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Abstract— In this paper a successive approximation approach
for MIMO linear parameter varying (LPV) systems with affine
parameter dependence is proposed. This new approach is based
on an algorithm previously introduced by the authors, which
elaborates on a convergent sequence of linear deterministic-
stochastic state-space approximations. In the previous algorithm
the bilinear term between the time varying parameter vector
and the state vector is allowed to behave as a white noise process
when the scheduling parameter is a white noise sequence.
However, this is a strong limitation in practice since, most
often than not, the scheduling parameter is imposed by the
process itself and it is typically a non white noise signal.
In this paper, the bilinear term is analysed for non white
noise scheduling sequences. It is concluded that its behaviour
depends on the input sequence itself and it ranges from acting
as an independent colored noise source, mostly removed by
the identification algorithm, down to a highly input correlated
signal that may be incorrectly assumed as being part of the
system subspace. Based on the premise that the algorithm
performance can be improved by the noise energy reduction,
the bilinear term is expressed as a function of past inputs,
scheduling parameters, outputs, and states, and the linear terms
are included in a new extended input.

I. INTRODUCTION

The increasing importance of LPV systems in control

system design motivated, by the end of the last decade,

the emergence of a new identification problem. With vasts

applications ([3], [9]), LPV system identification research is

still an area of research in its infancy. There are several ap-

proaches to this problem such as methods based on subspace

techniques ([12], [13], [14], [2], [15]), basis functions ([10],

[11]), stochastic framework based methods ([5], [6]), Linear

Matrix Inequalities based optimization ([8]), parameter esti-

mation based gradient searches ([4]) and simple Least Means

Square approaches ([1]). Recently the authors proposed an

iterative algorithm based on a convergent sequence of linear

deterministic-stochastic state-space approximations ([5], [6]).

The authors proved that it works with general inputs and zero

mean white noise scheduling sequences. Here the proposed

algorithm is adapted for general scheduling sequences.

The paper is organized as follows. In section 2 preliminary

results are given. In section 3 the original algorithm is briefly

described. The new algorithm is formulated in sections 4 and

5. In section 6 we present some numerical simulations and

in section 7 we draw some conclusions.

II. A PRELIMINARY RESULT

In this section we state a result that is the basis for the

algorithm in [5], [6].

Lemma 1: If p(t) is a zero mean white noise sequence

and x(t) is a zero mean quasi-stationary signal independent

of p(t), then z(t) = p(t)⊗x(t), where the operator ⊗ stands

for the Kronecker product, is a second order zero mean white

noise sequence

Proof: z(t) is a zero mean second order white noise process

if IE {z(t)} = 0 and IE
{

z(t)z(t − τ)T
}

= 0.

The zero mean condition follows from both the indepen-

dence and the zero mean of p(t) and x(t). Since, from the

Kronecker product properties

IE
{

z(t)z(t − τ)T
}

=

IE
{

[p(t) ⊗ x(t)]
[

pT (t − τ) ⊗ xT (t − τ)
]}

=

IE
{[

p(t)pT (t − τ)
]

⊗
[

x(t) ⊗ xT (t − τ)
]}

,

the whiteness of z(t) arises from the independence of p(t)
and x(t), and from both the zero mean and the whiteness of

p(t).
2

III. LPV SYSTEMS WITH ZERO MEAN WHITE NOISE

SCHEDULING SEQUENCES

In this paper we consider LPV systems with affine param-

eter dependence described by

x(t + 1) = A0x(t) + Ap [p(t) ⊗ x(t)] (1)

+B0u(t) + Bp [p(t) ⊗ u(t)] + q(t)

y(t) = C0x(t) + Cp [p(t) ⊗ x(t)]

+D0u(t) + Dp [p(t) ⊗ u(t)] + r(t),

where x(t) ∈ IRn, u(t) ∈ IRm, p(t) ∈ IRs, y(t) ∈ IRℓ,

A0 ∈ IRn×n, B0 ∈ IRn×m, C0 ∈ IRℓ×n, D0 ∈ IRℓ×m and

Ap =
[

A1 A2 · · · As

]

∈ IRn×sn (2)

Bp =
[

B1 B2 · · · Bs

]

∈ IRn×sm

Cp =
[

C1 C2 · · · Cs

]

∈ IRℓ×sn

Dp =
[

D1 D2 · · · Ds

]

