
  

  

Abstract— This paper proposes dilated LMI 
characterizations of admissibility, D-admissibility, H∞ and H2 
norms for continuous-time descriptor systems. These dilated 
LMIs achieve less conservative results when dealing with 
robust admissibility/performance analysis of affine parameter-
dependent descriptor systems. Furthermore, based on these 
conditions, the paper presents an iterative design procedure for 
multiobjective state feedback control of parameter dependent 
descriptor systems. The main idea underlying the proposed 
method is to linearize the products of controller parameter K  
and the auxiliary variable G  by assigning a part of G . When 
initializing the proposed algorithm, the assignment takes into 
account an explicit characterization of G . The effectiveness of 
the proposed conditions and design method is shown through 
some numerical examples. 

I. INTRODUCTION 
HE descriptor framework is very attractive for system 

modeling, as pointed out in [1], since it encompasses a 
wide class of systems. Descriptor models can preserve 
physical parameters in the coefficient matrices, and describe 
the dynamic part, static part, and even improper part of the 
system. Standard LMI characterizations for admissibility, D-
admissibility (i.e. regularity, impulse immunity and all finite 
eigenvalues located in a prescribed convex region denoted 
by D), H∞ and H2 norms for descriptor systems are 
established in [2]~[10] (and references therein). 

On the other hand, in the state-space case, the dilated (or 
extended) LMI characterizations enable us to use parameter-
dependent Lyapunov functions for robust system analysis 
and synthesis ([11]~[16]) and independent Lyapunov 
functions for multiobjective control synthesis problems 
([17]~[19]). 

The first objective of this paper is to propose dilated LMI 
characterizations for continuous-time descriptor systems 
properties, such as admissibility, D-admissibility, H∞ and H2 
norms. These conditions encompasses the dilated LMI 
characterizations in the state-space case. The connections 
with these results are given in this paper. Furthermore, we 
consider robust admissibility/performance analysis of a class 
of parameter-dependent descriptor systems whose 
coefficient matrices are affine functions of a parameter 
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vector. Note that this class of descriptor systems is fairly 
general since it contains the class of state-space parameter-
dependent models whose coefficient matrices are rational 
functions of a parameter vector (see for example [20]).   

The second objective of this paper is to propose an 
iterative design method for multiobjective state feedback 
control of parameter-dependent descriptor systems. When 
using standard LMI characterizations for solving such 
problem, not only a common Lyapunov variable is enforced 
to convexify the synthesis problem but also only a constant 
Lyapunov variable is employed (otherwise gridding 
techniques of the parameter range are required). These 
restrictions inherently brings conservatism into the design. 
On the contrary, when using the dilated LMI conditions 
introduced in this paper, it is possible to achieve less 
conservative results since we can employ non-common 
parameter-dependent Lyapunov variables for each design 
specification. Nevertheless, in the second approach the 
products of the controller parameter K  and the multipliers 
G  have to be linearized. Thus, the key point of the 
procedure proposed in this paper, is to assign a part of G . In 
the initialization step, this assignment takes into account an 
explicit characterization of G  in the descriptor case.  

II. PRELIMINARIES 

A. Basic facts on descriptor systems 

Let us consider a descriptor system given by: 

 
Ex Ax Bw

z Cx

 = + =

�
 (1) 

where nx ∈ \  is the descriptor variable, qw ∈ \  is the 
disturbance and pz ∈ \  is the controlled output. It is known 
that systems having direct transmission path from w  to z  
can be transformed to (1) by augmenting the descriptor 
variable as pointed out in [1]. The matrix n nE ×∈ \  may be 
singular and we denote its rank by ( )rank E r n= ≤ . If 

( )det 0sE A− ≠  for some complex number s , then system 
(1) is said to be regular. A regular system of the form (1) is 
said to be impulse-free if: 
 deg(det( - ))  ( )sE A rank E=  

Definition 1: [1] System (1) is admissible if it is regular and 
has neither impulsive modes nor unstable finite modes. 
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Definition 2: [1] A regular descriptor system of the form (1) 
is finite dynamics stabilizable if there exists K  such that 
( ),E A BK+  is admissible. 

