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Abstract— We focus on a finite horizon noncooperative dy-
namic game where the stage cost of a single player associated to
a decision is a monotonically nonincreasing function of the total
number of players making the same decision. For the single-
stage version of the game, we characterize Nash equilibria and
derive a consensus protocol that makes the players converge
to the unique Pareto optimal Nash equilibrium. Such an
equilibrium guarantees the interests of the players and is also
social optimal in the set of Nash equilibria. For the multi-stage
version of the game, we present an algorithm that converges to
Nash equilibria, unfortunately not necessarily Pareto optimal.

The algorithm returns a sequence of joint decisions, each one
obtained from the previous one by an unilateral improvement
on the part of a single player. The sequence with which the
players act is chosen a priori and may influence the Nash
equilibrium to which the path converges. We also specialize
the game to a multi-retailer inventory system, where competing
retailers aim at coordinating their supply strategies in order to
minimize their local costs.

Keywords: Game Theory, Inventory, Consensus Protocols,
Dynamic Programming.

I. INTRODUCTION

Since the seminal paper of [2] where fictitious play and

dynamic games were revisited in a control theoretic perspec-

tive, the connection between consensus and game theory is

a subject of research. Consensus protocols are distributed

control policies based on neighbors’ state feedback that allow

the coordination of multi-agent systems. According to the

usual meaning of consensus, the system state must converge

to an equilibrium point with all equal components in finite

time or asymptotically. Two recent surveys on consensus

[14], [16] report in details the main contribution of the

past few years on consensus. Consensus problems have been

recently largely studied, but the literature on the connection

between consensus and game theory is not so extensive.

In particular, in [10] the relationship between cooperative

control problems, such as the consensus problem, and game

theoretic methods, has been established. The effectiveness

of using game theoretic approaches for controlling multi-

agent systems is presented in [1]. In [6] and [7], it has

been shown that the consensus protocol design is the so-

lution of individual optimizations performed by the agents.

This notion suggested a game theoretic interpretation of

consensus problems as mechanism design problems. Under

this perspective a supervisor entails the agents to reach a
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consensus by imposing individual objectives. We proved

that the supervisor can choose objectives so that rational

agents have a unique optimal protocol, and reach consensus

asymptotically on the desired group decision value. Here,

we consider a finite horizon noncooperative game [4] where

the stage cost of the ith player associated to a decision is

a monotonically nonincreasing function of the total number

of players making the same decision. The paper is organized

as follows. In Section II, we introduce the game and we

recall some properties of the existence of Nash equilibria and

of at least one Pareto optimal Nash equilibrium, proved in

[5], by recasting the game within the framework of potential

games [17]. In Section III and IV, we show that stronger

results are obtained if the horizon reduces to a single stage.

We find all Nash equilibria and in particular a Pareto optimal

one that is social optimal in the set of all Nash equilibria, as

it minimizes the sum of the players’ costs. We also define

a consensus protocol [6], [14], [15], [16] that makes the

players converge to the Pareto optimal Nash equilibrium.

We do this in agreement with a large body of literature on

evolutionary game theory and fictitious play (see e.g., the

book [9] and [18]) that centers around the convergence to

refined Nash equilibria, that is, Nash equilibria that meet

special properties. Social and Pareto optimality are just

properties characterizing the Nash equilibria to which the

dynamics induced by the consensus protocols converges.

In Section V, we come back to the multi-stage game and

we modify the above protocol to derive a so called best

response path algorithm that makes the players converge to

a Nash equilibrium. This algorithm is based on the property

of potential games establishing that any best response path

converges to a Nash equilibrium [17], [18]. A best response

path is a sequence of joint decisions, each one obtained from

the previous one by an unilateral improvement on the part

of a single player. In Section VI, we specialize the game to

a multi-inventory application [3], [11], [12], [13].

II. NONCOOPERATIVE DYNAMIC GAME AND NASH

EQUILIBRIA

We deal with a discrete time finite horizon noncoopera-

tive game which presents all the ingredients typical of an

inventory application. However, we deal with the game in

its general form in order to emphasize what characteristics

make the results of this paper hold.

