum

is attained at one of the vertices of the parameter simplex

Θ. However, the resulting control law does not take the

current scheduling parameters into account, [12], [19], [13].

For a constant input matrix B, it is reasonable to assume

a polytopic input parametrization. The resulting constraints

depend affinely on the scheduling parameter, which again

allows for vertex enumeration. This case was tackled in detail

in [14].

In the more general case of a non-constant input matrix

B(θk) and a polynomially parameterized input uk(θk), the

constraints are polynomial in the scheduling parameters and

a vertex enumeration is not sufficient to ensure constraint

satisfaction over the whole simplex. However, the constraint

satisfaction of the semi-infinite optimization problem (12)

can be ensured, conservatively, over the whole parameter

simplex by making use of Pólya’s theorem:

Theorem 1: Pólya’s theorem. If a homogeneous polyno-

mial p(θ) is positive on the simplex Θ, all the coefficients of

pNp
(θ) = p(θ) · (

∑nθ

j=1 θ[j])Np are positive for a sufficiently

large Pólya degree Np.

Proof: See [20], [21].

We will make use of the more obvious reverse of Pólya’s

theorem2, i.e., positive coefficients of the extended polyno-

mial mean positivity over the whole simplex.

Example 1: Consider the polynomial p(θ) = a(θ[1])2 +
bθ[1]θ[2] + c(θ[2])2. A sufficient condition for positivity over

the standard simplex Θ is the positivity of the coefficients

c0 = {a, b, c}. By multiplying with
∑nθ

j=1 θ[j], we obtain

p1(θ) = a(θ[1])3 + (a + b)(θ[1])2θ[2] + (b + c)θ[1](θ[2])2 +
c(θ[2])3 and the less conservative condition of positive co-

efficients c1 = {a, a + b, b + c, c}. Pólya’s contribution was

to show that by repeated multiplication with
∑nθ

j=1 θ[j], the

condition of positive coefficients indeed converges to the

exact necessary and sufficient condition for positivity of

the polynomial over the standard simplex. Fig. 1 shows the

resulting conditions on the coefficients of p(θ) for different

Pólya degrees in the case a = c.

The following design procedure describes the relaxation of

the parameter-dependent constraints of (12) into constraints

which are piecewise affine in the state and inputs and

independent of the scheduling parameter:

1) Reformulate constraints which are polynomial in the

scheduling parameter into a positivity constraint of a

polynomial p(θ).
2) Homogenize the polynomial p(θ) by multiplying single

monomials with
∑nθ

j=1 θ[j](= 1) until all monomials

have the same degree.

3) Set the Pólya degree Np, and compute the coefficients

cNp
of the extended polynomial pNp

(θ) = p(θ) ·
(
∑nθ

j=1 θ[j])Np . In this step some conservatism may

2The presented usage of Pólya’s theorem is implemented in YALMIP as
one of the so called filters in the robust optimization framework, [22].

b

a = c

...

Np

Fig. 1. Abating conditions on the coefficients of p(θ) for increasing Pólya
degrees Np = 0, 1, 3, 5, ...,∞.

be introduced depending on the selection of Np. By

increasing the polynomial degree Np, the relaxations

become tighter until the exact problem is considered.

If all coefficients cNp
are non-negative, so is the poly-

nomial p(θ). Hence the semi-infinite optimization problem

(12) can be transformed into the following multi-parametric

linear program:

J∗

i (xk+i) = min
Uk+i

t (13a)

s.t.

cNp
(xk+i, Uk+i, t) ≥ 0 , xk+i ∈ X (13b)

Note that the coefficients of the extended polynomial lie

in the cone which is spanned by the coefficients of the

polynomial constraints in (12), and the piecewise affine

dependence of the coefficients on the state is preserved. By

using piecewise linear norms instead of quadratic norms,

the cost functions J∗

i are piecewise linear functions of the

state xk+i, such that in every iteration the optimization

problem (12) can be formulated as the multi-parametric

linear program (13) and solved parametrically with respect to

xk+i. Contrary to the closed-loop minimax MPC approach

for uncertain systems, the future inputs are functions of the

future scheduling parameters.

