
Control of multiple non-holonomic air vehicles under wind uncertainty

using model predictive control and decentralized navigation functions

Giannis P. Roussos, Georgios Chaloulos, Kostas J. Kyriakopoulos, John Lygeros

Abstract— We present a novel control scheme for multiple
non-holonomic vehicles under uncertainty, which can guarantee
collision avoidance while complying with constraints imposed
on the vehicles. Dipolar Navigation Functions are used for
decentralized conflict-free control, while Model Predictive Con-
trol is used in a centralized manner in order to ensure that
the resulting trajectories remain feasible with respect to the
constraints present and to optimize the performance objectives.
The model used is chosen to resemble air traffic control
problems, with some uncertainty introduced in the system. The
efficiency of the control strategy is demonstrated by realistic
simulations.

I. INTRODUCTION

Navigation Functions (NF), introduced by Rimon and

Koditschek [1] as an improved potential field method, have

been used so far in a variety of problems, mainly in the robot-

ics field, for the control of single or multiple mobile vehicles.

The main advantage of Navigation Functions, compared to

most potential field methods, is the lack of any local minima,

which are a significant drawback of many potential field

methods. Control based on NFs offers a number of benefits,

most importantly it can provide provable convergence to

the desired configuration, as well as guaranteed collision

avoidance.

In its original form the NF methodology addressed prob-

lems involving a single robot and a number of stationery

obstacles. Following Rimon and Koditschek’s work, the orig-

inal framework has been extended to multiagent-multirobot

systems, both in centralized [2] and decentralized schemes

[3], as well as non-holonomic vehicles in single agent

[4] and multiagent [5] problems. In addition applications

include formation control [6], while lately an extension to

3-dimensional problems has been proposed [7].

While the NF methodology features appealing characteris-

tics as mentioned above, it does not take into account the con-

straints present in many real applications. Such constraints

can be imposed in the form of bounded velocity, smoothness

requirement for the path, time constraints etc. In order to

overcome this problem we employ the technique of Model

Predictive Control (MPC) [8], a control methodology devel-

oped specifically to deal with state and input constraints.

MPC is used in a level above NF in order to ensure that
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the resulting trajectory will be feasible with respect to the

constraints present. The resulting control strategy is a novel

combination of NFs as a lower level controller and MPC as

a higher level, overseeing controller that offers the best of

both worlds: safety is guaranteed by NFs, while constraint

satisfaction is handled by MPC.

We apply this control technique to problems of conflict1

avoidance in Air Traffic Control (ATC). ATC is an area where

the guaranteed safety that NFs can offer is very valuable for

Conflict Detection and Resolution (CD&R) algorithms [9],

but the lack of any provision for handling constraints has

been a major disadvantage. The proposed control scheme

can deal with this drawback of the NF method. In addition

we introduce some uncertainty in the problem to account for

the effect of the wind on the motion of aircraft. We should

note the great resemblance of the proposed scheme to the

structure of an ATC situation, where aircraft are navigating in

a self-separation airspace (agents navigating with the use of

NFs), assisted by a ground tool that seeks to optimize longer

term goals (MPC). These are what is known as Short-Term

and Mid-Term CD&R algorithms; a thorough overview and

classification of the literature in this area can be found in

[10].

The rest of the paper is organized as follows: Section II de-

scribes the NF method used along with the vehicles’ model,

followed by Section III where MPC is briefly introduced and

the control scheme outlined above is presented. Simulation

results for typical ATC scenarios are presented in Section IV.

Finally, conclusions and directions for possible extensions

are presented in Section V.

II. NAVIGATION FUNCTION CONTROL

A. Introduction

A Navigation Function produces a potential field whose

negated gradient drives the vehicle toward the destination and

away from any obstacles present in the workspace. In con-

trast to other artificial potential fields, Navigation Functions

have exactly one minimum and can provide almost global

navigation to the goal position and away from obstacles. As

Koditschek and Rimon have demonstrated [11], strict global

navigation is not possible as every obstacle introduces at

least one saddle point in the potential field, nevertheless the

sets of initial conditions that drive the system to these saddle

points are of measure zero.