B. Standard LMI characterizations of admissibility, D-
admissibility, H2 and H∞ norms 

As defined above, the admissibility analysis of descriptor 
system (1) can be reduced to an LMI feasibility problem [3]. 
Let ( )

0
n n rE × −∈ \  be any matrix of full-column rank such 

that 0 0EE = . 

Lemma 1: [3] System (1) is admissible if and only if there 
exist matrices 0, n nP P ×> ∈ \  and ( )n r nQ − ×∈ \  such that: 
 ( ){ }0 0THe A PE E Q+ <  (2) 

Most of the simple regions of the complex plane for pole 
location that are useful in control application can be 
characterized in terms of LMI regions defined below.  
Definition 3: A subset D of the complex plane is called an 
LMI region if there exist a symmetric matrix 1

d dR ×∈ \  and 
a matrix 2

d dR ×∈ \  such that 

 { }1 2 2: 0TD z R R z R z= ∈ + + <^  (3) 

Definition 4: System (1) is D-admissible if it is regular, 
impulse free and its finite poles lie in D.  
The following lemma recalls a necessary and sufficient 
condition for a system of the form (1) to be D-admissible.      
Lemma 2:[6]System (1) is D-admissible if and only if there 
exist matrices 0, n nP P ×> ∈ \  and ( )n r nQ − ×∈ \  satisfying: 

{ } { }( )1 2 0 0T TR EPE He R APE He AE Q⊗ + ⊗ +Λ ⊗ <  (4) 

Lemma 3:  [11] For a given positive number γ∞ , the system 
(1) is admissible and   
 ( ) 1C sE A B γ−

∞∞
− <  (5)

holds if and only if there exist matrices 0, n nP P ×> ∈ \  
and ( )n r nQ − ×∈ \  such that: 

 ( ){ } ( )0 0

2
0

TT T T THe A PE E Q BB PE E Q C

Iγ∞

 + + +  < 
 • −  

 (6) 

In order to ensure finiteness of the H2 norm of system (1), 
we assume that the following condition holds ([2], [21]) 
 KerC KerE⊇  (7) 

Lemma 4: [2] For a given positive number 2γ , the 
descriptor system (1) with (7) is admissible and
 ( ) 1

22
C sE A B γ−− <  (8)

holds if and only if there exist matrices 0, n nP P ×> ∈ \  
and ( )n r nQ − ×∈ \  such that: 

 ( ){ }
{ }

0

2
2

0T T

T

He A PE E Q BB

trace CPC γ

+ + <

<
 (9) 

Other strict and non strict LMI versions of these lemmas 
exist in the literature (see, for instance, [7]).     

III. DILATED LMI CHARACTERIZATIONS 

Theorem 1: The descriptor system given by (1) is 
admissible if and only if there exist matrices 

1 10, n nP P ×> ∈ \ , ( )
1

n r nQ − ×∈ \ , ( )
2

n r nQ − ×∈ \ , 1
n nG ×∈ \  

and 2
n nG ×∈ \  such that: 

 
( )

{ }
1 0 1

1 2

0 2

0
0

TT APE E Q
He G G

IHe E Q

     +       + <        − •         

 (10) 

 
Proof: System (1), with 0w = , is equivalent to the system 
given by  

 
0 0

,
0 0

n
x xE A

I I
ζζζ

           = ∈      −            

�
\�  (11) 

According to Lemma 1, descriptor system  (11) is admissible 
if and only if there exist matrices 2 20, n nP P ×> ∈ \  and 

( )2 2n r nQ − ×∈ \  such that (2) holds. Let us partition matrices 
P  and Q  such as:  

1 2 2

2 3

n n
P

P
P P

×
 •
 = ∈ 
  

\ , 1 10, n nP P ×> ∈ \   

and ( ) ( )1 2 2 2

3 4

n r n
Q Q

Q
Q Q

− ×
 
 = ∈ 
  

\ , ( )
1

n r nQ − ×∈ \  (12) 

