
Generation of Optimal Linear Parametric Models for LFT-based

Robust Stability Analysis and Control Design

Harald Pfifer and Simon Hecker

Abstract— We present a general approach to generate a
linear parametric state-space model, which approximates a
nonlinear system with high accuracy. It is optimally suited
for LFT-based robust stability analysis and control design.
At the beginning a Jacobian-based linearization is applied to
generate a set of linearized state-space systems describing the
local behavior of the nonlinear plant about the corresponding
equilibrium points. These models are then approximated using
multivariable polynomial fitting techniques in combination with
global optimization. The objective is to find a linear parametric
model, which allows the transformation into a Linear Fractional
Representation (LFR) of least possible order. A gap metric
constraint is included during the optimization in order to
guarantee a specified accuracy of the transfer function of the
linear parametric model. The effectiveness of the proposed
method is demonstrated by a robust stability analysis for a
nonlinear generic missile model.

I. INTRODUCTION

Various dynamic systems can be described by nonlinear

differential equations

ẋ = f(x, u, p)

y = g(x, u, p)
(1)

with state vector x(t) confined to some operating region

X ⊂ R
n, input vector u and output vector y. These

systems may depend on a parameter vector p which is

either not exactly known (i.e., uncertain) or is time-varying

and belongs to an admissible parameter value set Π, i.e.,

p ∈ Π. The analysis or control design for such systems

ensuring the stability and performance requirements for all

allowable parameter variations and over the whole range of

operating conditions is a highly complex task and can be

addressed only by employing advanced techniques like µ-

analysis/synthesis [11] or Linear Parameter Varying (LPV)

control.

Therefore (1) is usually approximated by a linear paramet-

ric model of the form

ẋ = A(δ)x + B(δ)u

y = C(δ)x + D(δ)u,
(2)

where the matrices A(δ), B(δ), C(δ), D(δ) depend ratio-

nally on δ. The artificial parameter vector δ may also depend

on state variables, which allows to cover state dependent

nonlinearities in the representation given by (2), i.e. δ ∈
Π × X . Finally, (2) is transformed into a Linear Frac-

tional Representation (LFR) [11], which is required to apply
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modern robust control techniques like µ-analysis/synthesis.

These techniques are usually computationally demanding

and therefore LFRs of high accuracy and low complexity

(order) are required. Once (2) is available, very powerful

and efficiently implemented techniques [4], [5] exist for

the transformation of (2) into an nearly least order LFR.

However, the minimal achievable order of the resulting LFR

mainly depends on the complexity (order of rational or

polynomial approximations) and structure of (2). Thus the

main emphasis must be put on an optimal generation of the

linear parametric model (2) such that it is of high accuracy

and optimally fits for low order LFR generation.

For this purpose we present a general procedure, starting

with the generation of a set of linear, time-invariant (LTI)

state-space systems obtained by linearization of (1) at certain

equilibrium points (trim points). Least-squares multivariable

polynomial fitting is used to approximate the single elements

of the state-space matrices and to find a single paramet-

ric state-space system (2) covering the whole set of LTI

equilibrium models. Within the fitting process, sophisticated

methods are employed to reduce the complexity of the

polynomials by eliminating monomials with low influence on

the accuracy of the polynomials. Furthermore, the element-

wise polynomial fitting is part of a global optimization loop,

where a genetic algorithm tunes the polynomial order of

each state-space element with the objective to minimize the

overall order of the resulting LFR model. To guarantee the

accuracy of the transfer function of the parametric model,

gap-metrics between the set of equilibrium models and the

parametric model are calculated and included as additional

cost functions in the optimization loop.

It is important to emphasize that we directly choose to

minimize the overall achievable LFR order for the opti-

mization of the linear parametric model instead of reducing

the polynomial order/complexity of its single elements. This

may allow to increase the accuracy, while keeping the same

order for the resulting LFR. To see this, consider an arbitrary

matrix with two parameters

A(δ) =

[

δ2

1
a12(δ1, δ2)

0 δ2

2

]

(3)

where the entry a12 may only have small variations within a

given parameter value set. In order to reduce the complexity

of A(δ) one may therefore decide to choose a12 to be

constant. However, in terms of LFRs, one may also choose

a12 as a second order polynomial (e.g., a12 = δ1 + δ2

1
+ δ2

2
)

without increasing the resulting LFR order for A(δ).
Note, that in several cases one may directly derive (2)
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from (1) via symbolic calculations. However, especially

in aeronautical applications the nonlinear models usually

include highly nonlinear functions (neural networks, tables)

or may only be given for a discrete set of conditions (linear

aeroelastic models) such that the generation and approxima-

tion of a set of LTI state-space models is the only way to

apply modern robust control techniques.