1By the term conflict we define a situation where two aircraft violate re-
quired minimum separation standards, i.e. 5 nautical miles on the horizontal
plane.
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B. Model of the Vehicles

The problem under consideration involves N aircraft-

like vehicles flying inside a planar circular workspace of

radius rworld, while avoiding collisions with each other. Each

aircraft i = 1, . . . , N is modeled as a planar nonholonomic

circular unicycle of radius ri. The position and orientation of

vehicle i are qi = [xi, yi]
T

and θi respectively. The motion

of each vehicle is described by the following kinematic

equations:

q̇i =

[

ui cos θi

ui sin θi

]

(1a)

θ̇i = ωi (1b)

where ui is the longitudinal (linear) and ωi the angular

velocity of vehicle i. The state of each vehicle is then

ni = [qT
i , θi]

T while its input is vi = [ui, ωi]
T . The vector

of the positions of all vehicles is Q =
[

qT
1 , . . . ,qT

N

]T
.

The choice of the unicycle model for the aircraft is

considered adequate for the motion planning task that we

consider in this paper. It is assumed that a lower level control,

like the Flight Management System (FMS) will be onboard

to realize the trajectories provided by the proposed control

scheme.

C. CD&R using Navigation Functions

Navigation functions in their original form are not suitable

for the control of non-holonomic, aircraft-like vehicles, as

they do not take into account the kinematic constraints of

such vehicles. Application of the original NF method as

introduced by Koditschek and Rimon [1] with a feedback

law for the control of a nonholonomic vehicle can lead

to undesired behavior, like having the vehicle rotate in

place [4], [12]. In order to overcome this difficulty Dipolar

Navigation Functions have been developed [12] which offer

a significant advantage: the integral lines of the resulting

potential field are all tangent to the desired orientation at

the goal, eliminating in most cases the need for in-place

rotation at the destination, as the vehicle is driven there with

the desired orientation. This is achieved by using the plane

whose normal vector is parallel to the desired orientation and

includes the origin as an additional artificial obstacle.

The NF used in this paper is:

Φi = Φi (qi) =
γdi + fi

((γdi + fi)k + Hnhi
· Gi · β0i

)
1/k

. (2)

The above Navigation Function is constructed as explained

in detail in [13]. The function Gi = Gi (Q) reflects the

proximity to any possible collisions involving vehicle i: Gi

is zero when vehicle i participates in a conflict, i.e. when

the sphere occupied by agent i intersects with other agents’

spheres, and takes positive values away from any conflicts,

while γdi = γdi (qi) = ||qi − qid||
2

is the distance from

the destination position qid. The function fi = fi(Gi)
is necessary in a decentralized approach as it is used in

proximity situations in order to ensure that Φi attains positive

values even when agent i has reached its destination. Thus

agent i can be temporarily driven away from its destination in

order to facilitate the convergence of neighboring agents. As

the workspace is considered spherical with radius rworld, the

workspace bounding obstacle is β0i = r2
world − ||qi||

2
− r2

i .

The factor Hnhi renders the potential field dipolar. It is

responsible for the repulsive potential created by the artificial

obstacle used to align the trajectories at the origin with the

desired orientation θdi:

Hnhi =ǫnh + nnhi (3)

nnhi =([cos θi sin θi] · (qi − qid))
2

(4)

where ǫnh is a small positive constant. Finally, k is a positive

tuning parameter for this class of Navigation Functions.

