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Abstract— Symbolic models are abstract descriptions of con-
tinuous systems in which symbols represent aggregates of
continuous states. In the last few years there has been a growing
interest in the use of symbolic models as a tool for analysis and
synthesis of complex systems. In fact, symbolic models enable
the use of well known algorithms in the context of supervisory
control and algorithmic game theory, for controller synthesis.
Since the 1990s many researchers faced the problem of iden-
tifying classes of dynamical and control systems that admit
symbolic models. In this paper we make further progress along
this research line by focusing on control systems affected by
disturbances. Our main contribution is to show that incremen-
tally globally asymptotically stable nonlinear control systems
with disturbances admit symbolic models. When specializing
these results to linear systems, we show that these symbolic
models can be easily constructed.

I. INTRODUCTION

A recent trend in the control systems community is the
use of symbolic models for the analysis and control of
large scale systems, with the aim of mitigating their inherent
complexity. A system is called a symbolic model when its
state space and its input space are finite sets. The use of
symbolic models provides a unified language to describe
physical systems as well as, software and hardware and
therefore it plays an important role, when dealing with design
of embedded systems (see e.g. [1]). Furthermore, the use of
symbolic models allows one to leverage the rich literature
on supervisory control [2] and algorithmic approaches to
game theory [3], [4] for control design. The search for
classes of systems admitting symbolic models goes back to
the 1990’s. After the pioneering work [5] of Alur and Dill
that showed that timed automata admit symbolic models,
many researchers faced the problem of identifying more
general classes of systems admitting symbolic models; these
include: multirate automata, rectangular automata and o–
minimal hybrid systems (see e.g. [6]). Symbolic models for
control systems were considered later in the work of [7]
which showed that discrete–time controllable linear systems
admit symbolic models. Most of these results are based on
appropriately adapting the notion of bisimulation introduced
by Milner [8] and Park [9] to the context of continuous
and hybrid systems. A different approach emerged recently
through the work of [10], where an approximate version
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of bisimulation was considered. While (exact) bisimulation
requires that observations of the states are identical, the
notion of approximate bisimulation relaxes this condition,
by allowing observations to be close and within a desired
precision. This more flexible notion of bisimulation allows
the identification of more classes of systems, admitting
symbolic models. Indeed, the work in [11] showed that,
for the class of incrementally globally asymptotically stable
nonlinear control systems, symbolic models exist which are
approximately bisimulation equivalent to control systems,
with a precision that can be chosen a priori, as a design
parameter. Control systems in this work are not affected by
exogenous disturbance inputs. However, in many realistic
situations, physical processes are characterized by a certain
degree of uncertainty which is often modeled by additional
disturbance inputs. The aim of the present paper is to extend
the results of [11] to nonlinear control systems influenced
by disturbances. The presence of disturbances requires us
to replace the notion of approximate bisimulation used in
[11] with the notion of alternating approximate bisimulation,
inspired by Alur and coworkers’ alternating bisimulation
[12]. This novel notion of bisimulation is a critical ingredient
of our results since, as illustrated in Section III-B through
a simple example, symbolic models based on the notion
of approximate bisimulation cannot be used for controller
synthesis of systems with exogenous inputs. Alternating ap-
proximate bisimulation solves this problem by guaranteeing
that control strategies synthesized on symbolic models, based
on alternating approximate bisimulations, can be readily
transferred to the original model. The main contribution of
this paper is to show that incrementally globally asymptoti-
cally stable control systems affected by exogenous inputs do
admit symbolic models. Moreover we show that for linear
control systems, symbolic models can be easily constructed
by leveraging existing results on approximation of reachable
sets (see e.g. [13] and the references therein). A notion
of alternating approximate simulation (one sided version
of alternating approximate bisimulation) has been used in
[14] to construct abstractions of linear control systems with
disturbances. Notions of bisimulation for nonlinear control
systems with disturbances have also been studied in [15],
albeit with a different purpose. While we are interested
in the construction of bisimilar models that are finite, the
work in [15] uses bisimulation to relate continuous, and thus
infinite, control systems. This paper is organized as follows.
Section II introduces the class of control systems that we
consider and some stability notions that will be used in the
subsequent developments. Section III introduces alternating
transition systems and the notion of alternating approximate
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bisimulation upon which our results rely. In Section IV we
show existence of symbolic models for incrementally glob-
ally asymptotically stable nonlinear control systems and the
construction of symbolic models for linear control systems.
In Section V we illustrate our results by means of a simple
example and Section VI offers some concluding remarks.

