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Abstract— A model predictive control approach to improve
vehicle yaw rate dynamics by means of a rear active differential
is introduced. In particular, the use of nonlinear predictive
controllers is investigated to show their effectiveness in the
vehicle stability control context. In order to allow the online
implementation of the designed predictive control law, a fast
technique based on Set Membership approximation methodolo-
gies using a Nearest Point approach is adopted. Enhancements
on stability in demanding conditions such as µ-split braking and
damping properties in impulsive maneuvers are shown through
simulation results performed on an accurate nonlinear model of
the vehicle. Improvements over a well assessed approach which
employ an enhanced IMC structure to handle input constraints
will be shown too.

I. INTRODUCTION

Vehicle yaw dynamics may show unexpected dangerous

behavior in presence of unusual external conditions such as

lateral wind force, different left-right side friction coefficients

and steering steps needed to avoid obstacles. Moreover, in

standard turning maneuvers understeering phenomena may

deteriorate handling performances in manual driving and

cause uncomfortable feelings to the human driver. Vehicle

active control systems aim to enhance driving comfort char-

acteristics ensuring stability in critical situations. Several

solutions to active chassis control have appeared in the

last years. All the proposed strategies modify the vehicle

dynamics by means of suitable yaw moments that can be

generated in different ways (see e.g. [1], [2], [3], [4], [5],

[6]). Common to all solutions is the fact that they are able to

generate limited values of the yaw moment. The immediate

consequence is that the input variable may saturate and

this could deteriorate the control performances. Moreover,

good damping properties and vehicle safety (i.e. stability)

performance can be considered as well by imposing suitable

constraints on the yaw rate ψ̇(t) and on the sideslip angle

β(t) values as described in [7]. Therefore, considering the

presence of such constraints, the employment of Model

Predictive Control (MPC) (see e.g. [8]) techniques appears to

be an appropriate approach to solve the problem. However,

the realization of MPC control laws require the online

solution of an optimization problem. Indeed, the sampling

times required for such kind of application may not allow

to perform the related optimization problem online. Never-

theless, predictive control has been successfully employed

in vehicle lateral control and vehicle stability control by

means of suitable solutions aimed at improving the online
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computational times. In particular, in [9], predictive control

techniques have been used in active steering control for an

autonomous vehicle where online linearization of the vehicle

model gave rise to an effective suboptimal solution which

allowed the online implementation. Moreover, in [10] an

interesting contribution to the problem of control allocation

in yaw stabilization has been introduced by means of non-

linear multiparametric programming where an approximate

solution obtained by means of a piecewise linear function is

used for the online implementation of the controller. In this

paper, the problem of efficient MPC implementation is solved

using an approximated control function, with lower required

computational time, derived using the Fast Model Predictive

Control (FMPC) methodology introduced and described in

[11] and [12]. In particular, the “Nearest Point” (NP) ap-

proach proposed in [12] is employed. Under this context,

the approximating function which realizes the predictive

controller is based on the offline computation of a finite

number ν of exact MPC control solutions and guarantees

stability as well as constraint satisfaction. A similar approach

has been successfully applied also in the control of semi-

active suspension systems (see [13]). In order to show in

a realistic way the effectiveness of the proposed control

approach, extensive simulation tests in demanding driving

situations will be performed using a detailed nonlinear 14

degrees of freedom vehicle model. Finally, improvements

over a well assessed approach which employ an enhanced

IMC structure to handle input constraints will be shown too.

II. VEHICLE MODELING AND CONTROL REQUIREMENTS

Vehicle dynamics can be described using the following single

track model (see e.g. [14]):

mv(t)β̇(t) +mv(t)ψ̇(t) = Fyf (t) + Fyr(t)

Jzψ̈(t) = aFyf (t) − bFyr(t) +Mz(t)
(1)

In model (1) the inputs are the yaw moment Mz and the

front steering angle δ. Moreover, m is the vehicle mass, Jz

is the moment of inertia around the vertical axis, β is the

sideslip angle, ψ is the yaw angle and v is the vehicle speed,

a and b are the distances between the center of gravity and

the front and rear axles respectively. Fyf and Fyr are the

front and rear tyre lateral forces, which can be expressed as

nonlinear functions of the other variables (see [6] and [15]

for more details):

Fyf = Fyf (β, ψ̇, v, δ)

Fyr = Fyr(β, ψ̇, v, δ)
(2)

Vehicle dynamics can be modified by means of suitable yaw

moments generated by exploiting appropriate combinations

of longitudinal and/or lateral tyre forces. In this paper, the
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required yaw moment is supposed to be generated by a Rear

Active Differential (RAD) whose clutches are actuated by

means of electric valves driven by the current i(t) originated

by the control algorithm (see [6] for a detailed description of

such device). As a first approximation, the actuator behavior

can be described by the model:

Mz(t) = KAi(t− ϑ) (3)

where KA and ϑ are the actuator gain and delay respectively.