Consider a set of n players Γ = {1, . . . , n} and let N

be the horizon length. For each i ∈ Γ and each stage

k = 0, . . . , N , let xki ∈ Xk
i ⊆ Z be a discrete time state and

uki ∈ Uki ⊆ N be a decision. Here, we have denoted by Xk
i
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and Uki the set of feasible states and decisions at stage k and

by Z, N the set of integers and non negative integers (zero

included), respectively. Let uk−i = {ukj }j∈Γ,j 6=i be the vector

of the decisions of players j 6= i at stage k. Also, define uk =
{uki }i∈Γ, ui = {u0

i , . . . , u
N
i } and u−i = {u0

−i, . . . , u
N
−i}.

Let the following finite horizon noncooperative game be

given: for each player i ∈ Γ,

Ĵi(x
0
i ,ui,u−i) =

N∑

k=0

gi(x
k
i , u

k
i , a(u

k)) (1)

xk+1
i = Ξ(xki , u

k
i ), k = 0, . . . , N − 1, (2)

where equation (1) is the cost function, obtained as sum over

the horizon of a stage cost gi(x
k
i , u

k
i , a(u

k)) and equation (2)

is the state dynamics with Ξ(., .) being a generic nonlinear

function, possibly time variant and player specific, but such

that limuk

i
→+∞ Ξ(xki , u

k
i ) = +∞, for all xki ∈ Z. The stage

cost gi(x
k
i , u

k
i , a(u

k)) is of type

gi(x
k
i , u

k
i , a(u

k)) = δ(uki )ψ(a(uk)) + γ(xki , u
k
i ), (3)

where: function δ(uki ) is equal to one if uki > 0 (we say

that the ith player is active), and zero otherwise; function

a(uk) returns the number of active players (at time k),

a(uk) =
∑n
j=1 δ(u

k
j ); function ψ(a(uk)) is positive and

strictly decreasing on a(.); function γ(xki , u
k
i ) is coercive,

non negative and independent of a(.). Henceforth, for the

short of notation, we write ak to mean a(uk). Also we denote

by u = [u1, . . . ,un] a generic solution of the game (in the

following we also use the notation [ui,u−i] to mean u).

Finally, we define Ji(x
0
i ,u−i) = minui

Ĵi(x
0
i ,ui,u−i).

In [5] we proved the existence of Nash equilibria by

exploiting the well-known result in [17] asserting that a

noncooperative game always admits a pure Nash Equilibrium

if a potential function exists. A potential function is a

function Φ(x0,u) such that, if û = [ûi, û−i] is a solution

obtained from an unilateral deviation from u on the part

of a generic player i (hence ui 6= ûi, but u−i = û−i),

the difference induced to the potential function ∆Φ =
Φ(x0, [ûi, û−i]) − Φ(x0, [ui,u−i]) is equal to, or at least

proportional to, the difference in the cost for player i, that is,

∆Ĵi = Ĵi(x
0
i , ûi, û−i)− Ĵi(x0

i ,ui,u−i). We recall hereafter

the main results proved in [5].

Theorem 1: Game (1)-(2) is a potential game.

As a consequence, by the results in [17], we can state the

following corollary.

Corollary 1: Game (1)-(2) admits at least one Nash equi-

librium.

Let us now characterize a generic Nash equilibrium u
∗ =

[u∗
i ,u

∗
−i] where u

∗
i = {u0∗

i , . . . , u
N∗
i } and u

∗
−i =

{u0∗
−i, . . . , u

N∗
−i }. In particular, we consider the ith player and

study the unilateral improvements by fixing the decisions of

all other players over the horizon u
∗
−i. We denote by a

k∗ =

{ak∗, . . . , aN∗} with ak̂∗ =
∑n

j=1,j 6=i δ(u
k̂∗
j ) + δ(uk̂i ) for

k̂ = k, . . . , N . The vector a
k∗ collects the number of active

players from stage k to N as a function of {uki , . . . , u
N
i }

and for fixed {uk∗−i, . . . , u
N∗
−i }. By applying the dynamic

programming approach to (1)-(2), we can define

JNi (xNi ,a
N∗) = 0, (4)

Jki (xki ,a
k∗) =

minuk

i
∈Uk

i

[gi(x
k
i , u

k
i , a

k∗) + Jk+1
i (xk+1

i ,ak+1∗)]
. (5)