II. CONTROL SYSTEMS AND STABILITY NOTIONS

A. Notation

The symbols Z, N, R, R+ and R+
0 denote the set of

integers, positive integers, reals, positive and nonnegative
reals, respectively. Given x ∈ Rn the symbol x′ denotes the
transpose of x and xi the i–th element of x; furthermore
‖x‖ denotes the infinity norm of x and ‖M‖ the infinity
norm of some matrix M . Given a set A ⊆ Rn, the symbol
A denotes the topological closure of A. The symbol
Bε(x) denotes the closed ball centered at x ∈ Rn with
radius ε ∈ R+

0 , i.e. Bε(x) = {y ∈ Rn : ‖x− y‖ ≤ ε}.
For any A ⊆ Rn and µ ∈ R define
[A]µ := {a ∈ A | ai = kiµ, ki ∈ Z, i = 1, ..., n}. Given a
metric space (X,d), we denote by dh the Hausdorff pseudo–
metric induced by d on 2X , i.e. for any X1, X2 ⊆ X ,
dh(X1, X2) := max{~dh(X1, X2), ~dh(X2, X1)}, where
~dh(X1, X2) = supx1∈X1

infx2∈X2 d(x1, x2). We
recall that dh satisfies the following properties
for any X1,X2,X3 ⊆ X: (i) X1 = X2 implies
dh(X1, X2) = 0; (ii) dh(X1, X2) = dh(X2, X1); (iii)
dh(X1, X3) ≤ dh(X1, X2) + dh(X2, X3). The identity
map on a set A is denoted by 1A. Given two sets A and B,
if A ⊆ B we denote by ıA : A ↪→ B the natural inclusion
map taking any a ∈ A to ı(a) = a ∈ B. Given a function
f : A → B the symbol f(A) denotes the image of A
through f , i.e. f(A) := {b ∈ B : ∃a ∈ A s.t. b = f(a)}. We
identify a relation R ⊆ A × B with the map R : A → 2B

defined by b ∈ R(a) if and only if (a, b) ∈ R. Given
R ⊆ A × B, R−1 denotes the inverse relation of R, i.e.
R−1 := {(b, a) ∈ B ×A : (a, b) ∈ R}.

B. Control Systems

The class of systems that we consider in this paper is
formalized in the following definition.

Definition 1: A control system is a quadruple
Σ = (Rn,W,W, f), where:

• Rn is the state space;
• W = U × V is the input space, where U ⊆ Rm is the

control input space and V ⊆ Rs is the disturbance input
space;

• W = U × V is a subset of the set of all measurable
and locally essentially bounded functions of time from
intervals of the form ]a, b[⊆ R to W with a < 0 and
b > 0;

• f : Rn ×W → Rn is a continuous map satisfying the
following Lipschitz assumption: for every compact set
K ⊂ Rn, there exists a constant κ > 0 such that

‖f(x,w)− f(y, w)‖ ≤ κ‖x− y‖,

for all x, y ∈ K and all w ∈ W .

A locally absolutely continuous curve x :]a, b[→ Rn is
a trajectory of Σ if there exists w ∈ W satisfying
ẋ(t) = f(x(t),w(t)), for almost all t ∈ ]a, b[.

Although we have defined trajectories over open domains,
we shall refer to trajectories x :[0, τ ] → Rn defined on
closed domains [0, τ ], τ ∈ R+ with the understanding of the
existence of a trajectory z :]a, b[→ Rn such that x = z|[0,τ ].
We will also write x(τ, x,w) to denote the point reached at
time τ ∈]a, b[ under the input w from initial condition x;
this point is uniquely determined, since the assumptions on
f ensure existence and uniqueness of trajectories. Whenever
we need to distinguish between u and v in an input signal
(u,v) ∈ W , we write x(τ, x,u,v) instead of x(τ, x, (u,v)).
A control system Σ is forward complete if every trajectory
is defined on an interval of the form ]a,∞[. The results
presented in this paper will rely upon the following stability
notion:

Definition 2: [16] A control system Σ is incrementally
globally asymptotically stable (δ–GAS) if it is forward
complete and there exist a KL function β such that for any
t ∈ R+

0 , any x1, x2 ∈ Rn and any input signal w ∈ W the
following condition is satisfied:

‖x(t, x1,w)− x(t, x2,w)‖ ≤ β(‖x1 − x2‖ , t). (1)
The above definition can be thought of as an incremental

version of the classical notion of global asymptotic stability
(GAS). Sufficient and necessary conditions for a control
system to be δ–GAS can be found in [16].