The potential field function given above has been used

in [5] and has proven navigation properties, i.e. it provides

global convergence to the destination along with guaran-

teed collision avoidance. To better demonstrate this dipolar

property, a simple potential field generated by such an NF,

without any obstacles is presented in Figure 1. It can be

seen that the surface x = 0 divides the workspace of radius

rworld = 100 in two parts, and forces all the integral lines

to approach the target (0, 0) parallel to the y axis.
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Fig. 1. Potential Field generated by a Dipolar Navigation Function

Each vehicle i is governed by the following control law

[14]:

ui = − sgn(Pi) · Fi −

(

∂Φi

∂t
+

∣

∣

∣

∣

∂Φi

∂t

∣

∣

∣

∣

)

1

2Pi
(5a)

ωi = − kθi (θi − θnhi) + θ̇nhi (5b)

where

Fi =ku · ||∇iΦi||
2

+ kz · ||qi − qid||
2

Pi =JT
Ii · ∇iΦi

JIi =JIi(θi) = [cos θi sin θi]
T

∇iΦj =
∂Φj

∂qi

∂Φi

∂t
=

∑

j 6=i

uj∇jΦ
T
i · JIj
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MPC initialization:

Set t = 0

initialize X(t)

repeat:

initialization:

Set k = 0

Generate Θ0 = {Θ(t), . . . , Θ(t + (N − 1)T )} ∼ g(Θ)

Calculate (X(t + (i − 1)T + 1), . . . , X(t + iT )) =

= O(X(t + (i − 1)T ), Θ(t + (i − 1)T ))

(recursively ∀i ∈ {1, . . . , N})

Set C0 = L(X(t + 1), . . . , X(t + NT ))

repeat:

Set k = k + 1

Generate Θ̃ = {Θ̃(t), . . . , Θ̃(t + (N − 1)T )} ∼ g(Θ)

Calculate (X(t + (i − 1)T + 1), . . . , X(t + iT )) =

= O(X̃(t + (i − 1)T ), Θ̃(t + (i − 1)T ))

(recursively ∀i ∈ {1, . . . , N})

Set C̃ = L(X̃(t + 1), . . . , X̃(t + NT ))

Set ρk = min

{

Ck−1

g(Θk−1)

g(Θ̃)

C̃
, 1

}

Set [Θk , Ck] =







[Θ̃ , C̃] with probability ρk

[Θk−1 , Ck−1] with probability 1 − ρk

until k = maxsteps

Find j : Ci = min{C1, . . . , Cmaxsteps}

Calculate X(t + T ) = O(X(t), Θ(t))

Set t = t + T

until |(xi(t), yi(t)) − (xfinal
i

, yfinal
i

)| < ∆

TABLE I

MPC USING RANDOMIZED OPTIMIZATION ALGORITHM

and ku, kz , kφi
are positive real gains. The angle θnhi is the

angle of the gradient ∇Φi:

θnhi ,

{

atan2 (sgn(pi) · Φiy, sgn(pi) · Φix) , qi 6= qid

θid, qi = qid

where Φix = ∂Φi

∂xi

, Φiy = ∂Φi

∂yi

and pi = JT
Iid · (qi − qid),

JIid = JI(θid) is the current position vector with respect

to the destination, projected on the longitudinal axis of the

desired orientation. Consequently sgn(pi) is equal to 1 in

front of the target configuration and −1 behind it. Finally

we define:

sgn(x) ,

{

1, if x ≥ 0

−1, if x < 0

atan2(y, x) , arg (x, y) , (x, y) ∈ C .

The insight behind the above control law is to align the

vehicle’s longitudinal axis with the gradient of the potential

field and drive the vehicle along an integral line to approach

the destination with the desired orientation.

D. Stability Analysis

As shown in [14], each vehicle i described by the model

(1) under the control law (5) is asymptotically stabilized to

its target qid, θid.

III. MODEL PREDICTIVE CONTROL

FORMULATION

One important drawback of the use of NFs is that they

cannot guarantee any constraint satisfaction on the trajectory.

In our case, this can result in agents having to stop, travel

in circles for some time, etc. While this is not a problem

in robotics, or even ground vehicle control, where the agents

can stop and start again, the situation is different for aircraft,

since physical and aerodynamic reasons impose constraints

on the minimum and maximum speed, thrust, turning radius,

etc.