Then, Ji(x
0
i ,u

∗
−i) is equal to J0

i (x
0
i ,a

0∗). In solving (4)-

(5), we can do as if ak∗ was independent of uki . Actually,

we can substitute ak∗ by ãk =
∑n

j=1,j 6=i δ(u
k∗
j ) + 1, for

k = 0, . . . , N . We can do such a substitution as it turns out

that gi(x
k
i , u

k
i , a

k∗) = gi(x
k
i , u

k
i , ã

k). To see why the latter

equality holds true, observe that the stage cost gi(x
k
i , u

k
i , a

k∗)
depends on ak∗ only through the term, δ(uki )ψ(ak∗), which

is different from zero only when δ(uki ) = 1, that is when

ak∗ = ak∗−δ(uki )+1 = ãk. It follows that the best response

for player i must be a solution of equation (5), i.e.,

uk∗i = arg minuk

i
∈Uk

i

(δ(uki )ψ(ak∗) + γ(xki , u
k
i ) + Jk+1

i (xk+1
i ,ak+1∗))

= argminuk

i
∈Uk

i

(δ(uki )ψ(ãk) + γ(xki , u
k
i ) + Jk+1

i (xk+1
i , ãk+1))

(6)

where we define ã
k = {ãk, . . . , ãN} for k = 0, . . . , N .

The above equation may present multiple solutions, [19].

However, the values assumed by uk∗i depends on the other

player decisions only in terms of the number of active

players. With this in mind, we can derive that given two

equilibria û and ũ, if δ(ûki ) = δ(ũki ) for all i ∈ Γ and

for all k = 0, . . . , N − 1, then the two equilibria are

equivalent, that is Ĵi(x
0
i , ûi, û−i) = Ĵi(x

0
i , ũi, ũ−i) for all

i ∈ Γ. In the following, in case of multiple solutions, we

choose uk∗i as the lowest among the possible scalar values

that satisfy (6). In this way we guarantee the uniqueness

of the best response and we can describe the equilibria

indifferently in term of either u
∗ or a

0 given their bijective

correspondence. Needless to say that the players can choose

any other criterium that guarantees the uniqueness of the

best response in (6) without compromising the validity of

the results.

Still in [5] we prove that Nash equilibria are finite in

number and as a consequence of this we establish the

following result.

Theorem 2: At least a Nash equilibrium is Pareto optimal.

III. SINGLE STAGE GAME

We now consider a finite horizon noncooperative game

consisting in a single stage game with payoffs (in all the

equations of this subsection we drop the dependence on k)

Ĵi(xi, ui, u−i) = δ(ui)ψ(a(u)) + γ(xi, ui), (7)

where all the variables and functions have the same def-

initions and properties of the original game. Game (7) is

trivially obtained from the original game by imposing N =
0.

For each i ∈ Γ, let l : Z → N, increasing function of xi,

be given. Henceforth, we simply use the notation li to mean

l(xi), i.e., the value of the function for fixed xi. Note that in

the single stage game and once fixed the scenario (xi fixed),
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xi becomes a known parameter (the initial inventory) and

therefore we can omit dependence of l(xi) on xi.

Definition 1: A threshold strategy is any function ũ(.) :
N × N −→ R such that ũ(a, li) assumes a positive value if

a ≥ li and is null otherwise. In this case li is said threshold.

The above threshold strategy says that player i is active only

if the number of active players a is greater than or equal to

threshold li. Let us now characterize a Nash equilibrium,

u∗ = [u∗1, . . . , u
∗
n], for the single stage game, where u∗i

is the best response of player i. Again, denote by a∗ =
∑n

j=1,j 6=i δ(u
∗
j ) + δ(ui) the vector collecting the number of

active players as a function of ui and for fixed u∗−i. Condition

(6) becomes

u∗i = arg min
ui∈Ui

[δ(ui)ψ(a∗) + γ(xi, ui)], (8)

and in case of multiple solutions we choose u∗i as the

lowest among the possible scalar values that satisfy the

above equation. Note that in (8) we can replace a∗ by

ã =
∑n

j=1,j 6=i δ(u
∗
j ) + 1 and use the same trick explained

for the solution of (4)-(5).

Lemma 1: At a Nash equilibrium u∗ = [u∗1, . . . , u
∗
n], the

best response u∗i of each player i is a threshold strategy

u∗i = ũ(a∗, li) with threshold

li = min{µ ∈ {1, . . . , n} : ψ(µ) < γ(xi, 0)}. (9)

Proof: Let us first prove that the best response u∗i of

player i is a threshold strategy. On this purpose, for each

player i, and for any number of active players β ≥ α, let

ζα and ζβ be the best responses for a∗ = α and a∗ = β

respectively (they solve (8) with a∗ = α and a∗ = β). We

show that if ζα > 0 (it means δ(ζα) = 1, the ith player is

active) then ζβ > 0. To see this observe that ζα > 0 only if

ψ(α) + γ(xi, ζα) ≤ γ(xi, 0).