III. SYMBOLIC MODELS AND APPROXIMATE
EQUIVALENCE NOTIONS

A. Alternating transition systems

In this paper we will use the class of alternating transition
systems as abstract models of control systems.

Definition 3: An (alternating) transition system is a tuple:

T = (Q,L, - , O,H),

consisting of:
• A set of states Q;
• A set of labels L = A×B, where A is the set of control

labels and B is the set of disturbance labels;
• A transition relation - ⊆ Q× L×Q;
• An output set O;
• An output function H : Q → O.
A transition system T is metric, if the output set O is

equipped with a metric d : O × O → R+
0 ; countable, if Q

and L are countable sets; finite, if Q and L are finite sets.

We will follow standard practice and denote by q
a,b- p, a

transition from q to p labeled by a and b. Transition systems
capture dynamics through the transition relation. For any
states q, p ∈ Q, q

a,b- p simply means that it is possible
to evolve or jump from state q to state p under the action
labeled by a and b. We will use transition systems as an
abstract representation of control systems. There are several
different ways in which we can transform control systems
into transition systems. We now describe one of these which
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has the property of capturing all the information contained
in a control system Σ. Given Σ = (Rn, U × V,U × V, f)
define the transition system:

T (Σ) := (Q,L, - , O,H),

where Q = Rn, L = A × B with A = U and B = V ,
q

u,v- p, if x(τ, q,u,v) = p for some τ ∈ R+, O = Rn,
and H = 1Rn . In the subsequent developments we will
work with a sub–transition system of T (Σ) obtained by
selecting those transitions from T (Σ) describing trajectories
of duration τ for some chosen τ ∈ R+. This can be seen as
a time discretization or sampling process.

Definition 4: Given a control system Σ = (Rn, U×V,U×
V, f) and a parameter τ ∈ R+ define the transition system:

Tτ (Σ) := (Qτ , Lτ ,
τ
- , Oτ ,Hτ ),

where:
• Qτ = Rn;
• Lτ = Aτ ×Bτ where

Aτ = {u ∈ U | the domain of u is [0, τ ]},
Bτ = {v ∈ V | the domain of v is [0, τ ]};

• q
u,v

τ
- p, if x(τ, q,u,v) = p;

• Oτ = Rn;
• Hτ = 1Rn .

Note that Tτ (Σ) is a metric transition system when we regard
Oτ as being equipped with the metric d(p, q) = ‖p− q‖.

B. Alternating and approximate bisimulations

In this section we introduce a notion of approximate
equivalence upon which all the results in this paper rely.
The following definition has been introduced in [10] and in
a slightly different formulation in [1].

Definition 5: Given two metric transition systems Ti =
(Qi, Li,

i
- , O,Hi), i = 1, 2 with the same output set

and metric d, and given a precision ε ∈ R+
0 , a relation R ⊆

Q1 ×Q2 is an ε–approximate bisimulation relation between
T1 and T2, if for any (q1, q2) ∈ R:
(i) d(H1(q1),H2(q2)) ≤ ε;

(ii) q1
l1

1
- p1 implies existence of q2

l2

2
- p2 such that

(p1, p2) ∈ R;
(iii) q2

l2

2
- p2 implies existence of q1

l1

1
- p1 such that

(p1, p2) ∈ R.
Moreover T1 is ε–approximately bisimilar to T2 if there
exists an ε–approximate bisimulation relation R between T1

and T2 such that R(Q1) = Q2 and R−1(Q2) = Q1.

The work in [11] showed existence of symbolic models
that are approximately bisimilar to δ–GAS control systems
(with no disturbance). However, the notion in Definition 5
employed in [11], does not capture the different role of
control and disturbance inputs in control systems, as the
following example shows.