∈ IRℓ×sm,

with Ai ∈ IRn×n, Bi ∈ IRn×m, Ci ∈ IRℓ×n and Di ∈
IRℓ×m, i = 1, . . . , s. u(t) and p(t) are independent zero
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mean quasi-stationary signals and q(t) and r(t) are zero

mean white noise sequences independent of both u(t) and

p(t). If we define

ug0
(t) =

[

u(t)
p(t) ⊗ u(t)

]

Bg0
=

[

B0 Bp

]

Dg0
=

[

D0 Dp

]

we may write the system of equations as

x(t + 1) = A0x(t) + Bg0
ug0

(t) + (3)

+Ap [p(t) ⊗ x(t)] + q(t)

y(t) = C0x(t) + Dg0
ug0

(t) + (4)

+Cp [p(t) ⊗ x(t)] + r(t),

In [5] an LPV identification algorithm is proposed that

estimates an innovation model of the form

x(t + 1) = A0x(t) + Bg0
ug0

(t) +

Ap [p(t) ⊗ x(t)] + Ke(t)

y(t) = C0x(t) + Dg0
ug0

(t) +

Cp [p(t) ⊗ x(t)] + e(t)

from a record of input-output data. It is an iterative

process where, in the first iteration, the bilinear signals

Ap (p(t) ⊗ x(t)) and Cp (p(t) ⊗ x(t)) are seen as process

and measurement noises, respectively. As a result, the pro-

cess is modeled as a linear time invariant (LTI) system and

is identified by a deterministic-stochastic subspace identi-

fication algorithm. The state sequence is estimated by a

stationary Kalman filter which is then used to estimate the

bilinear signal p(t) ⊗ x(t). In the next iteration the LPV

system is described by the LTI model

x(t + 1) = A0x(t) + Beu
(1)
e (t) + q(1)(t) (5)

y(t) = C0x(t) + Ceu(t)e(1)(t) + r(1)(t) (6)

where

u(1)
e =

[

ug0
(t)

p(t) ⊗ x̂(0)(t)

]

(7)

q(1)(t) = Ap

[

p(t) ⊗ x̃(0)(t)
]

+ q(t) (8)

r(1)(t) = Cp

[

p(t) ⊗ x̃(0)(t)
]

+ r(t) (9)

and

Be =
[

Bg0
Ap

]

(10)

De =
[

Bg0
Cp

]

(11)

Here x̂(0)(t) and x̃(0)(t) denote the state and state error

estimate, while q(t) and r(t) stand for the process and mea-

surement noises, respectively. This model is also estimated

by the previously referred deterministic-stochastic subspace

identification algorithm, and the process is repeated until

convergence. If p(t) is a zero mean white noise sequence in-

dependent of u(t) then, from lemma 1, the signals p(t)⊗x(t)
and p(t) ⊗ x̃(i)(t), i = 0, 1, . . . are second order zero mean

white noise sequences. Under this condition the algorithm

converges if, for all iterations, the estimated models fulfil

the stationary condition [5]

ρ



A
(i)
0 ⊗ A

(i)
0 + (Rp)jk

s
∑

j=1

s
∑

k=1

A
(i)
k ⊗ A

(i)
j



 < 1

(12)

where ρ(M) is the matrix spectral radius of M and (Rp)jk

is the jkth entry of the matrix

Rp = lim
N→∞

1

N

N−1
∑

t=0

u(t)uT (t)

IV. LPV SYSTEMS WITH GENERAL SCHEDULING

SEQUENCES

Unfortunately we do not have the freedom to choose the

scheduling sequence p(t). Most of the times it is imposed by

the process itself and is typically a non white noise signal.

When this happens the term p(t) ⊗ x(t) is not white noise

anymore. As a result, the initial linear model is disturbed

by colored noise correlated with both ug0
(t) and x(t).

Therefore, the algorithm identifies a biased model during

the first iteration. In the worst case scenario, some noise

components can surpass some state components in the SVD

(Singular Value Decomposition) step of the subspace identi-

fication algorithm, preventing convergence. To see when this

happens, let us decompose the sate vector in the following

way

x(t) = x1(t) + x2(t) + x3(t)

where

x1(t + 1) = A0x1(t) + B0u(t) + Ap [p(t) ⊗ x1(t)]

x2(t + 1) = A0x2(t) + Bp [p(t) ⊗ u(t)] +

Ap [p(t) ⊗ x2(t)]

x3(t + 1) = A0x3(t) + Ap [p(t) ⊗ x3(t)] + q(t).