As ψ(.) is a positive function, to have ζβ > 0 it suffices to

prove that

ψ(β) + γ(xi, ζβ) ≤ γ(xi, 0).

Note that the rhs of the above two inequalities are equal as

they do not depend on the number of active players. Then

we can show that the latter inequality holds as

ψ(β) + γ(xi, ζβ) ≤
ψ(β) + γ(xi, ζα) ≤ ψ(α) + γ(xi, ζα)
≤ γ(xki , 0),

(10)

where the first inequality is due to the optimality of ζβ and

the second inequality is due to the monotonicity of ψ on

the number of active players. Then, we have proved that

u∗i = ũ(a∗, li).
Now, to see that the threshold is as in (9) observe that it

must also hold ψ(α) + γ(xi, u
∗
i ) < γ(xi, 0) for all α ≥ li

and ψ(α)+γ(xi, u
∗
i ) ≥ γ(xi, 0) for all α < li. But the latter

conditions hold if and only if the value of li is as in (9).

As in (5), the best response u∗i defined in the above lemma

depends on other players course of action u∗−i only through

a∗. In the next theorem we characterize the unique Pareto

optimal Nash equilibrium. To this aim, let us relate Nash

equilibria to subsets of players as follows. Without loss of

generality, assume that the players are indexed increasingly

on their thresholds, i.e., l1 ≤ l2 ≤ . . . ≤ ln. Define

compatible set any set of consecutive players C = {1, . . . , r}
such that lr ≤ r. Any player of a compatible set C benefits

from being active if all the other players in C are active.

Observe that for any Nash equilibrium u∗ = [u∗1, . . . , u
∗
n]

there exists a compatible set C such that δ(u∗i ) = 1 if and

only if i ∈ C. Indeed, let î = max{i : δ(u∗i ) = 1}, then

δ(u∗i ) = 1 for all i ∈ Γ such that i < î since li ≤ l̂i. Now,

consider the maximal compatible set C = {1, . . . , λ̄} where

λ̄ = argmax
λ

{λ ∈ {1, . . . , n} : lλ ≤ λ} .

Note that C may be empty and that, by maximality of C,

li > λ̄+ 1 for all players i 6∈ C .

Lemma 2: There always exists a Nash equilibrium u∗ =
[u∗1, . . . , u

∗
n] such that δ(u∗i ) = 1 if and only if i ∈ C

Proof: The solution u∗ describes the case where the

active players are the only players in C and therefore the

number of active players is λ̄. Then, no players i ∈ C benefit

by unilaterally deciding of becoming non active as li ≤ λ̄

and also no players j 6∈ C benefit by deciding of becoming

active as lj > λ̄+ 1.

Theorem 3: Let u∗ be the Nash equilibrium associated to

the maximal compatible set C , i.e.,

δ(u∗i ) =

{
1 if i ∈ C

0 otherwise
.

If ψ(λ̄) + γ(xi, u
∗
i ) 6= γ(xi, 0) for all i ∈ C, then

• Pareto optimality. The Nash equilibrium u∗ is Pareto

optimal;

• Uniqueness. The Nash equilibrium u∗ is the unique

Pareto optimal Nash equilibrium.

• Social optimality. The Nash equilibrium u∗ is social

optimal in the set of all Nash equilibria.

Proof: Pareto optimality. We show that the Nash

equilibrium u∗ = [u∗1, . . . , u
∗
n] is Pareto optimal since

any other vector of strategies u = [u1, . . . , un] induces a

worse payoff for at least one player. In the Nash equi-

librium u∗, each i ∈ C gets a payoff Ĵi(xi, u
∗
i , u

∗
−i) =

ψ(λ̄) + γ(xi, u
∗
i ) < γ(xi, 0), each i 6∈ C gets a payoff

Ĵi(xi, 0, u
∗
−i) = γ(xi, 0) < ψ(λ̄ + 1) + γ(xi, ui) for all

ui > 0. Now, consider the vector of strategies u. Define

D = {i ∈ C : δ(ui) = 0} as the set of players with li ≤ λ̄

that are not active in u and E = {i 6∈ C : δ(ui) = 1} as the

set of players with li > λ̄ + 1 that are active in u. Let us

denote by ν and η the cardinality of D and E respectively.