Example 1: Consider the control system Σ = (R, U ×
V,U×V, f), where U = [1, 2] ⊂ R, V = [0.4, 1] ⊂ R, U×V
is the class of all measurable and locally essentially bounded
functions taking values in U × V , and f : R× U × V → R
is defined by f(x, (u, v)) = −2x + uv. We work in the
compact state space X = [0, 2]. Consider the transition
system T = (Q,L, - , O,H), where Q = {q1, q2, q3},
L = {l1, l2, l3}, q

l- p is depicted in Figure 1, O = R,
H : O → R is defined by H(q1) = 0, H(q2) = 1, and
H(q3) = 2. Given the desired precision ε = 0.6 and τ = 1,
by using the results in [11], it is possible to show that the
relation R ⊂ Qτ ×Q defined by:

R = R1 × {q1} ∪R2 × {q2} ∪R3 × {q3}, (2)

where R1 = [0, 0.6], R2 = [0.4, 1.6] and R3 = [1.4, 2], is
a 0.6–approximate bisimulation relation between Tτ (Σ) and
T . Furthermore, since R(Qτ ) = Q and R−1(Q) = Qτ , tran-
sition systems Tτ (Σ) and T are 0.6–approximately bisimilar.
Suppose now that the goal is to find a control strategy on
T such that, starting from state q1 it is possible to reach
the set {q2, q3} in one step. By Figure 1, q1

l2- q2

and q1
l3- q3 and hence both labels l2 and l3 solve

that problem. Since (0, q1) ∈ R, the notion of approximate
bisimulation (see condition (iii) of Definition 5) guarantees
that starting from 0 ∈ R1 there exists a pair of labels
(a2, b2), (a3, b3) ∈ Aτ ×Bτ so that 0

a2,b2

τ
- x2 ∈ R2

and 0
a3,b3

τ
- x3 ∈ R3 in transition system Tτ (Σ). Indeed,

by choosing constant curves (a2(t), b2(t)) = (1, 1) and
(a3(t), b3(t)) = (2, 1), t ∈ [0, 1] we have:

0
a2,b2

τ
- 0.86 ∈ R2, 0

a3,b3

τ
- 1.73 ∈ R3. (3)

However, if the constant disturbance label b(t) = 0.4, t ∈
[0, 1] occurs instead of b2 = b3, we obtain:

0
a2,b

τ
- 0.35 ∈ R1, 0

a3,b

τ
- 0.69 ∈ R2, (4)

thus showing that the control strategy in (3) does not produce
the desired result on the transition system Tτ (Σ). Although
T is not adequate to solve this problem, a solution does exist.
Since 0

a3,b

τ
- 0.69 ∈ R2 and the set X is invariant for Σ, it is

easy to see that for any b̂ ∈ Bτ , 0
a3,b̂

τ
- x with x ≥ 0.69 and

hence x ∈ R2 ∪ R3. Therefore, control label a3 guarantees
that state 0 ∈ R1 reaches R2 ∪R3, robustly with respect to
the disturbance labels action, whereas control label a2 does
not.

The above example motivates us to propose the following
definition that combines the notion of [10] with the notion of
alternating bisimulation, introduced by Alur and coworkers
in [12].

Definition 6: Given two metric transition systems
Ti = (Qi, Ai ×Bi,

i
- , O,Hi), i = 1, 2 with the same

observation set and the same metric d and given a
precision ε ∈ R+

0 , a relation R ⊆ Q1 ×Q2 is an alternating
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q1 q2 q3

l2

l3

l1

l3

l1, l2

l1, l2

l3

Fig. 1. Transition system T associated with control system Σ of Example
1.

ε–approximate (AεA) bisimulation relation between T1 and
T2 if for any (q1, q2) ∈ R:
(i) d(H1(q1),H2(q2)) ≤ ε;

(ii) ∀a1 ∈ A1 ∃a2 ∈ A2 ∀b2 ∈ B2 ∃b1 ∈ B1 such that
q1

a1,b1

1
- p1 and q2

a2,b2

2
- p2 with (p1, p2) ∈ R;

(iii) ∀a2 ∈ A2 ∃a1 ∈ A1 ∀b1 ∈ B1 ∃b2 ∈ B2 such that
q1

a1,b1

1
- p1 and q2

a2,b2

2
- p2 with (p1, p2) ∈ R.