Equations (1), (2) and (3) can be rearranged in the state

equation form:

[
ψ̈(t)

β̇(t)

]
= f(ψ̇(t), β(t), δ(t), i(t − ϑ)) (4)

The input variable i(t) is employed for control purposes,

while δ(t) is not manipulable and describes the driver’s

maneuvering intention. The control requirements in terms

of understeer characteristics improvements can be taken into

account by a suitable choice of a reference signal ψ̇ref(t)
generated by means of a nonlinear static map

ψ̇ref(t) = M(δ(t), v(t)) (5)

which uses the current values of the steering angle and of

the vehicle speed as inputs. Details on the computation of

the map M(·) can be found in [6]. In order to take into

account such reference following requirements, the control

strategy can be designed by minimizing the amount of the

error variable e(t):

e(t) = ψ̇ref(t) − ψ̇(t)

Moreover, good damping properties and vehicle safety (i.e.

stability) performance can be considered as well by imposing

suitable constraints on the yaw rate ψ̇(t) and on the sideslip

angle β(t) values as described in [7]. However, the amount

of the yaw moment generated by the employed active device

is subject to its physical limits. In particular, the considered

device has an input current limitation of ± 1 A which

correspond to the range of allowed yaw moment of ± 2500

Nm that can be mechanically generated (see [16] and [17]).

Thus, saturation aspects of the control input (i.e. the actuator

current i(t)) have to be carefully taken into account in

the control design. Therefore, considering the presence of

state and input constraints, the employment of (Nonlinear)

Model Predictive Control (NMPC) techniques appears to be

an appropriate approach to solve the problem. In the next

Section, the details of the predictive approach to yaw control

will be introduced.

III. NMPC STRATEGY FOR YAW CONTROL

In this Section it will be shown how Model Predictive

Control strategies (see e.g. [8]) can be effectively employed

in vehicle active control. The control move computation is

performed at discrete time instants kTs, k ∈ N, defined by

the sampling period Ts and on the basis of the following

state equations obtained by discretization of (4), e.g. by

means of forward difference approximation (for simplicity,

the notation k + j , (k + j)Ts will be used):

[
ψ̇k+1

βk+1

]
= f̃(ψ̇k, βk, δk, ik−r) (6)

where r is the input delay of the current i which depends on

the value of the actuator delay ϑ. Thus, at each sampling time

k, the measured values of the state ψ̇k, βk, supposed to be

available, together with the requested value of the yaw rate

reference ψ̇ref,k, and of the input variables δk, ik−1, . . . , ik−r

are used to compute the control move through the optimiza-

tion of the following performance index:

J(k) =

Np−1∑

k=0

e2k+j+1|k + ρi2k+j|k (7)

where Np ∈ N is the prediction horizon, ek+j|k is jth step

ahead prediction of the error variable obtained as

ek+j|k , ψ̇ref,k − ψ̇k+j|k

The value of ψ̇ref,k is computed using the current values

of δk and vk (see (5)). The predicted yaw rate ψ̇k+j|k is

obtained via the state equation (6), starting from the “initial

condition”: [
ψ̇k

βk

]

and using the following values of the inputs i and δ:
[

δk|k = δk+1|k = . . . = δk+Np−1|k

ik−r, . . . , ik−1, ik|k, . . . , ik+Nc−1|k, . . . , ik+Np−1|k

]

where Nc ≤ Np is the control horizon and the assumption

ik+j|k = ik+Nc−1|k, Nc ≤ j ≤ Np − 1 is made. Thus, since

during the prediction horizon the value of the steering angle

δ is kept constant at the value δk|k measured at time k,

the optimization of the index (7) is performed with respect

to the variables I = [ik|k, . . . , ik+Nc−1|k]T . Therefore the

performance index J(k) depends on the vector wk ∈ R
4+r

of the measured variables:

wk ,

[
ψ̇k, βk, δk, vk, ik−r, . . . , ik−1

]T

(8)

Thus the predictive control law is computed using a receding

horizon strategy:

1) At time instant k, get wk .