Trivially, D ∪ E 6= ∅ as u 6= u∗. We deal with E 6= ∅ and

E = ∅ separately.

If E 6= ∅ and D = ∅, each player i ∈ E gets a payoff

Ĵi(xi, ui, u−i) = ψ(λ̄ + η) + γ(xi, ui) strictly greater than

Ĵi(xi, 0, u
∗
−i) = γ(xi, 0) as C is the maximal compatible set.

The latter condition trivially holds also when D 6= ∅ since,

in this case, each player i ∈ E incurs in a higher payoff

Ĵi(xi, ui, u−i) = ψ(λ̄+ η − ν) + γ(xi, ui).
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If E = ∅, then D 6= ∅, and each player i ∈ C \ D, if

exists, gets a payoff Ĵi(xi, ui, u−i) = ψ(λ̄−ν)+γ(xi, ui) >
Ĵi(xi, u

∗
i , u

∗
−i) = ψ(λ̄) + γ(xi, u

∗
i ). At the same time, each

player i ∈ D gets a payoff Ĵi(xi, 0, u−i) = γ(xi, 0) >

Ĵi(xi, u
∗
i , u

∗
−i) = ψ(λ̄) + γ(xi, u

∗
i ). Finally, each i ∈ Γ \ C

gets a payoff Ĵi(xi, 0, u−i) = γ(xi, 0) = Ĵi(xi, 0, u
∗
−i).

Uniqueness and social optimality. We prove the unique-

ness and the social optimality of the Pareto optimal Nash

Equilibrium by showing that it dominates all the other

equilibria. Consider a generic Nash equilibrium u associ-

ated to a compatible set C, say λ its cardinality, different

from C. Since C is maximal then C ⊂ C. Then, each

i ∈ C, if exists, gets a payoff Ĵi(xi, ui, u−i) = ψ(λ) +
γ(xi, ui) > Ĵi(xi, u

∗
i , u

∗
−i) = ψ(λ̄)+γ(xi, u

∗
i ); analogously,

each i ∈ C \ C gets a payoff Ĵi(xi, ui, u−i) = γ(xi, 0) >
Ĵi(xi, u

∗
i , u

∗
−i) = ψ(λ̄) + γ(xi, u

∗
i ); finally, each player

i ∈ Γ \ C , gets a payoff Ĵi(xi, ui, u−i) = γ(xi, 0) =
Ĵi(xi, u

∗
i , u

∗
−i). Then, in any generic Nash equilibrium each

player has a payoff not better than the one associated to u∗.

Observe that if and only if ψ(λ̄) + γ(xi, u
∗
i ) = γ(xi, 0)

for all i, there exist two Pareto optimal Nash equilibria with

equal payoff. They are associated respectively to the maximal

compatible set C and to the empty set. Henceforth, we will

call Pareto optimal Nash equilibrium only the equilibrium u∗

associated to the maximal compatible set C . Also, observe

that there is no other Nash equilibrium with a higher number

of active players than the Pareto optimal Nash equilibrium.

Let us finally note that the minimizer of the sum of players’

costs, say it social optimum, is in general not an equilibrium.

However, if we restrict the minimization within the set of

Nash equilibria, then the social optimum is on the Pareto

optimal Nash equilibrium as it has been shown in the

above theorem. Restricting the minimization within the set

of Nash equilibria makes sense as the players participate

to a noncooperative game, then any solution that is not an

equilibrium is of no interest.

IV. CONSENSUS PROBLEM

With focus on the single stage game (7), we now introduce

a protocol that makes the players strategies converge to the

Pareto optimal Nash equilibrium characterized in Theorem

3.

For all players i ∈ Γ, let us refer to âi as their estimate of a

in the assumption that each player may exchange information

only with a subset of neighbor players. In this sense, the set

Γ induces an undirected connected graph G = (Γ, E) whose

edgeset E includes all non oriented couples (i, j) of players

that exchange information with each other. Also, define the

neighborhood of player i the set Ni = {j : (i, j) ∈ E}∪{i}.