In sections II and III we will describe the overall procedure

for the generation of "optimal" linear parametric models and

in section IV the efficiency of the procedure is demonstrated

within a robust stability analysis for a highly nonlinear

missile model.

II. BASIC PROCEDURE FOR THE GENERATION

OF LINEAR PARAMETRIC MODELS

The starting point for the generation of linear parametric

models is a nonlinear parametric model as given in (1). For

this model, a grid of m linear, time-invariant state-space

systems for a pre-specified set of equilibrium constraints

and parameter values is generated. Note, that it must be

guaranteed that all elements of the grid have coherent state,

input and output vectors. In the following the grid-point state-

space matrices with transfer matrix Gk = Dk + Ck(sI −
Ak)−1Bk are represented in concatenated form as

Sk =

[

Ak Bk

Ck Dk

]

, k = 1 . . .m. (4)

The goal is now to calculate a matrix S(δ), which approx-

imates all matrices Sk as a function of the parameter vector

δ. The basic fitting procedure is divided into three steps:

A Check if an element si,j of Sk has either only an

insignificant influence on the solution or is nearly

constant within all linear equilibrium point models.

B If an element si,j is neither constant nor insignificant,

find a polynomial approximation of the element si,j as

a function of the parameter vector δ. This step includes

a so-called rank deficient trimming of the polynomial

based on QR decomposition with column pivoting.

C Finally, perform a full rank trimming of the poly-

nomials using measurements for the significance of

individual monomials.

A. Element-wise significance check

For the first step, for each element si,j of the set of matri-

ces Sk a so-called influence coefficient ICi,j is determined.

An element has a low influence coefficient if it does not

significantly contribute to the solution (in terms of the ν-gap

metric [10]) or if it is sufficiently accurate to approximate

an element with its mean values over all equilibrium points.

Therefore for each si,j a set of concatenated state-space

matrices Ski,j
, k = 1, . . . ,m with transfer matrix Gki,j

is

generated, where all entries are equal to the entries of the

set Sk except the entry si,j , which is chosen as the mean

value of the m grid point values si,j . Finally, the influence

coefficient ICi,j of si,j is defined as

ICi,j = max
k

(δν(Gk, Gki,j
)), .k = 1, . . . ,m. (5)

Note, that in (5) the δν denotes the ν-gap metric, which is

introduced by [10] as a measurement of the distance between

two systems in terms of their closed-loop behavior. A ν-gap

metric of the value one states that two systems are far apart,

whereas zero means that they are identical.

If the influence coefficient ICi,j of a certain element si,j is

below a pre-specified threshold, then the constant mean value

is used for this entry and no polynomial fitting is performed.

B. Multivariable Polynomial Fitting

The algorithm for finding polynomial approximations of

the single matrix elements is based on a least squares fitting

by employing singular value decomposition. In addition,

sophisticated methods for trimming of redundant and in-

significant terms of the approximation as described in [6]

are implemented to ensure the simplest possible solution.

In the following the vector xi contains the numerical val-

ues of the parameter δi, y the values of the element over all

equilibrium points and b the polynomial coefficients. In a first

step, a matrix X will be built, which considers all possible

terms for a multivariable polynomial of a given order. In (6)

X for a two parametric, second order polynomial is given.

X =







1 x1,1 x2,1 x2

1,1 x1,1x2,1 x2

2,1

...
...

...
...

...
...

1 x1,m x2,m x2

1,m x1,mx2,m x2

2,m






(6)

With the above defined matrix X the following least

squares minimization problem is solved.

min
b

1

2
‖y − Xb‖

2
(7)

1

2

∂‖y − Xb‖
2

∂b
= XT Xb − XT y = 0 (8)

Since the assumption of X having full rank does not hold

especially for higher order polynomial approximations, (8)

cannot be directly solved for b by inverting XT X . Instead,

the optimal coefficients b∗ of (7) are found by means of

singular value decomposition (SVD) of X , which is defined

in the following way. For an arbitrary matrix X ∈ R
m×n,

there exist unitary, orthogonal matrices U ∈ R
m×m and V ∈

R
n×n, such that (9) is valid [11].

X = UΣV T (9)

The matrix Σ is a diagonal matrix containing the singular

values of X in descending order. The rank r of the matrix

X corresponds to the non-zero singular values, so that a

diagonal matrix Σr ∈ R
r×r can be defined which only

contains the non-zero singular values. Further, the first r

columns of U and V can be written in Ur ∈ R
m×r and

Vr ∈ R
n×r respectively, since the neglected columns do not

contribute to the result of the SVD [8].