(2) leads then to the following inequality  

 1 0 1 2

2 3 3 4

00 0
0

00 0

TP E Q QA E
He

P P I Q QI I

           •             + <            −                       

(13) 

By denoting, 2 3 1
TP E Q G+ =  and 4 2Q G=  it is easy to 

see that (13) is equivalent to the LMI (10). □ 
Remark 1:  The result of Theorem 1 covers those appeared 
in the literature for admissibility of descriptor systems. In 
fact, by Theorem 1, ( ),E A  is admissible if and only if LMI 

(10) holds. Pre- and post-multiplying LMI (10) by I A 
    

and 
T

I A 
    respectively leads to  

 ( ){ } { }( )1 0 1 0 2 0T THe A PE E Q A He E Q A+ + <  (14) 

By denoting  ( )( )1 0 1 2

TT TX PE E Q Q A= + +   (15) 

(14) means that there exists matrix X  such that 
0T TAX XA+ <  and 0T TXE EX= ≥ . This is exactly 

the non strict LMI condition obtained in [7].  
The result obtained for admissibility in Theorem 1 can be 
extended to the case of D-admissibility where the LMI 
region D is defined by (3).  
Theorem 2: The descriptor system given by (1) is D-
admissible if and only if there exist matrices 

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB11.4

4802



  

1 10, n nP P ×> ∈ \ , ( )
1

n r nQ − ×∈ \ , ( )
2

n r nQ − ×∈ \ , 

1
n nG ×∈ \ , 2

n nG ×∈ \  and 2
n nP ×∈ \  such that: 

1

1 2 2
1

1 2
0 1 0 2

0 00
0

0 0 0

0 0
0

T

T
T

AE PE
R He R P E

IPE

A
He G G

E Q E Q I

                 ⊗ + ⊗ + +          −              
          Λ ⊗ + <        −        

 (16)  

Proof: Follow the same lines as for Theorem 1.  
 
Remark 2:  The result on D-stability of state-space systems 
can be derived from Theorem 1 when considering E I=  
and 0 0E = . 

Theorem 3: For a given positive number γ∞ , the system (1) 
is admissible and 

 ( ) 1C sE A B γ−
∞∞

− <  (17) 

holds if and only if there exist matrices 1 10, n nP P ×> ∈ \ , 
( )

1
n r nQ − ×∈ \ , ( )

2
n r nQ − ×∈ \ , 1

n nG ×∈ \  and 2
n nG ×∈ \  

such that: 

{ }0 2 1 2

2

0

0 00
0

0 0 0 0 00

00 0 0

A B

He E Q G GI
He

I II

CI

φ

γ

• • •                • • −         + <      • −              −          

 (18) 

where 1 0 1
TPE E Qφ = + . 

Remark 3:  The above condition covers the condition stated 
in [17] for state-space systems. However, the last condition 
has an advantage due to the structure of the matrix 

 1 2 0 0

0 0 0

TT TG G

I

 
 
 
  

   

which is not the case when using Finsler’s lemma in the 
state-space case. Thus, in the case when E I= , that is, the 
descriptor system (1) reduces to a state-space system, the 
condition (18) can be more effective from the viewpoint of 
computational complexity.  
Theorem 4: For a given positive number 2γ , the system (1) 
with (7) is admissible and  

 ( ) 1
22

C sE A B γ−− <  (19) 

holds if and only if there exist matrices 1 10, n nP P ×> ∈ \ , 
( )

1
n r nQ − ×∈ \ , ( )

2
n r nQ − ×∈ \ , 1

n nG ×∈ \ , 2
n nG ×∈ \  and 

p pZ ×∈ \  such that: 

{ }
1 2

0 2

0
0

0 0
0 0

0 0 0

A B
G G

He E Q He I
I

I I

φ

     • •             • + − <                 −         

 (20) 

 0
Z CP

P

 
  > •  

, ( ) 2
2trace Z γ<  (21) 

where 1 0 1
TPE E Qφ = + . 