2) Solve the optimization problem:

min
I

J(k) (9a)

subject to

I ∈ I =
{
ik+j|k : |ik+j|k| ≤ ī > 0, j ∈ [0, Nc − 1]

}

(9b)

|βk+j|k| ≤ β̄ > 0, j ∈ [1, Np − 1] (9c)

3) Apply the first element of the solution sequence I as

the actual control action ik = ik|k.

4) Repeat the whole procedure at the next sampling time

k + 1.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC09.2

5361



Note that no constraints have been imposed on ψ̇, as its

limitation on the basis of criteria similar to the ones intro-

duced in [7] have been implicitly taken into account in the

computation of ψ̇ref (see [6]). Besides, the constraint on β
accounts for vehicle directional stability.

The obtained predictive controller results to be a nonlinear

static function of the variable wk defined in (8):

ik = κ0(wk) (10)

For a given wk, the value of the function κ0(wk) is computed

by solving at each sampling time k the constrained optimiza-

tion problem (9). However, such online optimization problem

cannot be solved at the sampling period required for this

application, which is of the order of 0.01 s. An approach to

overcome this problem is to evaluate offline a certain number

of values of κ0(wk) to be used to find an approximation

κNP(wk) of κ0, suitable for online implementation. Such

solution is discussed in the next Section.

IV. FAST NMPC IMPLEMENTATION

The NMPC approach described in Section III is able to

achieve optimal performance in the sense of cost function (7),

while handling input and state constraints effectively. In the

standard NMPC formulation, the solution κ0(w) is evaluated

“implicitly”, i.e. by solving the optimization problem (9) on-

line. However, as just described, a limitation in the practical

use of NMPC is given by the sampling period required by

the considered yaw control application which may be too

low for real-time optimization.

In this paper, the problem of efficient NMPC implementation

is solved using an approximated control function, with lower

required computational time, derived using the Fast Model

Predictive Control (FMPC) methodology introduced and

described in [11] and [12]. In particular, the “Nearest Point”

(NP) approach proposed in [12] is employed: such technique

makes it possible to systematically derive an approximation

κNP ≈ κ0 with a desired guaranteed approximation accu-

racy, in terms of the pointwise error ‖κ0(w) − κNP(w)‖2,

and consequently with guaranteed stability and performance

properties (see [12] for details).

A. Prior information

The a priori knowledge on the nominal control law κ0 is now

introduced. The approximating function κNP is computed

over a compact subset W ⊂ R
4+r of the domain of the

exact function κ0. Moreover, it is assumed that function κ0

is continuous in W . Results on the continuity of solutions

of nonlinear optimization problems with respect to their

parameters can be found in [18]. Note that stronger regularity

assumptions (e.g. differentiability) cannot be made, since

even in the simple case of linear dynamics, linear constraints

and quadratic cost function, κ0 is a piece-wise linear con-

tinuous function (see e.g. [19] and [20]). Inside W , a finite

number ν of points w̃ℓ, ℓ = 1, . . . , ν <∞ is suitably chosen,

giving rise to the set: Wν = {w̃ℓ ∈ W , ℓ = 1, . . . , ν}. For

each value of w̃ ∈ Wν , the corresponding value ĩ = κ0(w̃)
is computed by solving offline the optimization problem (9),

so that:

ĩ = κ0(w̃), ∀w̃ ∈ Wν (11)

Such values of w̃, ĩ are stored to be used for the online

computation of κNP. The set Wν is supposed to be chosen

such that the following property holds:

lim
ν→∞

dH(W ,Wν) = 0 (12)

where dH(W ,Wν) is the Hausdorff distance between W and
Wν , defined as (see e.g. [21]):

dH(W,Wν) =

= max

(
sup

w∈W

inf
w̃∈Wν

(‖w − w̃‖2), sup
w̃∈Wν

inf
w∈W

(‖w − w̃‖2)

)

(13)

Since both W and I are compact, the following Lipschitz

continuity property holds:

‖κ0(w1)−κ0(w2)‖2 ≤ γ‖w1−w2‖2, ∀w
1, w2 ∈ W (14)

All this prior information can be summarized by concluding

that κ0 belongs to the following Feasible Function Set

(FFS):

κ0 ∈ FFS = {κ ∈ Aγ : κ(w̃) = ĩ, ∀w̃ ∈ Wν} (15)

where Aγ is the set of all continuous functions κ : W → I,

such that (14) holds.