With the so defined matrices Σr, Ur and Vr, (7) can finally

be solved for the optimal coefficients b∗.

b∗ = VrΣ
−1

r UT
r y (10)
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In case of a nearly rank deficient X , some of its singular

values are almost zero, which drastically reduces the quality

of the solution of (10). A way to deal with nearly rank

deficient matrices in case of a least squares problem is to

use a truncated SVD solution [3]. Instead of the real rank a

numerical rank is used by setting all singular values below

a specified low value to zero.

The algorithm developed in the present work iteratively

increases the polynomial order of the approximation and

computes the new polynomial coefficients by solving (10)

until either the root mean square error RMSE defined in (11)

drops below a specified maximum or the improvement in the

RMSE becomes insignificant.

RMSE =
‖e‖

2

‖y‖
2

with e = y − Xb∗ (11)

In addition to the already described polynomial fitting

based on a singular value decomposition, sophisticated trim

algorithms are integrated, in order to use as few monomials

for the approximation as possible. Since the generation of

the data matrix X includes all possible factors, some of them

might be redundant and can be omitted. For this purpose a

so-called rank deficient or nearly rank deficient trimming is

performed.

In case of nearly rank deficient trimming, a subset of

columns of X , which is numerically most linear independent

shall be found and used for solving the least square problem

[3], [6]. It is therefore possible to eliminate the redundant

columns of X which reduces the number of monomials

needed for the approximation. The rank deficient trimming

is based on QR decomposition with column pivoting. First,

the matrix of the right singular vectors V is partitioned, so

that V11 ∈ R
r×r and V21 ∈ R

n−r×r [6].

V =

[

V11 V12

V21 V22

]

(12)

V̄ =
[

V T
11

V T
21

]

diag(b∗
1
, . . . , b∗n) (13)

Then, the QR decomposition with column pivoting of V̄

can be computed.

V̄ = Q

[

R

0

]

PT (14)

With the permutation matrix P a new data matrix Z is

calculated according to (15) and the first r columns of Z are

used to refit the polynomial approximation [6].

Z = XP (15)

C. Full Rank Trimming

The full rank trimming is conducted as a final step of the

fitting algorithm after a feasible solution has been found.

Some terms of this solution may not have a significant

influence on the quality of the solution, so that they can

be eliminated. A good measurement of the significance of

certain monomials is the magnitude of the whole term, i.e.

the product of the coefficient with its corresponding column

of X . For this reason a utility factor u for a term j is defined

according to (16) [6].

uj =
‖b∗jXj‖

2

‖y‖
2

(16)

During the full rank trimming, the column corresponding

to the lowest utility factor is ommitted from X and a new set

of polynomial coefficients is calculated with the reduced X .

This procedure is repeated until the root mean square error

of the trimmed result has significantly increased with respect

to the original approximation. The threshold is specified as

the relative increase of the original RMSE in percentage.

The presented approach via singular value decomposi-

tion and trimming introduced by [6] and implemented in

this work has been compared to classical linear regression

methods as featured in the Matlab Statistics Toolbox. Both

algorithms yield similar results but the SVD-based one has

performed faster and numerically more robust in case of rank

deficient and nearly rank deficient problems in several test

cases.

III. OPTIMIZATION OF THE LINEAR

PARAMETRIC MODEL

The structured singular value computation and similar LFT

based stability analysis are computational time intensive.

Thus for an efficient analysis the availability of low order

LFRs is vital. Such an optimal, low order model which still

possesses a sufficient quality can be obtained by solving an

optimization problem. Instead of minimizing the LFR order

directly, it is approximated by a lower bound as described in

[4], which reduces the computational effort drastically.

For a given linear parametric model S(δ) with δ ∈ R
l

the lower bound can be calculated as follows: Substitute all

but one parameter δi with random values and compute a

minimal order, one parametric LFR with order mi. Note,

that for single parametric systems one can always calculate a

minimal order LFR. Repeat this procedure for all parameters.

Finally, the lower bound m is given by m =
∑l

i=1
mi.

The above defined lower bound can then be minimized

over the following optimization parameters:

• Maximum allowed RMSE for polynomial approxima-

tion

• Minimum required improvement in RMSE to increase

order of polynomial approximation

• Maximum allowed increase in RMSE during the full

rank trimming

• Tolerance for significance check of a single element

Those four parameters are written in the vector ρ for

simplification. In short terms, ρ defines the general structure

of the approximation, e.g. which elements shall be approx-

imated by polynomials, which order shall the element wise

fitted polynomials possess and which terms can be omitted.