The final step of the DP procedure differs from the

preceding steps, since knowledge of the current scheduling

parameter values can be exploited to improve control per-

formance. We make use of the uncontrolled successor state

(USS),

zk = (

nθ
∑

j=1

Ajθ
[j]
k )xk, (14)

which was first introduced in [14] and in generalized form

constitutes a cornerstone of [15]. By parameterizing the

parametric problem not in the measured state xk, but in the

USS, the parameter dependence of A(θk) can directly be

taken into account. In lack of an equivalent scheme for the

input, we minimize the worst-case gain-scheduled cost, i.e.

solve the semi-infinite optimization problem

J∗(zk) = min
Uk

t + s (15a)
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s.t. ∀θk ∈ Θ:

‖Rµk(zk, θk+1)‖p + J∗

1 (zk + B(θk)µk(zk, θk)) ≤ t ,
(15b)

uk ∈ U , (15c)

ǫ

nθ
∑

j=1

‖Q(zk + B(θ
[j]
k )µk(zk, θ

[j]
k ))‖p ≤ s , (15d)

employing an additional epigraph variable s. For many prob-

lems, the vertex solutions are not unique, which can lead to

irregular control laws when solving the parametric problem,

and therefore a small regularization weight, 0 < ǫ ≪ 1,

which penalizes the vertex predictions, is added as an ad-

hoc measure. While this virtually does not change the shape

of the cost function, it turns out that the actual achieved

performance is improved, because the non-uniqueness of the

vertex solutions is mitigated. The polynomial dependence on

the scheduling parameter can again be treated by employing

Pólya’s theorem to transform (15) into an mp-LP. The

resulting control law µk(zk, θk) is piecewise affine in the

USS, defined over a set of polytopes in the USS-space, and

polynomial in the scheduling parameter, such that is can be

written as

µk(zk, θk) = Fr(θk)zk + gr(θk) if zk ∈ Dr (16)

where

Dr = {z : Erz ≤ fr} r = {1, . . . , nr} . (17)

The union of these polytopes is the set of feasible uncon-

trolled successor states,

Zf = {z : Ezz ≤ fz}, (18)

and the set of admissible initial states, i.e. which result in a

feasible USS for all parameter values, can be determined by

Xf = {x :







EzA1

...

EzAnθ






x ≤







fz

...

fz






} . (19)

When applying the computed control law online, in each

step the state xk and the scheduling parameter θk are

measured and used to compute the uncontrolled successor

state zk, which is then inserted in the parametric solution to

obtain the control input uk.

IV. CHOICE OF PÓLYA DEGREE

When applying Pólya’s theorem to ensure constraint sat-

isfaction over the whole simplex Θ, the question remains

how to choose the Pólya degree Np appropriately. Intuitively,

the higher the degree the less conservatism is introduced by

the relaxation, but the question remains how large Np has

to be chosen in order to guarantee that no conservatism is

introduced? In [21] the authors were able to derive an explicit

bound for the Pólya degree Np.

Theorem 2: Suppose that p(θ) is a homogeneous poly-

nomial of degree d and positive on the simplex Θ. The

maximum of the scaled coefficients of p(θ) is denoted by

L and the minimum of the polynomial over the simplex by

λ. If

Np >
d(d − 1)

2

L

λ
− d , (20)

then p(θ) · (
∑nθ

j=1 θj)
Np has positive coefficients.

Unfortunately, when the optimum of the parametric op-

timization problem (13) is obtained, for some θk ∈ Θ
constraints are fulfilled with equality, i.e., λ → 0 for some

constraints. Thus for the application in the optimization

problem (12) no general bound for a sufficient large Pólya

degree Np can be derived from (20).

However, as will be shown by an example in Section VI, in

many cases the introduced conservatism is not severe, and the

use of small Pólya degrees leads to a substantial performance

improvement compared to a robust MPC scheme.