Moreover, T1 is AεA bisimilar to T2 if there exists an
AεA bisimulation relation R between T1 and T2 such that
R(Q1) = Q2 and R−1(Q2) = Q1.

It is easy to see that Definition 5 can be recovered as a
special case of Definition 6, when the cardinality of each of
the sets B1 and B2 in transition systems T1 and T2 is one.

IV. MAIN RESULT

We start by stating the main result of this paper:

Theorem 1: Consider a control system Σ = (Rn, U × V,
U × V, f). If Σ is δ–GAS and U×V is compact, then for any
desired precision ε ∈ R+ there exist τ ∈ R+ and a countable
transition system T that is AεA bisimilar to Tτ (Σ).

The proof of the above result can be found in [17]. This
result is important because it shows existence of symbolic
models for nonlinear control systems in the presence of dis-
turbances. Bisimulation theory for nonlinear control systems
in presence of disturbances has been also considered in [15].
While the focus in [15] was the reduction of continuous
systems to continuous systems with lower dimension in the
state space, the focus of the present paper is the reduction
of continuous systems to symbolic models. The symbolic
model T constructed in the proof of Theorem 1 relies upon
the knowledge of reachable sets of nonlinear control systems
and this is a difficult task in general.
We now focus on the class of linear control systems and we
show that in this case symbolic models can be constructed.
A linear control system is a control system Σ =
(Rn,U × V,U × V, f) where the function f is linear, i.e.
for any x ∈ Rn, u ∈ U and v ∈ V ,

f(x, (u, v)) = Ax + Bu + Gv,

for some matrices A, B and G of appropriate dimen-
sions. With a slight abuse of notation we say that a linear
control system Σ is asymptotically stable, when Σ with

U × V = {0} × {0} is so. For any given τ ∈ R+, consider
the following sets:

RAτ
:=

{
p ∈ Qτ : 0

a,0

τ
- p, a ∈ Aτ

}
,

RBτ
:=

{
p ∈ Qτ : 0

0,b

τ
- p, b ∈ Bτ

}
, (5)

of reachable states of Tτ (Σ) from the origin 0 by means of
any control label a ∈ Aτ and identically null disturbance
label 0 and, respectively, by means of any disturbance label
b ∈ Bτ and identically null control label 0. We can now
propose the following symbolic models for linear systems.

Definition 7: Given a linear control system Σ =
(Rn,U × V,U × V, f) and any τ ∈ R+, η ∈ R+ and
µ ∈ R+, define the following transition system:

Tτ,η,µ(Σ) := (Q,A×B, - , O,H), (6)

where:

• Q = [Rn]η;
• A is a subset of [Rn]µ for which dh(A,RAτ ) ≤ µ/2;
• B is a subset of [Rn]µ for which dh(B,RBτ

) ≤ µ/2;
• q

a,b- p, if the following inequality is satisfied

‖x(τ, q, 0, 0) + a + b− p‖ ≤ η/2; (7)

• O = Rn;
• H = ι : Q ↪→ O.

Since set of states Q and sets of labels A and B are
countable, transition system Tτ,η,µ(Σ) is countable, as well.
Furthermore, transition system Tτ,η,µ(Σ) of (6) can be
easily constructed. The construction of Tτ,η,µ(Σ) relies on
the computation of the reachable sets in (5). The exact
computation of those sets is, in general, hard. However, there
are several results available in the literature, that propose
approximations of reachable sets for linear control systems
with arbitrarily small approximation error (e.g. [13] and the
references therein). We can now give the following result.

Theorem 2: Consider a linear control system Σ =
(Rn, U × V,U × V, f) and any desired precision ε ∈ R+.
If Σ is asymptotically stable then for any τ ∈ R+, µ ∈ R+

and η ∈ R+ satisfying the following condition:∥∥eAτ
∥∥ ε + µ + η/2 < ε, (8)

the corresponding transition system Tτ,η,µ(Σ) is AεA bisim-
ilar to Tτ (Σ).