For given numerical values of the optimization parameters,

it is first decided which elements are significant and therefore

are considered for the following polynomial approximation.
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For those elements with a sufficiently high influence coeffi-

cient multivariable polynomials are fitted by means of SVD

and trim algorithms described in the previous section.

A. Optimization with ν-Gap Metric Constraint

In addition to the minimization of the LFR order via its

lower bound, an easily verifiable criteria for the fitness of

the linear parametric model is required, in the form of a

measurement of the distance between the linear parametric

model S(δ) and the grid-point LTI models. For this, the

ν-gap metric δν already introduced at the element-wise

significance check is used, which has the advantage that it

can also be used for unstable systems.

By introducing the maximum ν-gap metric between the

linear parametric model and the set of LTI models as an

additional minimization objective δν,max, the optimization

problem can be written in the following way:

min
t

(m (ρ) + wgapδν,max (ρ)) . (17)

The weighting factor wgap is used to find a balance

between the complexity and quality of the approximation.

Due to the fact that neither m(ρ) nor δν(ρ) are continu-

ously differentiable in ρ, a gradient based optimization algo-

rithm is unsuitable and instead a global search algorithm is

used. In the present work the differential evolution algorithm

proposed by [9] and implemented in [7] is applied.

B. Optimization of the Polynomial Coefficients

Following the optimization of (17), a further reduction

of the gap between the linear parametric and the LTI

models is achieved by additional minimization of δν,max

over the polynomial coefficients. So far, aside from the

influence coefficient computation, each element has been

treated individually in the algorithm. In the end, however,

the system’s behavior reflects the quality of the solution, not

the best individual approximation. Therefore, the following

optimization problem is proposed, which can be solved by

means of gradient based algorithms.

min
Coefficients

δν,max (18)

In our procedure, the polynomial coefficients are constraint

within a ten percent band of the original solution, in order

to preserve the structure of the system.

IV. EXAMPLE: ROBUST STABILITY ANALYSIS

FOR A MISSILE MODEL

A. Structure of the Model

The missile model features a fully nonlinear description

of the plant, linear representations of the actuators and

sensors and a control system, which is scheduled by the

actual flight condition. The control system consists of a

proportional output feedback (eigenstructure assignment) as

well as an integral feedback of the control error. The com-

mand signals are the accelerations in the z- and y-direction

and the bank angle in the aerodynamic frame. Since the

sensors measure the angular rates in the body-fixed frame, a

coordinate transformation to the aerodynamic frame is also

required. The actuating signals of the plant are the deflection

angles of rudder, aileron and elevator. The basic structure

of the missile model is shown in Fig. 1. In the coordinate

transformation block the computation of the feedback error

is also incorporated.

GAct (s) GPlant (s, δ) GSen (s)

GTraf (s, δ)
GCont (s, δ)

Fig. 1. Basic Structure of the Missile Model

Due to the high degree of non-linearity, it is only possible

to analyze a limited region of the flight envelope. In the

present work, for a constant Mach number and altitude the

envelope is spanned by the incidence angle ϑ and polar angle

ϕ. This region is further divided into three subregions (see

Fig. 2), in order to allow the generation of simple parametric

models.
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Fig. 2. Regions of the Flight Envelope

For the parameter dependent parts of the missile model

linear parametric models have to be generated, which depend

rationally on ϕ and ϑ. Those parts are the plant, the control

system and the coordinate transformation. The coordinate

transformation, thereby, only contains simple trigonometric

functions, which can be expressed by Taylor series expansion

and truncation after a sufficient high order, whereas no

analytical knowledge of the plant and control system is

available (highly nonlinear functions given in tables). For

those two parts, the generation of the linear parametric model

is conducted according to the optimal approach described in

the previous sections.

In addition to the parametric dependence on ϕ and

ϑ, multiplicative complex uncertainties δAct,i ∈ C, with

‖δAct,i‖ ≤ 1 are added to the output of each of the three

actuators individually as described by (19) and illustrated in

Fig. 3. W (s) is thereby a weighting function and describes

dynamic, high frequency uncertainties.

yAct,i = (1 + δAct,iW (s))GAct,i (s)uAct,i (19)
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GAct (s) W (s) ∆Act

uAct yAct

Fig. 3. Multiplicative Complex Output Uncertainty

B. System Validation with Nonlinear Simulation

The ν-gap metric, which has been used so far as a

measurement of the fitness of the approximated linear para-

metric model, is limited to a comparison between the linear

parametric and LTI models at the grid points of the lineariza-

tion. Additionally, only the single submodels (e.g. plant,

controller) were verified and not the whole missile model.