Since u(t) is independent of both p(t) and x3(t), then

IE
{

u(t)
[

p(t) ⊗ xT
3 (t)

]}

= 0m×sn

IE
{

[p(t) ⊗ u(t)]
[

pT (t) ⊗ xT
3 (t)

]}

= 0sm×sn

and from the Kronecker product properties

IE
{

u(t)
[

pT (t) ⊗ xT (t)
]}

= (13)

IE
{[

u(t)pT (t)
]

⊗ xT
1 (t)

}

+ IE
{[

u(t)pT (t)
]

⊗ xT
2 (t)

}

IE
{

[p(t) ⊗ u(t)]
[

pT (t) ⊗ xT (t)
]}

= (14)

IE
{[

p(t)pT (t)
] [

u(t)xT
1 (t)

]}

+

IE
{[

p(t)pT (t)
] [

u(t)xT
2 (t)

]}

Now, we can state the following lemma.

Lemma 2: If u(t) is a zero mean white noise se-

quence and if x(t) is a stationary signal, then the bi-

linear signal p(t) ⊗ x(t) is uncorrelated with ugo
(t) =

[

uT (t) pT (t) ⊗ uT (t)
]T

.
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Proof: If u(t) is a zero mean white noise sequence indepen-

dent of p(t), then it is also independent of both x1(t) and

x2(t). Consequently,

IE
{[

u(t)pT (t)
]

⊗ xT
1 (t)

}

= 0m×sn

IE
{[

p(t)pT (t)
] [

u(t)xT
1 (t)

]}

= 0sm×sn

IE
{[

u(t)pT (t)
]

⊗ xT
2 (t)

}

= 0m×sn

IE
{[

p(t)pT (t)
] [

u(t)xT
2 (t)

]}

= 0sm×sn,

and from (13) and (14) it follows that

IE
{

ug0
(t)

[

pT (t) ⊗ xT (t)
]}

= 0(s+1)m×sn

and this completes the proof.

2.

From this lemma, we can see that for a zero mean white

noise input sequence, the signal p(t) ⊗ x(t) behaves like

an independent colored noise source. The projection onto

the input and past output space performed by the subspace

identification algorithm will remove most of this noise,

retaining only its components that are correlated with x(t).
Hence, it is not likely that this noise surpasses the state

components, but it will introduce a bias into the A0 matrix

estimate. If u(t) is a non white noise sequence, a non zero

correlation appears between p(t) ⊗ x(t) and ug0
(t). This

correlation will increase the amount of noise and cannot

be removed by the subspace identification algorithm. If this

is too high, the algorithm may not be able to distinguish

the state vector from the noise and it will not succeed in

estimating a useful model. From this we can see that zero

mean white noise sequences are the optimal input signals for

this algorithm, while periodic sequences are the worst. This

is not a severe limitation in practice because most of the

times we have the freedom to choose u(t). However, there

are still frequent occasions where this freedom does not exist.

In the sequel we propose a change to the first iteration of

the algorithm that reduces the colored noise thus improving

the overall algorithm performance.

Let us write the bilinear term as

p(t) ⊗ x(t) = p(t) ⊗ [A0x(t − 1) + Bg0
ug0

(t − 1)+

Ap [p(t − 1) ⊗ x(t − 1)] + q(t − 1)] .

If we now define

ug1
(t) =

[

ug0
(t)

p(t) ⊗ ug0
(t − 1)

]

(15)

p1(t) =

[

p(t)
p(t) ⊗ p(t − 1)

]

(16)

q1(t) =
[

In Ap

]

[

q(t)
p(t) ⊗ q(t − 1)

]

(17)

r1(t) =
[

Iℓ Dp

]

[

r(t)
p(t) ⊗ q(t − 1)

]

(18)

and

Ap1
= Ap

[

(Is ⊗ A0) (Is ⊗ Ap)
]

(19)

Bg1
=

[

Bg0
Ap (Is ⊗ Bg0

)
]

(20)

Cp1
= Cp

[

(Is ⊗ A0) (Is ⊗ Ap)
]

(21)

Dg1
=

[

Dg0
Cp (Is ⊗ Bg0

)
]

, (22)

we can rewrite the system equations as

x(t + 1) = A0x(t) + Bg1
ug1

(t) + (23)

Ap1
[p1(t) ⊗ x(t − 1)] + q1(t)

y(t) = C0x(t) + Dg1
ug1

(t) + (24)