V. STABILITY

Another question concerns the stability of the resulting

closed-loop system. Note that the proposed procedure does

not guarantee stability a-priori, a classical issue of finite

horizon MPC. The stability of the control law (16) can be

verified a-posteriori by performing a reachability analysis

of the closed-loop system in the space of the uncontrolled

successor state:

zk+1 = A(θk+1)xk+1 = A(θk+1){zk + B(θk)µk(zk, θk)}
(21)

towards a target region around the origin. First the stability

of this target region under the computed control law is

established following the theory described in [23], [24].

Definition 1: A function Ψ : R
n → R+ is said to be a

gauge function if

(a) Ψ(z + ẑ) ≤ Ψ(z) + Ψ(ẑ), ∀z, ẑ ∈ R
n,

(b) Ψ(z) ≥ 0, Ψ(z) = 0 ⇔ z = 0,

(c) Ψ(µz) = µΨ(z), ∀µ ∈ R+.

Definition 2: A ball of radius r with respect to Ψ(z) is

defined as

Br = {z : Ψ(z) ≤ r}. (22)

A convex and compact set T containing the origin in its

interior can be regarded as the unit ball of a gauge function

ΨT(z). Moreover, if the set is polyhedral, it can be written

in standard form:

T = {z ∈ R
n : Etz ≤ 1}, (23)

and induces the gauge function (also known as the

Minkowski functional of T)

ΨT(z) = max
i

E
[i]
t z. (24)

Definition 3: A set T is said to be λ-contractive if ∀zk ∈
T, ∀θ ∈ Θ : zk+1 ∈ λT.

Definition 4: Let Ω be the set of all controller regions

containing the origin,

Ω = {r : 0 ≤ fr} . (25)

Ω is single-valued if the origin is contained in the interior

of a controller region, and multi-valued if the origin lies on

the facet of several controller regions.
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Assumption 1: gr(θk) = 0 ∀r ∈ Ω.

Note that this assumption has to be fulfilled in order to hold

the state in the origin. Since X and U include the origin, it

is always possible to fulfill Assumption 1.

Proposition 1: Let T be a polytope, T ⊆
⋃

r∈Ω Dr and

let Assumption 1 hold. If ∀r ∈ Ω, the vertices vi
r of T

⋂

Dr

are mapped into λT, then µT is λ-contractive ∀0 ≥ µ ≥ 1.

Proof: Consider any ẑk ∈ µ(T
⋂

Dr) ⇒ z̃k = ẑk/µ ∈
(T

⋂

Dr) ⇔ ∃αi
r ∈ R+,

∑

i αi
r = 1 : z̃k =

∑

i αiv
i
r ⇒

ẑk = µ
∑

i αiv
i
r ⇒ ẑk+1 ∈ µ

∑

i αiλT = µλT.

Proposition 1, together with the properties of the induced

gauge function Ψ(z) suffices to establish Lyapunov stability

inside T.

A reachability analysis can be performed to check which

states are mapped into T under the computed control law.

T0 := T ,
Tk+1 := {z : A(θ+){z + B(θ)µ(z, θ)} ∈ Tk∀θ, θ+ ∈ Θ} .

The iteration is terminated, when for a k, Tk covers the

complete feasible space or when the stability region Tk

converges. The set of stable states can be determined similar

to (19) by ensuring that the uncontrolled successor state is

in Tk independent of the current parameter.

VI. NUMERICAL EXAMPLE

This section consists of a numerical example, demonstrat-

ing the application of the proposed method and comparing

it to robust MPC and nonlinear MPC. We consider the

following nonlinear system:

x
[1]
k+1 = 0.85x

[1]
k + uk , (26)

x
[2]
k+1 = (0.25 − 0.55(0.1x

[2]
k )2)x

[1]
k + 0.65x

[2]
k

+(−1 + 2(0.1x
[2]
k )2)uk , (27)

under the constraints

−0.5 ≤ uk ≤ 1,

[

−10
−10

]

≤ xk ≤

[

8
8

]

. (28)

This system can be modelled as an LPV system (1) by

defining the following scheduling parameter

θk =
[

1 − (0.1x
[2]
k )2 (0.1x

[2]
k )2

]T

, (29)

resulting in the parameter-varying system matrices (4) with

the vertices

A1 =

[

0.85 0
0.25 0.65

]