B. Nearest Point approximation

The approximating function κNP is computed as follows. For

any w ∈ W , denote with w̃NP a value such that:

w̃NP ∈ Wν : ‖w̃NP − w‖2 = min
w̃∈Wν

‖w̃ − w‖2 (16)

Then, the NP approximation κNP(x) is defined as:

κNP(w) = κ0(w̃NP) (17)

As showed in [12], such approximation has the following

properties:

i) the input constraints are always satisfied:

κNP(w) ∈ I, ∀w ∈ W (18)

ii) for a given ν, a bound ζ(ν) on the pointwise

approximation error can be computed:

‖κ0(w) − κNP(w)‖2 ≤ ζ =
= γ dH(W ,Wν), ∀w ∈ W

(19)

iii) ζ(ν) is convergent to zero:

lim
ν→∞

ζ = 0 (20)

Properties (18)–(20) suffice to guarantee that the stability and

performance characteristics obtained with control law κNP

are arbitrarily close to those of κ0, in terms of Euclidean

distance between their respective closed–loop trajectories

(see [11] and [12] for further details on the stabilizing prop-

erties of FMPC control laws). As regards the computation

of the Lipschitz constant γ, which is needed to compute the

approximation error bound ζNP, an estimate γ̂ can be derived

as follows:

γ̂ = inf
(
γ̃ : ĩh + γ̃‖w̃h − w̃k‖2 ≥ ĩk, ∀k, h = 1, . . . , ν

)

(21)

Such estimate guarantees that FFS 6= ∅ (since it follows as

an extension of Theorem 1 in [22]). In [12] it is showed that:

lim
ν→∞

γ̂ = γ
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C. Variable scaling

In the computation of the Hausdorff distance (13) and of NP

control law (16), (17) , the Euclidean norm ‖w̃ − w‖2 =√
(w̃ − w)T (w̃ − w) is considered to measure the distance

between w̃ and w. In [12], such choice gives good results

on a numerical example. However, in practical applications

it is usually needed to scale the variables w to adapt to

the properties of data. This is obtained using a weighted

Euclidean norm:

‖w̃ − w‖M
2 =

√
(w̃ − w)TMTM(w̃ − w) (22)

where

M = diag(mi), i = 1, . . . , 4 + r (23)

and mi ∈ (0, 1) :
4+r∑
i=1

mi = 1 are suitable scalar weights.

In [22] the issue of choosing the values of mi is considered
when the function to be approximated is differentiable. A
similar approach is now presented in the case of Lipschitz
continuous functions. For the sake of notation’s simplicity,
consider κ0(w) : R

4+r → R.
Due to the continuity assumption, function κ0 is Lipschitz
continuous with respect to each component wi of w, i =
1, . . . , n. Thus, for each value of w ∈ W there exist Lipschitz
constants γi(w), i = 1, . . . , 4 + r such that:

|κ0([v1
, wj 6=i])− κ

0([v2
, wj 6=i])| ≤ γi(w)|v1 − v

2|, ∀v
1
, v

2 ∈ Vi

where Vi = {v : [v, wj 6=i] ∈ W}. Consider now the

constants:

Γi = sup
w∈W

γi(w), i = 1, . . . , 4 + r

Estimates of Γi can be computed e.g. by performing a

preliminary differentiable approximation κ̂ ≈ κ0 (e.g. linear,

neural networks. . . ) and evaluating:

Γi ≃ sup
w∈W

|∂κ̂(w)/∂wi|

Then, the values of mi can be computed as:

mi =
Γi

4+r∑
i=1

Γi

(24)

equation (24) is derived applying normalization to the values

given by Lemma 2 in [22].

D. Design procedure

The overall design procedure for the fast NMPC approach

proposed in this paper can be resumed as follows:

1) Design the nominal NMPC control law according to

(9).

2) Choose the set W where the FMPC control law is

defined and collect the values w̃j , ĩj, j = 1, . . . , ν (11)

such that (12) holds, e.g. by performing simulations

of suitably chosen maneuvers using the closed loop

vehicle with the nominal NMPC controller.

3) Derive a preliminary smooth approximated control law

κ̂ ≈ κ0 using some identification method and evaluate

the weight matrix M (23) using (24).

4) Estimate the Lipschitz constant γ using (21), consid-

ering the scaled values ṽj = Mw̃j , j = 1, . . . , ν.