To overcome this problem we employ the technique of

Model Predictive Control (MPC) [8], a control methodology

developed specifically to deal with state and input con-

straints. Denoting by T the periodicity of the controller and

by N the length of the horizon of MPC, at each time step

t, an optimization problem of horizon NT will be solved

to find the optimal inputs for the NF. In an ATC setting,

the Mid Term CR algorithm, which is centralized, does not

have very detailed information on the dynamics and all the

uncertainties involved. It is just responsible for transmitting

to the aircraft any changes of their flight plan for avoiding

potential conflicts. Thus, the MPC algorithm will view the

NFs as a black box, which will produce state trajectories for

all aircraft given their target destinations.

The state of each aircraft i at time t (as

considered by the MPC algorithm) is Xi(t) =
[xi(t), yi(t), θi(t), ui(t), ωi(t)]

T . Note that this notation

makes no implication on the non-holonomic kinematic

model (where ui(t), ωi(t) are outputs of the system)

but represents the ignorance of the MPC on the

details of the underlying model. The inputs of the

NF are the intermediate destinations of the aircraft

Θi(t) = [xinterm
i (t), yinterm

i (t)]. For ease of notation, we

introduce the variables X(t) = [X1(t), . . . , Xn(t)] and

Θ = [Θ1(t), . . . ,Θn(t)], where n denotes the number of

aircraft. The NF is then viewed as an oracle O(X(t),Θ(t))
that, given the current aircraft state and the intermediate

destinations, returns the state trajectory for the next T steps

(X(t + 1), . . . ,X(t + T )). The state evolution in the NFs

can be influenced by uncertainty (in our case the wind

speed). The MPC algorithm will try to minimize some cost

function L(X(t + 1), . . . ,X(t + NT )) ∈ R , subject to

constraints X(τ) ∈ X,∀τ ∈ {t, t + T, . . . , t + NT}. The

cost function reflects some long-term goals for the aircraft

(e.g. reach their final destination as fast as possible, avoid

turning too often, etc.). The constraints reflect operational

constraints of the aircraft.

The finite horizon optimization problem described to be

solved at each time t is a non-convex problem. Thus, the

problem of finding the exact optimal value is computation-

ally intractable. To overcome this difficulty we use ran-

domized optimization algorithms. Randomized optimization

algorithms are a very promising method in this context,

since they can inherently deal with the complexity of the

problem, with reasonable computational workload. There are

several methods falling into this category, such as genetic

algorithms [15], simulated annealing [16], etc. While all

seem to work with more or less the same efficiency, only

few provide guarantees for convergence to the optimum. This

is the reason that we chose the method described in [17].

This method is a variation of simulated annealing based on

Markov Chain Monte Carlo (MCMC) that works both for
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deterministic and expected value criteria.

Of course, since our control has a receding horizon policy,

at every time t, the optimal inputs for the time instants

t, t+T, . . . , t+(N−1)T will be calculated, but only the first

will be applied. Then the control law will be recalculated at

time t + T for the time instants t + T, . . . , t + NT , etc. Due

to uncertainties and conflict resolution maneuvers, aircraft

might not arrive at their exact final destination, thus we

will consider that aircraft reach their destination when the

Euclidean distance between their current position and their

final is less than some tolerance value ∆.

Our algorithm is summarized in Table I. Note that the

proposal distribution from which random samples are ex-

tracted is very important for the algorithm to approximate the

optimum inputs. Also important to note is that the dimension

of the search space grows linearly in the prediction horizon

N , which makes the optimization problem harder to solve

for long prediction horizons. The proposed combination of

MPC and NFs retains the safety guarantees (as at all times

the NF potential field is repulsive with respect to neighboring

aircraft), while handling constraints and cost factors through

the optimization performed by MPC.

IV. SIMULATION SETTING AND RESULTS

A. Simulation Setting

In our simulation setting, we consider several aircraft in

level flight converging to the same point (0,0) that have to be

deconflicted. A typical configuration is presented in Figure

2 for three aircraft.
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Fig. 2. Configuration for 3 aircraft encounter.

For all our simulations, we will assume that the aircraft are

of type Airbus A321, flying at 33000ft, a typical cruising al-

titude for commercial flights. [18] suggests that the airspeed

at this altitude can only vary in the region [366, 540] knots,

with a nominal value of 454 knots. We will enforce these

constraints on our controller.