IV. ROBUST ADMISSIBILITY/PERFORMANCE ANALYSIS 

A. Parameter dependent-descriptor systems 

In this section, we consider a parameter-dependant 
descriptor system whose coefficient matrices are affine 
functions of a time-invariant uncertain parameter vector 

1

T

lθ θ θ =   " : 

 ( )Ex A x Bw

z Cx

θ = + =

�
, nx ∈ \  (22) 

where 
1...

,i i i i l
θ θ θ

=
 ∈    . θ  is supposed to belong to the 

hyper-rectangle: ( ) { }{ }1 2
, , \l i i iω ω ω θ θΞ = ∈…  (23) 

The matrix n nE ×∈ \  may be singular and we denote its 
rank by ( )rank E r n= ≤  independently of θ .  
This class of systems is fairly general since parameter-
dependent descriptor systems with matrices E , B  and C  
depending affinely on θ  can be represented by (22). In fact, 
for example, the parameter-dependent system:  

 
[ ]

1 2 11 1

22 1

1,2
1

1
2

1 2 12 0

0 0 12
,  1,1

3 0

i i

x x
wxx

x
z x

θθ θ

θ
θ

θ
=

     + + −          = +          −               ∈ −      = −         

�

�  

can be rewritten as:  

 1
12

2 21

11 1

212

3
3

1 2 1 0 1 02 0 1 0 0

0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1

x x
x x

θ

θ
ζζ θ
ζθζ
ζζ

   + −               −            −   =            −                        

�

�

�

�

�
[ ] 1,2

1

2

1

2

3

0

1

0

0

1
,  1,1

3 0 1 0 0

i i

w

x

x

z

θ

ζ

ζ

ζ

=

                  +                 −        ∈ −              = −                         

 

Furthermore, note that state-space models whose coefficient 
matrices are rational functions of the parameter vector θ  
can also be represented by (22). For example, the state-space 

model given by: [ ]

2
1 2

1 1

1,21 22

2

1 2

,  1,1
1

2
i i

x x

xx

θ θ

θθ
θ

=

 +        = ∈ − −            +  

�

�
 

can be rewritten as: 

 
[ ]

1 1 2 1

2 21

1,2
11 2

222

1 0 2 01 0 0 0

0 1 0 0 1 0 0
,  1,1

0 0 0 0 0 1 0

0 0 0 0 0 1 0 2

i i

x x

x x

θ θ

θ
θζζ θ

ζθζ

=

   +                 −         = ∈ −       −                    − +            

�

�

�

�

 

B. Dilated LMI conditions for robust admissibility and 
H∞ performance analysis  

Corollary 1: The descriptor system (22) is robustly 
admissible if there exist matrices 1 10,i i n nP P ×> ∈ \ , 

( )
1
i n r nQ − ×∈ \ , ( )

2
i n r nQ − ×∈ \ , 1

n nG ×∈ \  and 2
n nG ×∈ \  

such that: { }1, , 2li∀ ∈ "  
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 ( )
{ }

( )1 0 1

1 2

0 2

0
0

Ti T i
i

i

AP E E Q
He G G

IHe E Q

ω     +      + <        − •         

 (24) 

The following corollary assesses the robust H∞ performance 
analysis of system (22).  
Corollary 2: For a given positive number γ∞ , the system 
(22) is robustly admissible and  

 ( )( ) 1
C sE A Bθ γ−

∞
∞

− <  (25) 

holds for all θ ∈ Ξ , if there exist matrices 

1 10,i i n nP P ×> ∈ \ , ( )
1
i n r nQ − ×∈ \ , ( )

2
i n r nQ − ×∈ \ , 

1
n nG ×∈ \  and 2

n nG ×∈ \  such that: { }1, , 2li∀ ∈ "  

 { } 1 20 2

2

0

0 00
0

0 0 000 0

00 0 0

i i

i
i

i

A B

G GIHe E Q
He

III

CI

φ

γ

• • •                −• •          + <      −•               −          

 (26) 

where 1 0 1
i i

i P E E Qφ = + . 