5) Evaluate the guaranteed approximation error ζ(ν)
using (19), computing the Hausdorff distance

dH(W ,Wν) (13) with the weighted Euclidean norm

‖ · ‖M
2 (22). Eventually tune the weight matrix M

and/or increase the number ν of off-line computed

values to reduce ζ(ν).
6) Implement on-line the NP approximated control law

using (16) and (17) with the weighted Euclidean norm

‖ · ‖M
2 (22).

V. SIMULATION RESULTS

The nominal predictive controller κ0 has been designed using

model (1)–(2) with the following nominal parameter values:

m = 1715 kg Jz = 2700 kgm2 a = 1.07 m b = 1.47 m

ϑA = 20 ms KA = 2500 Nm/A

To be used in the optimization algorithm, the vehicle model

has been discretized using forward difference approximation,

with sampling time Ts = 0.01 s. Therefore, since the

nominal actuator delay value is ϑ = 20ms = 2Ts, at the

generic time step k the past input values ik−1, ik−2 (i.e.

the number r of the current delay is 2) have to be used

to compute the predicted vehicle behavior. The weight ρ
in cost function (7) has been chosen as ρ = 10−6, and

the employed state and input constraints are β = 5◦ and

i = 1 A. The chosen prediction and control horizons are

Np = 100 and Nc = 5 respectively. The nominal control

move computation has been performed using a sequential

constrained Gauss-Newton quadratic programming algorithm

(see e.g. [23]), where the underlying quadratic programs

have been solved using the MatLabr optimization function

quadprog. Thus, the nominal control law at sampling time

k results to be a static function of the variables wk =
[ψ̇k βk δk vk ik−1 ik−2]

T ∈ R
6. Note that the reference yaw

rate ψ̇ref,k is not explicitly considered in the regressor vector

wk, since it is computed using a static function of δk and

vk (see [6]), which are already included in wk. The values

of w̃, ĩ in (11) have been computed performing simulations

involving an extensive set of handwheel steps and sinusoids

maneuvers. In this way, a number ν = 5.5 105 of values was

collected in the set:

W =






w :





−0.5
−0.1
−0.1
22
−1
−1




� w �





0.5
0.1
0.1
33
1
1










where the symbol � indicates element-wise inequalities. The

weights mi, i = 1, . . . , 6,
6∑

i=1

mi = 1 (24) for the NP control

approximation have been initially computed on the basis of

a preliminary linear approximation of κ0 (see [22]) and they

have been tuned through simulations. The chosen values are

m1÷6 = [0.107, 0.539, 0.352, 1.9 · 10−7, 2.6 · 10−4, 2.6 ·
10−4].
In order to test the performances obtained by the considered

yaw control approach, simulations have been performed
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using a detailed nonlinear 14 degrees of freedom Simulink

model, which gives an accurate description of the vehicle

dynamics as compared to actual measurements and includes

nonlinear suspension, steer and tyre characteristics, obtained

on the basis of measurements on the real vehicle. The fol-

lowing open loop (i.e. without driver’s feedback) maneuvers

have been chosen to test the control effectiveness:

- steer reversal test with handwheel angle of 50◦ performed

at 100 km/h, with a steering wheel speed of 400◦/s. This test

aims to evaluate the controlled car transient and steady state

performances: the employed handwheel course is showed in

Fig. 1.

- µ−split braking maneuver performed at 100 km/h with
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Fig. 1. Handwheel angle course for the 50◦ steer reversal test maneuver.

dry road on one side and icy road on the other, with braking

pedal input corresponding to a deceleration value of 0.5 g

on dry road. The objective of this test is to evaluate the

system response in presence of strong disturbances. Note

that the µ−split maneuver implies a differential left-right

change in the tyre–road friction coefficients, which was not

taken into account in FMPC design, since the maneuvers

considered in the off-line computation of the control moves

were performed with a single track model.

- steering wheel frequency sweep performed at 90 km/h

in the frequency range 0-7 Hz with steering wheel angle

amplitude of 30◦.

The performance obtained with the NP approximation tech-

nique have been compared to those of the uncontrolled

vehicle, of the nominal MPC control law and of the enhanced

IMC structure proposed in [6] for the same application,

which proved to give quite good results.

The results of the 50◦ steer reversal test are reported in Fig.

2–3. In Fig. 2 it can be noted that the approximated MPC

controller (solid line) and the nominal one (dashed-dotted)

show a very similar behavior, with only a slight difference

in the second part of the maneuver (see Fig. 2 at about

t = 6 s). Moreover, the transient performances obtained with

the proposed fast NMPC technique are better than those of

the IMC controller (dashed line, see Fig. 2 at t = 1 s, t = 4 s

and t = 7 s), which already showed very good performance

with respect to the uncontrolled vehicle (Fig. 2, dotted line).