, B1 =

[

1
−1

]

, (30a)

A2 =

[

0.85 0
−0.3 0.65

]

, B2 =

[

1
1

]

. (30b)

The Multi-Parametric Toolbox (MPT) and YALMIP were

used to compute the control laws, [25], [22]. The weight

matrices

Q =

[

1 0
0 1

]

, R = 0.01 , P = Q (31)

and a prediction horizon of N = 3 were chosen. The ∞-

norm was used in the cost function.

x[1]
x[2]

J
(x

)

-10

0

10

-10

0

10
0

20

40

60

80

Fig. 2. Actual simulated cost over 40 steps.

Five different controllers for this system were compared in

terms of complexity and control performance. By considering

the scheduling parameter (29) as an unknown, bounded

parametric uncertainty, an explicit robust controller was

computed, in the following indicated by rob. This robust

MPC scheme is presented in detail in [12], where it is derived

as the solution to the closed-loop constrained robust optimal

(CL-CROC) problem. It follows a similar DP approach,

where the control law (5) is parameter-independent, uk =
µ(xk).

Following the proposed procedure in this paper, three

explicit LPV controller were computed, with (i) an affine

parametrization in the scheduling parameter and the Pólya

degree 2 – aff2, (ii) an affine parametrization in the

parameter and a Pólya degree 10 – aff10, and (iii) a

quadratic parametrization and a Pólya degree of 2 – qu2.

Finally, the truly optimal solution, based on solving the

optimal control problem for the nonlinear model online with

the global branch-and-bound based solver in YALMIP, was

also used – nl. Stability of the closed-loop systems under

explicit LPV control was verified for the whole feasible

space (28) following the reachability analysis presented in

Section V.

All control laws were tested in simulations by controlling

the system from 400 initial points, uniformly distributed over

the feasible space. Figure 2 shows the actual simulated costs

accumulated over 40 steps. It can be observed that the robust

control yields a higher cost, while the other control laws are

in about the same range. This observation is quantified in

Table I, which reveals that there is virtually no difference

in performance between the LPV controllers aff2 and

aff10. The quadratic controller qu2 shows a slightly better

behavior. One has to mention here that we lack a guarantee

of obtaining a better accumulated cost when using a less

conservative approximation, since we optimize worst-case

performance over a finite horizon.

Table I also shows the complexity of the explicit control

laws. There is an increase in complexity from the robust to

the affine parametrization and then to the quadratic para-
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Controller: rob aff2 aff10 qu2

No. of regions: 31 53 55 117

Avg. cost increase: 23.3 % 0.4 % 0.4 % 0.2 %

TABLE I

COMPLEXITY OF THE EXPLICIT CONTROL LAWS AND AVERAGE COST

INCREASE COMPARED TO NONLINEAR MPC.

metrization. This is due to the number of piecewise affine

control laws µj
k(zk) needed to compose the explicit control

laws. In this example the choice of the Pólya degree only

had a small influence on the complexity of the resulting

controllers.

VII. CONCLUSIONS

In this paper, a method was proposed to compute explicit

control laws for LPV systems, linear time-discrete systems

with parameter-varying matrices. A parameterization of the

input in terms of the scheduling parameter was used in a

dynamic programming approach similar to min-max MPC

for uncertain systems. This enables the advantages of explicit

MPC – control under constraint satisfaction for systems with

high sampling rate – for the class of LPV systems.

It was shown in a comparison with robust and nonlinear

control that the exploitation of the scheduling parameter

increases control performance and nearly reaches the per-

formance of nonlinear MPC.

A drawback of explicit control laws is that the number

of controller regions grows exponentially with the predic-

tion horizon and the states. As the suggested approach is

based on multi-parametric programming, it suffers from this

drawback and thus one future direction of research will be

the development of approximate control laws with reduced

complexity.

Another direction of investigations will concern the final

step cost function. Desirable would be a scheme analogue

to the USS, which guarantees optimality of the control law

independent of the current scheduling parameter.
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