Dp1
[p1(t) ⊗ x(t − 1)] + r1(t)

Although these equations seem similar to (3)-(4) there is a

fundamental difference consisting on the fact that q1(t) and

r1(t) are dependent of x(t) (via p(t) and q(t − 1)). The

correlation between x(t) and q1(t) is given by

IE
{

x(t)qT
1 (t)

}

= IE
{

Ax(t − 1)qT
1 (t)

}

+

IE
{

Bg0
ug0

(t − 1)qT
1 (t)

}

+

IE
{

Ap [p(t − 1) ⊗ x(t − 1)] qT
1 (t)

}

+

IE
{

q(t − 1)qT
1 (t)

}

The first three terms are zero because q(t) and q(t − 1) are

independent of x(t− 1), u(t− 1) and p(t− 1). On the other

hand

IE
{

q(t − 1)qT
1 (t)

}

=

IE

{

[

q(t)qT (t − 1)
[p(t) ⊗ q(t − 1)] q(t − 1)T

]T
}

[

In

AT
p

]

= 0n×n

because q(t − 1) is independent of both q(t) and p(t)
and these are zero mean signals. As a result x(t) is un-

correlated with q1(t). If we identify the LPV system by

the model (23)-(24) (considering Ap1
[p1(t) ⊗ x(t − 1)] and

Cp1
[p1(t) ⊗ x(t − 1)] as noise), the estimated model will

only exhibit a bias due to the colored noise terms propor-

tional to p1(t)⊗x(t−1). However we will get a better model

than the one identified from (3)-(4) because the colored noise

is smaller. If we keep developing this noise term until a lag

d we will arrive at the following model

x(t + 1) = A0x(t) + Bgd
ugd

(t) + (25)

Apd
[pd(t) ⊗ x(t − d)] + qd(t)

y(t) = C0x(t) + Dgd
ugd

(t) + (26)

Cpd
[pd(t) ⊗ x(t − d)] + rd(t)

where, for k = 1, . . . , d,

ugk
(t) =

[

ugk−1
(t)

pk−1(t) ⊗ ug0
(t − k)

]

(27)

pk(t) =

[

pk−1(t)
pk−1(t) ⊗ p(t − k)

]

(28)

qk(t) =
[

In Apk−1

]

[

qk−1(t)
pk−1(t) ⊗ q(t − k)

]

(29)

rk(t) =
[

Iℓ Dpk−1

]

[

rk−1(t)
pk−1(t) ⊗ q(t − k)

]

(30)

and

Apk
= Apk−1

[ (

Isk−1
⊗ A0

) (

Isk−1
⊗ Ap

) ]

(31)

Bgk
=

[

Bgk−1
Apk−1

(

Isk−1
⊗ Bg0

) ]

(32)

Cpk
= Cpk−1

[ (

Isk−1
⊗ A0

) (

Isk−1
⊗ Ap

) ]

(33)

Dpk
=

[

Dgk−1
Cpk−1

(

Isk−1
⊗ Bg0

) ]

(34)
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with sk being the pk(t) dimension. If both A0 and Ap

have a spectral radius less than unity, then the noise term

pd ⊗ x(t − d) vanishes for a sufficiently high lag. Although

the similarities with a linear model, we can never obtain

unbiased estimates of it because qd(t) and rd(t) are non

white noise sequences anymore. Hopefully, the terms that

make them colored noise sequences are attenuated by the

powers of Ap. As a result we can expect a small bias. The

development of the noise term is an attractive approach but it

is limited in practice by the curse of dimensionality problem.

In fact, the matrices dimensions grow exponentially with the

lag d. Typically we can only go up to a lag of 1 or 2.

Consequently, the estimated model will be affected by the

amount of the colored noise term and it must be refined

by the iterative process of the previous section. In the first

iteration the system is identified by the model

x(t + 1) = A0x(t) + Bgd
ugd

(t) + q
(0)
d (t) (35)

y(t) = C0x(t) + Dgd
ugd

(t) + r
(0)
d (t) (36)

where

q
(0)
d (t) = Apd

[pd(t) ⊗ x(t − d)] + qd(t) (37)

r
(0)
d (t) = Dpd

[pd(t) ⊗ x(t − d)] + rd(t) (38)

V. SUCCESSIVE APPROXIMATIONS

The identification algorithm estimates the parameters of a

state estimator of (35)-(36) given by

x̂(0)(t + 1) = A0x̂
(0)(t) + Bgd

ugd
(t) (39)

+K(0)
[

y(t) − C0x̂
(0)(t) − Dgd

ugd
(t)

]

.