Corollary 3: For a given positive number 2γ , the system 
(22) is robustly admissible and 

 ( )( ) 1

2
2

C sE A Bθ γ−
− <  (27) 

holds for all θ ∈ Ξ , if there exist matrices 

1 10,i i n nP P ×> ∈ \ , ( )
1
i n r nQ − ×∈ \ , ( )

2
i n r nQ − ×∈ \ , 

1
n nG ×∈ \  and 2

n nG ×∈ \  such that: { }1, , 2li∀ ∈ "  

 
{ }

( )
1 2

0 2

0
0

0 0
0 0

0 0 0

i

i
i

A B
G G

He E Q He I
I

I I

ω

φ

     • •             • + − <                 −         

 (28) 

 1

1

0

i

i

Z CP

P

 
  > •  

, ( ) 2
2trace Z γ<  

where 1 0 1
i i

i P E E Qφ = + . 
In the same manner we can present a corollary to Theorem 2 
associated to the parameter-dependent descriptor system 
(22).  

V. ITERATIVE DESIGN FOR MULTIOBJECTIVE STATE-
FEEDBACK CONTROL OF PARAMETER-DEPENDENT 

DESCRIPTOR SYSTEMS  

A. An iterative design procedure 

Let us consider the following parameter-dependent 
descriptor system described by:  

 
( ) 2 2

2 2 2 ,

Ex A x B w B w Bu

z C w

z C w

θ

θ
∞ ∞

∞ ∞ ∞

 = + + + = ∈ Ξ =

�
 (29) 

where Ξ  is introduced by (23). 
Assumption (7) is supposed to be verified and we suppose 
also that system (29) is finite dynamics stabilizable for all 
θ ∈ Ξ  (see Definition 2).  

Since θ  is in a compact and connected region, we can take 
{ } [ ]1, , : 1,1ii l θ∀ ∈ ∈ −…  without loss of generality. We 

denote, in the sequel, ( )0 0A A=  and, for regular systems 
(29), we denote 2 ,T Tθ θ

∞  the transfer functions from 2w  to 2z  
and from w∞  to z∞ .  
Assume γ∞  is a given positive scalar. Then the problem is 
to find a state feedback ( )u K xθ= , depending affinely on 

θ , which minimizes 2 2 2
T θγ =  under T θ γ∞ ∞∞

< . This 

problem can be formulated using dilated LMI conditions as 
below. 
Problem 1: Find symmetric matrices Z , 2 0iP > , 0iP∞ > , 
and matrices 12

iQ , 22
iQ , 1

iQ ∞ , 2
iQ ∞ , 12G , 22G , 1G ∞ , 2G ∞  

solution of the following optimization problem:  
Minimize 2γ  
Subject to ( )2

2 trace Zγ ≥  

 { }

( ) ( )

2 0 12 0 22

2
12 22

0

0 0

0
0 0

0 0
0

i T i i

i i

P E E Q He E Q

I

A BK B
G G

He I
I

I

ω ω

 • • 
 

+ • + 
 
 
  

   +        − <           −     

 (30) 
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 (31) 
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0

i T i i
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P E E Q He E Q

I

I

A BK B

G GI
He
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C

γ

ω ω

∞ ∞ ∞

∞

∞

∞ ∞

∞

• • • 
 
 + • • 
  +
 • 
 −   

   +        −       <    −               

 (32) 

 0iP∞ >  (33) 

Note that a pole-clustering constraint can be taken into 
account at this step but is not considered here for brevity 
reasons.  
Theorem 5: For any arbitrary prescribed positive number 

0β > , a regular descriptor system given by (1) is 
admissible if and only if there exist matrices 

1 10, n nP P ×> ∈ \ , ( )
1

n r nQ − ×∈ \ , ( )
2

n r nQ − ×∈ \  and 

1
n nG ×∈ \  such that: 

 ( )
{ }

( )
1 0 1

1

0 2

0
0

TT
T

APE E Q
He G I NM

IHe E Q
β

     +       + <        − •         

 (34)  

where ( ),N M  is a Kronecker-Weierstrass transformation 
couple of ( ),E A .  