Let zi(τ) ∈ R be a continuous time variable describing the

transmitted information for τ ≥ 0 and let T be a sufficiently

large time interval. The information flow is managed through

a distributed protocol Π = {(fi, φi) : for all i ∈ Γ}

żi(τ) = fi(zj(τ) for all j ∈ Ni), 0 ≤ τ ≤ T, (11)

âi(τ) = φi(zi(τ)) (12)

u∗i = ũ(âi,ss, li) (13)

where fi : R
n → R describes the dynamics of the trans-

mitted information of the ith node as a function of the

information both available at the node itself and transmitted

by the other nodes, as in (11); φi : R → R estimates, based

on current information, the aggregate info, as in (12).

The protocol receives as input xi and zj for all j ∈ Ni and

must be initialized at a pre-defined value zi(0). The value

of xi is used in (13) to compute li according to (9). The

protocol uses the estimate âi,ss to return as output the best

response u∗i as in (13), where âi,ss represents the steady state

value assumed by âi(τ), namely

âi,ss = lim
τ→T−

âi(kT + τ), for all i ∈ Γ. (14)

In the rest of this section, we present a distributed protocol

Π = {(fi, φi) : for all i ∈ Γ} proposed by the authors in

[8], such that the steady state estimate coincides with the

current number of active players and with λ̄, i.e., âi,ss = a =
∑

i∈Γ δ(ui) = λ̄. Actually, the latter condition is sufficient

for the convergence to the Pareto optimal Nash equilibrium

of Theorem 3.

Assume that the transmitted information zi(τ) is the

current estimate of the percentage of active players. For

instance, zi(τ) = 0.2 means that the ith player estimates only

a twenty percent of active players. Then, given the percentage

of active players zi(τ), the estimate of the number of active

players is simply

âi(τ) = φ(zi(τ)) = nzi(τ).

The protocol starts by assuming that all the players are

active. This corresponds to initialize the transmitted states

zi(0) = 1 or which is the same the estimates âi(0) = n for

all i ∈ Γ.

Then, each player averages its estimate on-line on the basis

of neighbors’ estimates. If we denote by z(τ) = {zi(τ)}i∈Γ,

the averaging process can be described by

fi(z(τ)) = −Li•z(τ) − ∆(t− ti)

where Li• is the ith row of the Laplacian matrix (see, e.g.,

[14], [18] for details), and ∆(t − ti) is an impulse signal

due to which zi(t
−
i ) switches to a lower value zi(t

+
i ). Such

a switch has the meaning of a correction term acting at any

time ti where the estimate âi(ti) crosses from above the

threshold li and consequently the ith player is no longer

willing to be active. Impulses may be activated only after

the transient evolution of żi(τ) has expired. We assume that

this occurs after tf time units, where tf is an estimate of the

worst case possible settling time of the protocol dynamics.

A standard result in graph theory is that the settling time

decreases as the number of edges in the network increases.

Actually, the speed of convergence depends on the second

smallest in magnitude eigenvalue of the Laplacian (known

as Fiedler eigenvalue) in the sense that the higher (in magni-

tude) the Fiedler eigenvalue the faster the convergence [15].

In the light of the above consideration, ti is the first sampled
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time rtf , with r = 0, 1, . . . where function δ(ũ(âi(rtf ), li))
reaches zero, namely

ti = arg min
r∈N

rtf (15)

s.t. δ(ũ(âi(rtf ), li)) = 0. (16)

Note that there may exist players characterized by li > n,

for which ti = 0, and players that never satisfy condition

(16), for which ti = T . Observe that, as players are indexed

by increasing thresholds, it must also hold T ≥ t1 ≥ t2 ≥
. . . ≥ tn ≥ tn+1 = 0. Furthermore, note that the evolution of

the sampled values z(rtf ) for r = 0, 1, . . . is monotonically

decreasing which implies that the impulse may be activated

only one time for each player (once you exit the group you

are no longer allowed to rejoin it).

Theorem 4: It holds âi,ss = a =
∑

i∈Γ δ(ui) = λ̄ for all

i ∈ Γ.

Proof: With in mind the values ti as in (15), let

us set tn+1 = 0, t0 = T and consider the sequence of

increasing discrete times tn+1, tn, . . . , tj+1, tj , . . . , t0. Also

denote recursively by M(tj) = {i ∈ A(tj) : li > |A(tj)|},

where A(tj) = Γ \
⋃n+1
k=j+1M(tk), and A(tn+1) = Γ.