Proof: Consider the relation R ⊆ Qτ × Q defined
by (x, q) ∈ R if and only if ||x − q|| ≤ ε. By construction
R−1(Q) = Qτ ; by geometrical considerations on the infinity
norm, Qτ ⊆

⋃
p∈[Rn]η

Bη/2(p) and therefore, since by (8)
η/2 < ε, we have that R(Qτ ) = Q. Consider any (x, q) ∈ R.
Condition (i) in Definition 6 is satisfied by the definition of
R and of the involved metric transition systems. We now
show that R satisfies also conditions (ii) and (iii). Consider
any (x, q) ∈ R, any a1 ∈ Aτ and choose a2 ∈ A such that:

‖a2 − x(τ, 0,a1,0)‖ ≤ µ/2. (9)
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Consider any b2 ∈ B. By the definition of B and of dh,
there exists b3 ∈ RBτ

such that:

d(b2, b3) = ‖b2 − b3‖ ≤ µ/2. (10)

The vector b3 can be either in RBτ
or in RBτ

\RBτ
; in

both cases for any σ ∈ R+ there exists b4 ∈ RBτ
such that:

‖b3 − b4‖ ≤ σ. (11)

Choose b1 ∈ Bτ such that b4 = x(τ, 0,0,b1) and consider
the transition x

a1,b1

τ
- y in Tτ (Σ). Set z = x(τ, q,0,0) +

a2 + b2 ∈ Qτ ; since Qτ ⊆
⋃

q′∈[Rn]η
Bη/2(q′), there exists

p ∈ Q = [Rn]η such that:

‖z − p‖ ≤ η/2. (12)

Thus q
a2,b2- p in Tτ,η,µ(Σ). By inequalities (12), (9), (11)

and (8), the following chain of inequalities holds:

‖y − p‖ = ‖y − z + z − p‖ ≤ ‖y − z‖+ ‖z − p‖
≤ ‖x(τ, x,a1,b1)− (x(τ, q,0,0) + a2 + b2)‖+ η/2
= ‖x(τ, x− q,0,0) + x(τ, 0,a1,0)− a2

+ x(τ, 0,0,b1)− b2 + b3 − b3‖+ η/2

≤ ‖eAτ (x− q)‖+ ‖x(τ, 0,a1,0)− a2‖
+ ‖b4 − b3‖+ ‖b3 − b2‖+ η/2

≤ ‖eAτ‖ε + µ/2 + σ + µ/2 + η/2.

By inequality (8), there exists a sufficiently small value of
σ ∈ R+ such that β(ε, τ) + σ + µ + η/2 ≤ ε, and hence
(y, p) ∈ R and condition (ii) in Definition 6 holds. Condition
(iii) can be shown by using same arguments of condition (ii)
and therefore it is omitted.

V. A SIMPLE EXAMPLE

Consider the simplified model of a direct current motor:

Σ =
{

ẋ = Ax + Bu + Gv,
x ∈ X, u ∈ U, v ∈ V,

(13)

where x = (x1 x2)′, x1 is the current, x2 is the angular
velocity, u is the applied voltage, v is the load torque
disturbance and:

A =
[
−R/L −kbkm/L

1/J −kf/J

]
;B =

[
km/L

0

]
;G =

[
0

1/J

]
,

where R = 2, L = 0.5, kb = 0.1, km = 0.1, kf = 0.2
and J = 0.4. All variables and constants appearing in
system Σ are expressed in the International System. The
control problem that we focus on is the one of disturbance
attenuation and it consists in finding a (memoryless) control
strategy u, so that for any initial condition x ∈ X and any
disturbance v ∈ V , the corresponding angular velocity x2 at
time t = 5 is above 0.1, or equivalently:

x(5, x,u,v) ∈ X∗ := [0, 0.6]× [0.1, 0.6]. (14)

We solve this problem by using results of Section IV. Since
system Σ is asymptotically stable, we can apply Theorem
2. Set the precision ε = 0.5 and τ = 5. By choosing
η = 0.3 and µ = 0.15, inequality (8) is satisfied and

Fig. 2. Left panel: Outer approximation PeAτ
(RAτ ) of reachable set

RAτ and control labels set A (black dots). Right panel: Outer approxi-
mation PeBτ

(RBτ ) of reachable set RBτ and disturbance labels set B
(black dots).