Remark 4:  The condition (34) obviously covers the 
condition stated in [18] for state-space systems. Indeed, in 
that case we have N M I= = , 0 0E = .  
Condition (34) is used in the initialization step of the 
iterative design procedure proposed next for solving 
Problem 1.  
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Algorithm1: Fix 0β >  and 0β∞ > . Let ( )( )jK θ  be the 
parameter-dependent state feedback designed at the j-th 
iteration.  
Algorithm1.1: H∞ minimization 
(a1) Find a state feedback gain 0K  such that 
( )0 0,E A BK+  is admissible.  

(a2) Compute ( )0G NM= , where ,N M  are associated to 
the pair ( )0 0,E A BK+  (we will mention after how to 

compute ( )0G ).  
(a3) Minimize γ∞  under the constraints (32)-(33) with 

( )0
2 1G G Gβ∞ ∞ ∞= . Set ( )( ) ( )0K Kθ θ=  where ( )K θ  is 

the solution and 1j = . 
(a4) Minimize γ∞  under the constraints (32)-(33) with 

( ) ( )( )1jK Kθ θ −= . Compute  ( ) ( ) 1

1 2
jG G G

−
∞ ∞=  where 

( )1 2,G G∞ ∞  is the solution. 

(a5) Minimize γ∞  under the constraints (32)-(33) with 
( )

2 1
jG G Gβ∞ ∞ ∞= . Set ( )( ) ( )jK Kθ θ=  where ( )K θ  is 

the solution.  
(a6) If the desired γ∞  is reached or a stopping criterion is 
satisfied, exit. Otherwise, set 1j j= +  and go to Step (a4).  
Algorithm1.2: H2 minimization under H∞ constraint 
(b1) Set ( )( ) ( )0K Kθ θ=  where ( )K θ  is the solution of the 
Initialization part of the algorithm. Set 1j = . 
(b2) Solve the optimization problem (30)-(33) with 

( ) ( )( )1jK Kθ θ −=  and 12 1 1G G G∞= = , 22 2 2G G G∞= = . 

Compute  ( ) ( ) 1

1 2
jG G G

−=  where ( )1 2,G G  is the solution. 

(b3) Solve the optimization problem (30)-(33) with 
( )

22 2 1
jG G G Gβ∞= =  and 12 1 1G G G∞= = . Set 

( )( ) ( )jK Kθ θ=  where ( )K θ  is the solution. 
(b4) If the desired 2γ  is reached or a stopping criterion is 
satisfied, exit. Otherwise, set 1j j= +  and go to Step (b2). 

Note that ( )0G  is computed for the closed-loop pair 
( )0 0,E A BK+  which is admissible. In that case, a singular 
value decomposition form can be obtained: 

 
0

0 0

I
RES

 
 =  
  

, ( )
1 2

0 0
3 4

A A
R A BK S

A A

 
 + =  
  

  

where matrices ,R S  are nonsingular. We then derive 
matrices ,M N  as follows: 

 
1

2 4

1
40

I A A
M R

A

−

−

 − =  
  

, 
1

4 3

0I
N S

A A I−

 
 =  −  

. 

Remark 5:  The existence of a solution in ( )( )0K θ  is not 
guaranteed. However, the initialization method proposed 
here seems to be effective when tested on a large number of 
examples.  In the contrary, assigning arbitrarily ( )0G  do not 

lead to a solution in most cases.    
Remark 6:  Local convergence of each part of the algorithm 
is guaranteed by construction.  