If p(t) is a zero mean white noise sequence, the noise terms

qd(t) and rd(t) are second-order zero mean white noise

sequences, and this is a Kalman filter of x(t) in the sense that

K(0) minimizes the state error covariances, assuming that

qd(t) and rd(t) are unknown signals. For general scheduling

sequences, this optimally is lost due to the non-whiteness

of both qd(t) and rd(t). However, if the pairs (A0, B0)
and (C0, A0) are stabilizable and detectable, respectively,

the state estimator can produce reasonable estimates of x(t),
that can in turn be used to approximate the bilinear signal

p(t) ⊗ x(t). In the sequel, for the sake of convenience, we

will refer to this and other state estimators as Kalman filters.

Let us now write the system equations (3)-(4) as

x(t + 1) = A0x(t) + Bg0
ug0

(t) + q(t)

Ap

[

p(t) ⊗ x̂(0)(t)
]

+ Ap

[

p(t) ⊗ x̃(0)(t)
]

y(t) = C0x(t) + Dg0
ug0

(t) + r(t)

Cp

[

p(t) ⊗ x̂(0)(t)
]

+ Cp

[

p(t) ⊗ x̃(0)(t)
]

where x̃(0)(t) = x(t)− x̃(0)(t) is the state estimate error also

given by

x̃(0)(t + 1) = A0x̃
(0)(t) + q

(0)
d (t)−

K(0)
[

y(t) − C0x̂
(0)(t) − Dgd

ugd
(t)

]

Since we know x̂(0)(t), we can consider p(t)⊗ x̂(0)(t) as an

additional input and the unknown terms Ap

[

p(t) ⊗ x̃(0)(t)
]

and Cp

[

p(t) ⊗ x̃(0)(t)
]

as process and measurement noises,

respectively. This will lead us to the LTI model (5)-(11)

which will be identified in the next iteration. At iteration

i, the algorithm identifies the LTI system

x(t + 1) = A0x(t) + Beu
(i)
e (t) + q(i)(t) (40)

y(t) = C0x(t) + Ceu(t)e(i)(t) + r(i)(t) (41)

where

u(i)
e =

[

ug0
(t)

p(t) ⊗ x̂(i−1)(t)

]

(42)

q(i)(t) = Ap

[

p(t) ⊗ x̃(i−1)(t)
]

+ q(t) (43)

r(i)(t) = Cp

[

p(t) ⊗ x̃(i−1)(t)
]

+ r(t) (44)

and x̂(i−1)(t) and x̃(i−1)(t) are the Kalman filter state and

error estimates of the previous iteration. The algorithm can

be summarized in the following steps:

Algorithm 1: Successive Approximations.

• Inputs

– Input-output data record: u(t), p(t) and y(t), t =
1, . . . , N .

– u, p and y dimensions: m, s and ℓ.

– System order: n.

– Subspace algorithm prediction horizon: j

– number of past data lags: d

• Step 1: Initialization

– Build ugd
(t) using (27) for k = 1, . . . , d.

– Identify the state-space LTI model (35)-(36) with

a deterministic-stochastic subspace identification

algorithm.

– set i = 1

• Step 2: Successive Approximations

Repeat (a)-(d) until convergence

(a) Estimate the Kalman filter estimates x̂(i−1)(t)
for t = 1, ..., N using the Kalman filter identi-

fied in the previous iteration

(b) Compute

u(i)
e (t) =

[

ug0
(t)

p(t) ⊗ x̂(i−1)(t)

]

for t = 1, . . . , n.

(c) Identify the state-space LTI model (40)-(41)

with a deterministic-stochastic subspace iden-

tification algorithm.

(d) set i = i + 1

• Step 3: Parameter extraction

– B0 = Be(:, 1 : m), Bp = Be(:,m + 1 : m + ms),
D0 = De(:, 1 : m), Dp = De(:, m + 1 : m + ms)
Ap = Be(:,m+ms+1 : m+ms+ns), Cp = Be(:
,m+ms+1 : m+ms+ns), (A0 and C0 are directly

given by the subspace identification algorithm).