For the purpose of a final validation of the optimized linear

parametric models, time simulations are compared with the

nonlinear simulation model making use of the tools provided

by [2].

One result of such a validation simulation is exemplarily

shown in Fig. 4. As shown in the figure, the dynamic

behavior of the linear parametric model matches the one of

the nonlinear model quite acurately.
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Fig. 4. Comparison between Nonlinear and Linear Parametric Model
covering Region 3

C. Linear Fractional Transformation of the Linear Paramet-

ric Missile Model

Parametric models S(δ) are generated independently for

the plant, controller and coordinate transformation systems

and are transformed into an upper LFR Fu by "pulling out"

the parameters δ from the systems and inserting new virtual

in- and outputs w and v as illustrated in Fig. 5 and described

in (20).

Fu (M, ∆) = M22 + M21∆ (I − M11∆)
−1

M12 (20)

M11 M12

M21 M22

∆

uy

v w

Fig. 5. Upper Linear Fractional Transformation

For the generation of the low order LFRs, the LFR toolbox

of [5] is used. The generation is carried out in three steps

[4]:

• Symbolic preprocessing of S(δ)
• Object orientated LFR generation

• Numerical order reduction

Finally, the single LFRs are joined together by LFR

operations, which are described for example in [4], [11].

Fig. 6 shows the built-up of the complete LFR consisting of

the different LFR submodels augmented by an LTI sensor

model. In order to show the efficiency of the proposed

P Act (s)

∆Act

P Plant (s)

∆Plant

GSen (s)

∆Traf

P Traf (s)
P Cont (s)

∆Cont

Fig. 6. Missile Model with Structured Uncertainties

optimal generation strategy for the linear parametric models,

the results for the model covering region 3 of Fig. 2 are

given in the following. Using the optimization process it

was possible to reduce the lower bound for the LFR order

of the plant and the controller from 25 and 11 to 15 and

7 respectively, while keeping the same maximum ν-gap

value. By employing the advanced symbolic preprocessing

methods from [4], the actual LFR model could be generated

with exactly this minimal achievable order. In addition, with

the help of a gradient based optimization of (δν,max) the

maximum ν-gap value could be reduced by further 15%.

The matrix ∆ of this LFR model is given as

∆ = diag (δAct,1, δAct,2, δAct,3, ϕI8×8, ϑI20×20) .

D. Robust Stability Analysis

The three LFR models covering the whole flight envelope

of the closed-loop generic missile model are the basis of the

following stability analysis. The structured singular value µ

[11] is calculated, which provides a necessary and sufficient

condition for robust stability. Unfortunately, an exact value

for µ can not be calculated. However, numerical methods

for calculating lower and upper bounds exist, which are

implemented in the Matlab "Robust Control Toolbox" [1].

This toolbox is utilized in the present work to conduct the

robust stability analysis of the generic missile.
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With the LFRs covering the regions depicted in Fig.2 and

employing the µ-analysis, only three analyses are required to

prove stability over the whole flight envelope for a constant

Mach number and altitude. The results of these stability

analyses are shown in Fig 7. It can be seen that the controlled

missile model is stable (µ < 1) over the considered region.
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Fig. 7. µ-Analysis of the Regions Specified in Fig.2

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A very general algorithm for generating linear parametric

models has been developed, which can be applied to arbitrary

nonlinear systems, as long as the system behavior can be

accurately described/approximated with rational parametric

state-space systems. The bases for efficient LFT based meth-

ods like µ-analysis are lean and accurate models in LFR

form. Hence, an optimization problem is derived to find an

accurate parametric approximation of the nonlinear system,

which provides an optimal structure in terms of least or-

der LFR generation. Additionally, state-of-the-art algorithms

proposed in [4] are used for the transformation of the linear

parametric model into an LFR. In the present work, this

algorithm has been successfully applied to a generic, highly

nonlinear missile model, so that robust stability has been

proven for a large region of the flight envelope by means of

the structured singular value µ.

B. Future Works

In the future the incorporation of known physical relations

in the linear parametric model generation process might

further increase the quality of the approximation and even

reduce the complexity. Furthermore, additional parametric

uncertainties, such as Mach number or mass, shall be intro-

duced into the system, to allow making further statements

about the robustness of the system.
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