Regarding the uncertainty, we will only consider the wind

speed as source of uncertainty. Wind speed (in general)

can be modeled as a sum of two components: a nominal,

deterministic component (available through meteorological

forecasts) and a stochastic component, representing devia-

tions from the nominal. Since the forecasts are available

prior to the flights, flight plans are calculated taking them

into account, so for simplicity reasons, we set the forecasted

wind speed equal to zero. The stochastic part of the wind will

be generated by a Gaussian distribution with zero mean and

standard deviation σ = 5.17m/s [19]. Its strong correlation

structure [20] implies that it cannot be represented as white

noise; instead it is more accurate to approximate it by a

constant random value for each simulation.

B. Control using Navigation Functions

First, we try to use the NFs method to deconflict this

situation, in the case where uncertainty is set to zero, without

applying MPC. Indeed, NFs manage to resolve the situation,

with the aircraft converging to their destinations, without

any conflicts arising. Their inability to respect system’s

constraints is, however, obvious, as indicated in Figure 3.

The aircraft have a speed that is constantly decreasing and

converges asymptotically to zero, as the aircraft approach

their destination.
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Fig. 3. Aircraft speed for the solution produced by NFs

This problem is inherent in Navigation Functions, since

the speed of the agents heavily depends on the distance to

their final destination. The situation becomes even worse

when uncertainty is introduced. Since the trajectories of the

aircraft depend only on the geometry of the situation in a

deterministic manner, the only way for the NFs to correct

the deviation because of the wind is to command different

control inputs. The problem is that since the uncertainty is

applied on the output trajectory, the solution converges to

a different point, where the speed commanded by the NFs

added to the wind speed equal zero. Thus, depending on the

wind speed and its direction, some aircraft may never reach

their destination.

C. MPC with NFs

As already discussed, the search space for the randomized

optimization algorithm grows with the prediction horizon. On

the other hand, we are interested in a fast implementation,

if the control scheme is to be applied in ATC. To reduce

the computational workload, one can do several things, like

shortening the horizon, or calculating only one input for

all times {t, t + T, . . . , t + (N − 1)T}. The first would

clearly reduce the advantage of the MPC approach, causing

the system to enter states where no feasible solutions are

available, while the second approach would introduce much

conservatism in the controller.

To reduce conservatism on the second approach, we intro-

duce a strategy for the optimization algorithm, where only

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB18.1

1228



the input for time t will be optimized. Then, at time t + T ,

the new input (intermediate way point) for the predictive

controller will be the same as that of time t, adding the

distance covered by each aircraft, etc. until the input for time

t + (N − 1)T . In this fashion, the controller will have taken

into account the uncertainty encountered by the aircraft and

will constantly try to keep the target at a constant distance,

forcing the NFs to command airspeeds close in the desired

range.

Exploiting the structure of the problem, it can be observed

that a distance to the target around 100nm produces a

speed for the aircraft matching the nominal cruising speed

for our altitude. Thus, the search space will concentrate

around points with a distance close to this value. This is

done by sampling from a Gaussian with mean 100nm and

standard deviation 10nm. Then, the intermediate waypoint is

determined by uniformly sampling for an angle in [−π
2 , π

2 ]
around the line segment joining the current position of the

aircraft and its final destination.

D. Results

One can optimize over several costs in the optimization

problem over several horizons and discretization steps. We

chose T = 5 minutes, N = 4 and a cost function that

tries to minimize the sum of the remaining distance to final

destination at the end of the horizon for all aircraft:

L =
∑

i

D(i, t + NT ). (6)

To evaluate the performance of our algorithm, we simulate

each encounter using 1000 Monte Carlo runs. The random-

ized optimization algorithm will optimize at each time step

over 1000 random extractions from the search space.