q
a,b- p q1 q2 q3 q4 q5 q6 q7 q8 q9

a1, b1 q6 q3 q3 q3 q3 q3 – – –
a1, b2 q6 q3 q3 q3 q3 q3 q3 q3 q3

a1, b3 q6 q3 q3 q3 q3 q3 q3 q3 q3

a2, b1 q3 q3 q3 q3 q3 q3 q3 q3 q3

a2, b2 q3 q3 q3 q3 q3 q3 q3 q3 q3

a2, b3 q2 q2 q2 q3 q3 q3 q3 q3 q3

a3, b1 q2 q3 q3 q3 q3 q3 q3 q3 q3

a3, b2 q2 q2 q2 q3 q3 q3 q3 q3 q3

a3, b3 q2 q2 q2 q2 q2 q2 q3 q3 q3

a4, b1 q2 q2 q2 q3 q3 q3 q3 q3 q3

a4, b2 q2 q2 q2 q2 q2 q2 q3 q3 q3

a4, b3 q2 q2 q2 q2 q2 q2 q2 q2 q2

TABLE I

therefore the transition system T5,0.3,0.15(Σ) defined in (6),
is AεA bisimilar to T5(Σ) with ε = 0.5. The construction
of T5,0.3,0.15(Σ) requires the computation of the reachable
sets RAτ

and RBτ
, as defined in (5). By using results in

[13] it is possible to compute polytopic outer approximations
of RAτ and RBτ , resulting in the polytopes PeAτ

(RAτ )
and PeBτ

(RBτ
) shown in Figure 2. Numerical errors eAτ

and eBτ
for the sets PeAτ

(RAτ
) and PeBτ

(RBτ
), can be

evaluated by using Lemma 1 of [13], resulting in eAτ
=

3.0453 · 10−6 and eBτ
= 3.8067 · 10−5. Since ε >>

max{eAτ , eBτ } we will neglect errors eAτ and eBτ in the
following developments. On the basis of the sets PeAτ

(RAτ )
and PeBτ

(RBτ
) we can compute the sets of labels A and B

of transition system (6), as shown in Figure 2. The resulting
symbolic model:

T5,0.3,0.15(Σ) := (Q, A×B, - , O,H), (15)

is given by:
• Q = {qi, i = 1, ..., 9}, where q1 = (0, 0)′, q2 = (0, η)′,

q3 = (0, 2η)′, q4 = (η, 0)′, q5 = (η, η)′, q6 = (η, 2η)′,
q7 = (2η, 0)′, q8 = (2η, η)′, q9 = (2η, 2η)′;

• A = {ai, i = 1, ..., 5}, where a1 = (0, 2µ)′,
a2 = (0, 3µ)′, a3 = (µ, 2µ)′, a4 = (µ, 3µ)′ and
a5 = (µ, 4µ)′;
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q3 q6 q9

q2 q5 q8

q1 q4 q7

Fig. 3. Symbolic model T5,0.3,0.15(Σ) associated with the linear control
system Σ. An arrow from a state q to a state p means that there exists at
least a pair (a, b) ∈ A × B so that x(5, q, 0, 0) + a + b is in the closed
ball B0.30/2(p).

• B = {b1, b2, b3}, where b1 = (0,−µ)′, b2 = (0, 0)′ and
b3 = (0, µ)′;

• q
a,b- p is shown in Table1 I;

• O = R2;
• H = ι : Q ↪→ O,

and depicted in Figure 3. By Theorem 2 transition systems
T5,0.3,0.15(Σ) and T5(Σ) are AεA bisimilar with ε = 0.5;
furthermore it is easy to see that X∗ = B0.5(q3)∪B0.5(q6)∪
B0.5(q9). Hence, the disturbance attenuation problem can be
solved on the symbolic model in (15), by finding for any
state q ∈ Q, the set U∗(q) of all control labels a ∈ A so that
q

a,b- p ∈ {q3, q6, q9} for any disturbance label b ∈ B. A
simple inspection of Table I provides the following solution:

U∗(q1) = U∗(q2) = U∗(q3) = {a1};
U∗(q4) = U∗(q5) = U∗(q6) = {a1, a2};
U∗(q7) = U∗(q8) = U∗(q9) = {a2, a3}.

VI. DISCUSSION

In this paper we showed that (incrementally globally)
asymptotically stable nonlinear control systems admit al-
ternating approximate bisimilar symbolic models, with a
precision that can be chosen a priori, as a design parameter.
For the class of linear control systems we showed that the
proposed symbolic models can be easily constructed. Future
work will focus on constructive techniques to obtain the
symbolic models whose existence was shown in this paper.
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