Roughly speaking, A(tj) is the set of players that are willing

to be active at time tj whereas M(tj) is the set of players

that are no longer willing to be active from time tj on. Then

the evolution of âi(τ) follows the discrete time dynamics

âi(tj−1) = âi(tj) − |M(tj)|, for all i ∈ Γ.

The above dynamics is monotonic decreasing and converges

at the first time tj where A(tj) is a compatible set. To see

this, note that if A(tj) is compatible then M(tj) = ∅, and

therefore

âi(T ) = . . . = âi(tj−1) = âi(tj), for all i ∈ Γ.

The above equation implies that tj−1 = tj−2 = . . . = T ,

which means that condition (16) is never met for player j−1,

if exists, and for all its predecessors, if any. In the extreme

case, we may have A(tj) = . . . = A(t1) = ∅ which means

tj < T for all j ∈ Γ and also that condition (16) is met for all

players j ∈ Γ. We have then proved that the above dynamics

converges when A(tj) is compatible. It is left to show

that the compatible set A(tj) is the maximal one, namely,

A(tj) = C. We show this, by proving that if A(tk) ⊇ C then

A(tk−1) ⊇ C for all k = j+1, . . . , n+1. By contradiction,

if A(tk−1) 6⊇ C, there must exist a player i ∈ M(tk) such

that li ≤ |C| ≤ |A(tk)| but the latter fact is not possible from

the definition of M(tk). We conclude the proof by observing

that
⋂n+1
k=j+1M(tk) = ∅ and consequently

âi(tj) = n−
∑n+1

k=j+1 |M(tk)| =

|Γ \
⋃n+1
k=j+1M(tk)| = |A(tj)| = |C| = λ̄.

V. A BEST RESPONSE PATH ALGORITHM

We have shown that the game (1)-(2) is a potential game

as it always admits a potential function (see Theorem 1). Po-

tential games have the strong property that any best response

path converges to a Nash equilibrium. By best response path

we intend a sequence of joint decisions u(0) → u(1) → . . .

where u(j) = {u1(j) . . .un(j)} and ui(j) is the vector of

decisions (over the horizon) of player i at iteration j. Define a

function σ : N → Γ, which returns a player for each iteration

j of the sequence, i.e., σ(1) = 2, σ(2) = 5 . . . means that

at iteration 1, only player 2 updates its decision, whereas at

iteration 2, only player 5 updates its decision. By updating a

decision we simply mean replacing the current decision by

the best response. It may happen that the current decision

is already the best response and then the updated decision

coincides with the current decision. Now, each joint decision

u(j+1) is obtained from u(j) by an unilateral improvement

on the part of player i = σ(j), i.e., u(j + 1) = [u∗
i ,u−i(j)]

and u
∗
i = {u0∗

i , . . . , u
N∗
i } is the solution of (6) for fixed

u−i(j + 1) = u−i(j).
More precisely, at iteration j, let the current deci-

sion be u(j) = {u1(j), . . . ,un(j)} with ui(j) =
{u0

i (j), . . . , u
N
i (j)} for i = 1, . . . , n. To solve (6) player

i = σ(j) needs to estimate the number of active players

over the horizon. This is possible by modifying the protocol

presented in the previous section. For fixed u(j), denote the

vector of decisions at time k by uk(j) = {uki (j)}i∈Γ, then

the protocol Π = {(fi, φi) : for all i ∈ Γ}, where

fki (z(τ)) = −Li•z
k(τ), zki (0) = δ(uki (j)) (17)

âki (τ) = φ(zki (τ)) = nzki (τ). (18)

is such that âki,ss = a(uk(j)). Remind that a(uk(j)) is

the number of active players at stage k given the decision

vector uk(j). Repeating the same argument for k = 0, . . . , N
(we can run the protocol in parallel) the ith player can

estimate the number of active players over the horizon a
0(j)

associated to the current decision u(j), namely, a
0(j) =

{a(u0(j)), . . . , a(uN(j))} with a(uk(j)) =
∑

i∈Γ δ(u
k
i (j)).