1) 4 aircraft encounter: As a first example we will

consider a situation where 4 aircraft are following paths

that are converging at the same point. Using all the settings

mentioned before, our control scheme resolves the situation

in all 1000 runs, while respecting the speed constraints we

impose on the aircraft airspeed (i.e. speed remains within

[366, 540] knots). Figure 4 shows the mean speed (over all

1000 Monte Carlo runs), as well as the highest and lowest

airspeeds observed for every aircraft at all times. The bounds

on the speed are also drawn for convenience. The average

running time for each simulation is 200 sec in a dual-core

Pentium 3.2GHz, while the peak memory usage is around

110MB RAM. This time is many times faster than real time

(which would be 66 min for this situation).

One can observe that the speed of the aircraft is very

well regulated, with a mean value very close to the desired

nominal airspeed for this altitude. Another interesting aspect

is the minimum separation between all aircraft flying in the

airspace. Simulating the situation with the NFs (without the

MPC approach) for the deterministic case leads to a mini-

mum separation of 22 nm. This is obviously quite conserva-

tive, since conflicts only happen when this separation drops

below 5 nm. Our approach shows some major improvement

in this aspect, resulting in minimum separations between
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Fig. 4. Speed evolution with time for a conflicting situation of 4 aircraft

11.5 and 16 nm in all simulations. Thus, despite the presence

of uncertainty, the aircraft can fly closer to one another,

while comfortably respecting the safety separation criteria.

The solution generated by the algorithm for a particular

wind speed is shown in Figure 6, while NFs generate the

trajectories shown in Figure 5 for the case where wind is

not present.
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Fig. 5. Solution of NFs for a
conflicting situation of 4 aircraft
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scheme for a conflicting situation
of 4 aircraft

2) 6 aircraft encounter: We try to present the algorithm

with an even more challenging problem: a situation where 6

aircraft are converging to the same point. Applying the same

configuration for the NFs approach (for the deterministic case

again), the trajectories one would get are shown in Figure

7. The solution demands all aircraft to travel in a circle of

radius around 190 nm until they reach their destinations.

Once again, the constraints are violated very often and the

distance traveled to reach the goal is much larger than direct

routing.
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Fig. 7. Solution of NFs for a
conflicting situation of 6 aircraft
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The MPC approach can include the uncertainty modeling

and once again can resolve the situation without problems.

We present the mean speed (over all 1000 Monte Carlo runs),
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as well as the highest and lowest airspeeds observed for every

aircraft at all times in Figure 9. The speed for all aircraft is

again very well regulated, having a mean value very close

to the one desired at this altitude. The average running time

in this case is around 1500 sec in the same PC, while the

peak memory usage is around 130MB RAM. The higher

computation time needed comes as no surprise, since the

feasible solutions for the search space are much fewer in

this case. One should note though, that the time needed is

still more than 3 times faster than real flight time (which

would be 85 min for this situation).

The solution generated by the algorithm for a particular

extraction of the wind speed is shown in Figure 8. Aircraft

now can travel smaller distances, while conflict avoidance

and speed constraints are respected. This conservativeness

reduction can help ATC to increase the capacity of the

airspace, as the proposed scheme can handle much more

complex situations.
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Fig. 9. Speed evolution with time for a conflicting situation of 6 aircraft

V. CONCLUSIONS AND FUTURE WORK

A novel control scheme combining the methods of Nav-

igation Functions and Model Predictive Control has been

presented. This control scheme exploits the ability of Model

Predictive Control to handle constraints, while preserving

the collision avoidance properties of Navigation Functions.

We applied this approach to an Air Traffic Control problem,

where uncertainty plays a great role in the system evolution

and safety, while physical constraints have to be respected.

The proposed scheme outperforms the existing Navigation

Functions methods, respecting the system constraints, while

reducing conservatism and optimizing over a desired cost

for the system. Simulation results suggest that the method is

robust under wind uncertainties.

Possible directions for future work include embedding

more sources of uncertainty in the system (like radar mea-

surement errors) and using the inputs for the Flight Man-

agement System of the aircraft in a more realistic Air

Traffic Control simulator. Finally, it would be of interest to

investigate whether using the analytic form of Navigation

Functions for the MPC approach (instead of assuming black-

box optimization) could lead to computationally tractable

problems and theoretical guarantees on the convergence of

the overall scheme.
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