The steady state yaw rate reference is reached and, according

0 2 4 6 8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

  Time (s)

  
Y

a
w

 R
a
te

 (
ra

d
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Fig. 2. 50◦ steer reversal test at 100 km/h. Comparison between the
reference (thin solid line) vehicle yaw rate course and those obtained with
the uncontrolled vehicle (dotted) and the IMC (dashed), nominal NMPC
(dashed–dotted) and FMPC (solid) controlled vehicles.

to the reference map (see e.g. [6]), it is higher than the

uncontrolled vehicle yaw rate, thus improving car maneu-

verability. The obtained sideslip angle β(t) is kept inside

the considered constraint, with a maximum absolute value of

2.8◦, as well as the input variable u (Fig. 3, solid line). Note

0 2 4 6 8
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Fig. 3. 50◦ steer reversal test at 100 km/h. Comparison between the input
variable u obtained with the IMC (dashed), nominal NMPC (dash-dotted)
and FMPC (solid) controllers.

that some chattering of the input variable occurs with the

FMPC control law: such phenomenon can be mitigated by

increasing the number ν of off-line computed control moves

(see [12]), at the expense of higher memory usage. Another

possibility would be the use of a “local” set membership

approximation, as described in [22], which can practically

lead to good approximation accuracy with low values of ν.

Indeed, the choice of the regressor values is a key-point

in FMPC design, especially if the regressor dimension is
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relatively high, like in the considered application. A higher

value of ν leads to better accuracy, but also to higher memory

requirements and computational costs. With the employed

NP approximation, the on-line computational time can be

greatly reduced by suitably arranging the collected data and,

in the case of uniform gridding of W , the computational

burden is independent on ν (see [12] for details). However,

uniform gridding of W may lead to excessively high ν values

and is not adopted in this application. The obtained mean

computational time for the FMPC control law is 1 ms, using

MatLabr 7 under MS Windows XP and an Intelr Core(tm)2

Duo T7700@2.4 GHz processor with 2 GB RAM. On the

same machine, the mean computational time for the online

optimization is 35 ms.

As regards the considered µ-split braking maneuver, Fig. 4

shows the vehicle trajectories obtained in the uncontrolled

case (black), with the IMC controller (white) and with the

FMPC controller (gray). It can be noted that the approxi-

mated predictive control law achieves the best performance,

since the effects of the disturbance on the vehicle path is

lower than the other cases, while the uncontrolled vehicle

is not stable. Finally, the steering wheel frequency sweep
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Fig. 4. µ − split braking maneuver at 100 km/h. Comparison between
the trajectories obtained with the uncontrolled vehicle (black) and the IMC
(white) and FMPC (gray) controlled ones.

maneuver aims to evaluate the improvement achieved by

the FMPC controlled vehicle in terms of resonance peak

reduction and bandwidth increase. In particular, the fre-

quency course of the transfer ratio:Tm(ω) = (ψ̇(ω))/(ψ̇(0))

has been analyzed, where ψ̇(ω) is the steady state yaw

rate amplitude obtained in presence of the sinusoidal 30◦

handwheel input at frequency ω, and ψ̇(0) is the steady state

yaw rate in presence of a constant handwheel input of 30◦.

The FMPC controlled vehicle has a lower resonance peak

(1.3 dB) and slightly higher bandwidth (3.5 Hz) with respect

to the case of IMC control (1.9–dB resonance peak and

3–Hz bandwidth) and of the uncontrolled vehicle (2.8–dB

resonance peak and 2.2–Hz bandwidth). Finally, note that the

enhanced IMC controller of [6] also employs a feedforward

control contribution to enhance the system transient response,

which is not needed in the case of NMPC.

VI. CONCLUSIONS

A Model Predictive Control approach to vehicle yaw control

has been introduced. In the proposed approach the predictive

controller has been realized by means of a Nearest Point

approximation using a finite number of exact offline solu-

tions. Simulation results performed on an accurate model

of the considered vehicle demonstrate the effectiveness of

the considered approach. In particular, it has been shown

that a highly damped behaviour in reversal steer maneu-

vers has been obtained; stability is guaranteed in presence

of demanding driving conditions like µ−split braking and

resonance peak has been significantly reduced in the fre-

quency response. Finally, improvements over a well assessed

approach which employ an enhanced IMC structure to handle

input constraints have been shown too.
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