2
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The convergence of this algorithm is closely related

to the stationarity of the state sequence. If
∥

∥IE
{

x(t)xT (t)
}∥

∥

2
< C, (45)

where C is a positive finite constant, does not hold, the

algorithm does not converge. This is a stability condition

for LPV system that depends on the autocorrelation of the

scheduling sequence p(t). When p(t) is a zero mean white

noise sequence, this condition is equivalent to (12) (see [6],

[7] for a detailed analysis). It turns out to be more restrictive

when p(t) is a general sequence because the state covariance

becomes dependent on the high order cumulants of p(t).
Since the LPV system stability is ensured when the spectral

radius of A0 + p1(t)A1 + · · · + ps(t)As is within the unit

circle for every t. Thus

max |λ [A0 + p1(t)A1 + · · · + ps(t)As]| < 1 (46)

is a sufficient condition for convergence. However, this is too

strong a condition because the stationarity of x(t) allows the

LPV system to become temporally unstable.

The algorithm can enter a state of limitless convergence, al-

ternating between stable and unstable models, forming thus a

precision barrier. To handle this situation the algorithm limits

the number of iterations. When this number is exceeded it

picks the model with the smallest prediction error variance.

VI. NUMERICAL EXAMPLE

In order to test the algorithm three sets of 100 Monte-

Carlo simulations were performed using the following LPV

system

A0 =

[

0 1
−0.1 0.7

]

, Ap =

[

0 0
0.4276 −0.51

]

,

B0 =

[

1
0.50

]

, Bp =

[

1.073
1.075

]

,

C0 =
[

0.443 0.06
]

, Cp =
[

0 0
]

,

D = 0.5, Dp = 0.

We performed these simulations in an attempt to approximate

the algorithm worst scenario. Hence, we used the sinusoidal

scheduling sequence p(t) = 0.5 sin
(

2π
100 t

)

and the input

signal u(t) = p(t)+w(t) where w(t) is a white noise binary

sequence with an amplitude of 0.5 (see Figure 1). This way,
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time

u
(t

)

Fig. 1. Input signal.

we ensured a significant correlation between u(t) and p(t).

We used a record data length of 500 in each simulation.

The first set was without noise and the others were with

output white noise with SNR values of 30 dB and 20 dB.

The corresponding output noise standard deviations were

0.021 and 0.066, respectively. In the noiseless simulations the

algorithm always converged to the true model with a number

of iterations between 7 and 14 (see the iterations histogram

in Figure 2). This was not the case for experiments with
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Fig. 2. Histogram of the number of iteration in the noiseless simulations
experiments.

noise. From the histograms depicted in Figures 3 and 4 for

the experiments with SNRs of 30 dB and 20 dB, respectively,
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Fig. 3. Histogram of the number of iteration in the SNR=30 dB
experiments.

we can see that the algorithm reached the upper limit number

of 100 iterations in about 27 % of the 30 dB and 60 %
of the 20 dB SNR experiments. Figures 5 and 6 show the

percentage prediction error histograms. We can see that in

more than 90 % of the experiments the error remained close

to its theoretical value which is about 3 % and 10 % for the

experiments with SNR= 30 dB and SNR= 20 dB, in that

order. This is an evidence that the algorithm at least weekly

converged in almost cases. This may be confirmed by the A0

and Ap eigenvalues scatter plots, where it is evident that, in

most cases, the algorithm produced acceptable estimates, in

particular for the A0 matrix. We also tried several lag values

but there was no significant differences. Thus, in order to

improve the convergence we have to improve the accuracy of

the estimated models in the different iterations by removing

the correlation between the noise and the state vector. This

will be a topic of future research work.
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VII. CONCLUSIONS

In this paper we analyzed the performance of an LPV

system identification algorithm for general scheduling se-

quences. This algorithm was designed for zero mean white

noise sequences. It is concluded that its behaviour depends

on the input sequence itself and it ranges from acting as an

independent colored noise source, mostly removed by the

identification algorithm, down to a highly input correlated

signal that may be incorrectly assumed as being part of the

system subspace. Based on the premise that the algorithm

performance can be improved by the noise energy reduction,

the bilinear term was expressed as a function of past inputs,

scheduling parameters, and states, and the linear terms were

included in a new extended input. The algorithm was tested

with Monte Carlo simulations that mimicked the worst case

scenario. The results show that these changes did not bring

any significant improvement to the algorithm’s performance.

But they also show that it is a viable alternative for LPV

systems identification. In future research work we will try to

remove the correlation between the noise and the state vector

in order to improve the algorithm’s convergence properties.
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