B. Numerical examples 

Example: Consider the uncertain descriptor system (29) with 
the following data:  

1 0 0

1 1 0
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E

 
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 
 
  
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0 1

0 1
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 
 
 

=  
 
 
  
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1
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 
 
  
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 
 
 

=  
 
 
  

 1 1
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1 0

T

C∞

 
 
 

=  
 
 
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( ) [ ]

1 1

2 1 1,2

1 2

5

1 2 2 5 , 1,1

10 1

i iA

θ θ

θ θ θ θ

θ θ
=

 − 
 

= + ∈ − 
 
 +  

 

The problem is to find a state feedback controller 
( )u K xθ=  which minimizes 2 2 2

T θγ =  under the 

constraint 2T θ
∞ ∞

< . The initial controller is selected as: 

 [ ]0 -26.0564 -163.2829   -1.0187K =  
which is obtained by solving a feasible LMI problem such as 
( )0 0,E A BK+  is admissible. After 30 iterations of 
Algorithm1.1, with 1β∞ = , we obtain a controller: 
 ( ) 0 1 2

1 2K K K Kθ θ θ= + +  
with: [ ]0 -10.1636 -2.7238 -1.6683K = ,

[ ]1 -0.4706 -1.6511  0.0060K =  and [ ]2 -0.0963 0.0276 -1.0791K =   
Figure 1, shows the convergence of Algorithm 1.1. 

  
 Figure 1. Achieved H∞  norm 
After 67 iterations of Algorithm1.2, with 1β = , we obtain 
a controller: ( ) 0 1 2

1 2K K K Kθ θ θ= + +  
with: [ ]0 -14.6171 -15.6301 -5.7937K = , [ ]1 0.8375 -3.5119  0.9226K =  
and [ ]2 -1.6012  0.0114 -1.8101K =   

  
 Figure 2. Achieved H2  norm with 2T θ

∞ ∞
<  

which achieves an H2 norm of 2 2
0.5T θ = . Figure 2, shows 

the convergence of Algorithm 1.2. 
Example: Consider the uncertain descriptor system (29) with 
the following data:  
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The problem is to find a state feedback controller 
( )u K xθ=  which minimizes 2 2 2

T θγ =  under the 

constraint 3T θ
∞ ∞

< . The initial controller is selected as: 

 [ ]0 -33.6870   14.1261  -69.5059   -1.0116K =  
which is obtained by solving a feasible LMI problem such as 
( )0 0,E A BK+  is admissible. After 22 iterations of 
Algorithm1.1, with 1β∞ = , we obtain a controller: 

 ( ) 0 1 2
1 2K K K Kθ θ θ= + +  

with:  [ ]0 -1.0328 5.6882 0.6194 -1.6903K = ,  
 [ ]1 0.9638 0.1486 -0.0097 0.0473K = , 
 [ ]2 -0.3441 1.9644  -0.0644 -0.7566K =   
After 25 iterations of Algorithm1.2, with 1β = , we obtain 
a controller: ( ) 0 1 2

1 2K K K Kθ θ θ= + +  
with:  [ ]0 -0.7577 23.6750  1.2607 -3.8215K =   
 [ ]1 2.6168  0.2002  0.007  0.0294K =  
 [ ]2 -1.9497 7.3928 -0.1618 0.8156K =   

which achieves an H2 norm of 2 2
1.86T θ = . 

The convergence of Algorithms 1.1 and 1.2 is shown in the 
following figures:  

  
Figure 3. Achieved H∞  norm Figure 4. Achieved H2 norm  

VI. CONCLUSION 
In this paper, we proposed dilated LMI characterizations of 
admissibility, D-admissibility, H∞ and H2 norms for 
continuous-time descriptor systems. As in the state-space 
case, these dilated LMIs achieved less conservative results 
when dealing with robust admissibility/performance analysis 
of affine parameter-dependent descriptor systems. 
Furthermore, based on these dilated LMI conditions, we 
presented an iterative design procedure for multiobjective 
state feedback control of parameter-dependent descriptor 
systems. The underlying linearization method can be 
adapted to the state-space multiobjective feedback design 
problem when using a descriptor representation of such 

systems. A forthcoming paper will test this alternative 
design method and compare it with existing ones.    
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