In the light of the above comments, we show below the

pseudo code of an algorithm that, for a given function σ(.),
returns a best response path and consequently converges to

a Nash equilibrium. Let ui(j) be the solution (decisions of

player i) at iteration j, then

j = 0; WHILE not converging

{i = σ(j), compute a
0(j) from (17)-(18)

using current u(j)

update ui(j + 1) = u
∗
i

solution of (6)

based on a
0(j),

j := j + 1}

The algorithm eventually converges to a Nash equilibrium

which depends on the chosen function σ(.). However, the

choice of any generic function σ(.) do not compromise the

convergence of the algorithm. The number of iterations is

at most 2nN . Actually, the best response for player i does

not depend on the value of u−i, but only on the number

of active players. Also, the algorithm can be stopped if no

players have changed their decisions in the last n iterations.
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w1 4 8 6 5 7 8 4 5 6 8

w2 0 0 1 7 8 0 6 2 1 4

w3 0 3 2 0 3 1 1 3 3 0
TABLE I

In the next section we use the above algorithm in a multi-

inventory application.

VI. MULTI-INVENTORY APPLICATION

Each player i ∈ Γ is a retailer, the state xki ∈ Z is the ith

inventory, uki ∈ Uki = N is the ordered quantity. Let wki ∈ N

be a deterministic demand, the inventory dynamics is

xk+1
i = xki + uki − wki . (19)

Let c be the purchase cost per stock unit, h the penalty on

holding, p the penalty on shortage, and Kk
i the transportation

cost charged to the ith retailer that replenishes at stage k.

Also, let us make the common assumption that c − p < 0.

The stage cost for the ith retailer is

gi(x
k
i , u

k
i , a

k) =

Kk
i

︸︷︷︸

ψ(ak(uk))

δ(uki ) + cuki + pmax(0,−xk+1
i ) + hmax(0, xk+1

i )
︸ ︷︷ ︸

γ(xk

i
,uk

i
)

.

(20)

Here ψ(ak(uk)) is monotone since the active retailers may

share the same truck for their supplies and so the more they

are, the less each of them pays for the transportation.

Example 1: Consider three retailers and parameters K =
24, p = 8, h = 1, c = 2. Retailers face a deterministic

demand over the horizon of ten stages (see Table I). The

initial state is x0 = [0 0 0]. Let us run the algorithm of the

previous section in order to obtain a best response path. The

retailers, at the first iteration, do not consider the possibility

of sharing the transportation cost. No communication occurs

among the retailers and they replenish in a fully uncoordi-

nated fashion as displayed in Fig. 1, left column. The absence

of coordination is evident as retailer 1 replenishes on days

0, 2, 5 and 8 (top-left), retailer 2 on day 3 and 6 (middle-

left), while retailer 3 on days 1 and 7 (bottom-left). At a

second iteration, the 3rd retailer (σ(2) = 3) estimates the

number of active players over the horizon by running the

protocol (17)-(18) and finds its best response by solving (6)

and finds its best response. The same argument is repeated

at the successive iterations letting the retailers unilaterally

improving their payoffs one after the other. The algorithm

converges in six iterations. The supply decisions at Nash

equilibrium are displayed in Fig. 1, right column. Here you

can notice that retailers 1 and 3 replenish on day 1, retailers

1, 2 and 3 replenish on day 3 and 7, and retailer 1 and 2 on

day 5.
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[7] D. Bauso, L. Giarré and R. Pesenti. “Mechanism Design for Optimal
Consensus Problems” IEEE Conference on Decision and Control, San
Diego, Ca, 2006, pp. 3381-3386.

[8] Bauso, D., Giarré, L. and Pesenti, R., “Distributed Consensus Protocols
for Coordinating Buyers”, in Proc. of the IEEE Conference on Decision

and Control, Maui, Hawaii, Dec. 2003, vol. 1, pp. 588–592.
[9] Fudenberg, D., Levine, D.K., The Theory of Learning in Games, MIT

Press, 1998.
[10] J.R. Marden, G, Arslan and J.S. Shamma, “Connections between

Cooperative Control and Potential Games illustrated on the Consensus
Problem. European Control Conference, 2007.

[11] Meca, A., Garcı́a Jurado, I., and Borm, P., “Cooperation and Com-
petition in Inventory Games”, Mathematical Methods of Operation

Research, vol. 57, no. 3, 2003, pp. 481–493.
[12] Meca, A., Timmer, J., Garccı́a Jurado, I., and Borm, P., “Inventory

Games”, European Journal of Operational Research, vol. 156/1 pp.
127–139, 2004.
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