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Abstract— This paper deals with real-time control under
computational constraints. A robust control approach to
control/real-time scheduling co-design is proposed using the
H∞ framework for Linear Parameter Varying (LPV) polytopic
systems. The originality consists in a new resource sharing
between control tasks according to the controlled plant per-
formances. Here the varying parameters are images of the
control performance w.r.t. the sampling frequencies. Then a
LPV based feedback scheduler is designed to adapt the control
tasks periods according to the plant behavior and to the
availability of computing resources. The approach is illustrated
with a robot-arm controller design, whose feasibility is assessed
in simulation.
Keywords: control/computing co-design, robust control, LPV
systems, resource management

I. INTRODUCTION

Optimisation of computing resources in computer-

controlled systems is a challenging problem. Current solu-

tions consist in on-line changing the algorithm or adapting

the sampling period in order to increase the flexibility by

adaptation of the processor utilisation.

This recent research field has received few attention in the

past. In [1] some sampling period dependent PID controller

is developed and a feedback scheduler based on a LQ opti-

misation of the control tasks periods is proposed to change

on-line the sampling periods of the controller according to

the resource availability. In [2] a processor load regulation

is proposed and applied for real-time control of a robot arm.

In [3], some results are given using the lifting technique

for output-feedback synthesis for LPV sampled-data systems,

where the sampling period may also be parameter varying.

Finally methods to design sampling period dependent con-

trollers have been proposed in [4] for RST ones and in [5],

[6] using the H∞ control approach LPV polytopic systems.

However in all these studies the variation of computing

resources is linked to the real-time system performance only

and not to the plant expected performances. In this paper we

will provide a methodology to design a feedback scheduling

controller which will make the resource utilization vary on

line according to the resource availability and to the plant
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trajectory. The design of the real-time control scheme is done

in the context of robust control for LPV systems.

Thanks to recent works on robust linear control [7],

[8]see and references therein, Linear Matrix Inequalities and

optimization tools (see e.g. [9], [10]) and references therein,

robust controller synthesis theory is now well established

and widely used in control applications. This approach

makes possible to tackle the non-linearities of a system by

considering them as parameter uncertainties and to build

robust controllers w.r.t. these uncertainties. LPV theory al-

lows to model the non-linearities or to make the controller

performances varying through the linear introduction of

parameters. Hence, since a decade, LPV modelling is being

increasingly used and allows to extend classical linear robust

control methodology to a larger class of systems, keeping the

usage of linear tools.

Following the preliminary results in [2] a LPV/H∞ feed-

back scheduler is designed in this paper, which is new in

the context of real-time control. The objective is to adapt on

line the control task periods (i.e. the varying parameters) not

only according to the availability of computing resources but

also to the plant performances.

In section II the need for more flexible real-time schedul-

ing is stated and some features on feedback scheduling are

given. Section III presents the main result of the paper, i.e

an original strategy for control-scheduling co-design which

consists in a LPV feedback scheduler where the varying pa-

rameter is function of the process to be controlled. This new

methodology is illustrated on a robot-arm control problem

in section IV.

II. PROBLEM STATEMENT AND STATE OF THE ART

A. The need for more flexible real-time scheduling

Embedded digital control systems use a computer to

periodically sample sensors, compute a control law and send

control signals to the actuators of a continuous time physical

process.

Implementation related issues in digital control are the

control latencies and intervals, and also timing uncertainties

such as deviations of the sampling period and computing

delays, jitter and occasional data loss [11], [12], [13]. How-

ever, a shown in [14], a robust closed-loop system is, to

some extent, able to tolerate such problems with no loss of

stability or integrity.

On the other hand the scheduling policy would give better

results when chosen based on application’s based require-

ments instead of traditional policies (such as Rate Monotonic
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for fixed priorities or Earliest Deadline First for dynamic

ones), which are not control aware but only computing aware.

Finally off-line schedulability analysis rely on a right

estimation of the tasks worst case execution time. However

in embedded systems the processors use caches and pipelines

to improve the average computing speed while decreas-

ing the timing predictability. Another source of uncertainty

may come from some pieces of the control algorithm. For

example, the duration of a vision process highly depends

on incoming data from a dynamic scene. In a dynamic

environment, some control activities can be suspended or

resumed and control algorithms with different costs can be

scheduled according to various control modes leading to

large variations in the computing load.

Thus real-time control design based on worst case exe-

cution time, maximum expected delay and strict deadlines

inevitably leads to a low average usage of the computing

resource and to a poor adaptivity w.r.t. a complex execution

environment. All these drawbacks call for a better integration

of control goals and computing capabilities through a co-

design approach.

B. About feedback scheduling

Some preliminary works have been done in the last decade

in view of control/scheduling co-design, for instance in [15]

for off-line iterative optimisation of scheduling parameters.

Concerning co-design for on-line implementation, recent

results deal with varying sampling rates in control loops in

the framework of linear systems: for example [16] show that,

while switching between two stable controllers, too frequent

control period switches may lead to unstability. Moreover

most real-life systems are non-linear and the extrapolation

of timing assignment through linearisation often gives rough

estimations of allowable periods and latencies or even can

be meaningless. In fact, the knowledge of the plant’s be-

haviour w.r.t varying sampling is necessary to get an efficient

control/scheduling co-design: the on-line combination the

control performance and implementation constraints lead to

a feedback scheduling approach.

This approach has been initiated from both the real-

time computing side [17] and the control side [1]. The

idea consists in adding to the process controller an outer

sampled feedback loop (”scheduling regulator”) to control

the scheduling parameters as a function of a QoC (Quality

of Control) measure. Indeed the objective is to increase

the control performance (via efficient resource sharing) and

robustness w.r.t timing uncertainties.

Figure 1 gives an overview of a feed-back scheduler archi-

tecture where an outer loop (the scheduling controller) adapts

in real-time the scheduling parameters from measurements

taken on the computer’s activity, e.g. the computing load.

Besides this controller working periodically (at a rate larger

than the sampling periods of the plant control tasks), the

system’s structure may evolve along a discrete time scale

upon occurrence of events, e.g. for new tasks admission

or exception handling. These decisional processes may be

handled by another real-time task, the scheduling manager,
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Fig. 1. Hierarchical control structure

which is not further detailed in this paper. Notice that such

a manager may give a reference to the controller resource

utilisation.

The design problem can be stated as control performance

optimisation under constraint of available computing re-

sources. Early results come from [18] where a problem

of optimal control under computation load constraints is

theoretically solved by a feedback scheduler, but leads to a

solution too complex to be implemented in real-time. Then

[14] shows that this optimal control problem can be often

simply implemented by computing the new tasks periods by

the rescaling:

hk+1
i = hk

i

U

Usp

where Usp is the utilisation set-point and U the estimated

CPU load. The feedback scheduler then controls the pro-

cessor utilisation by assigning task periods that optimise the

overall control performance. This approach is well suited

for a ”quasi-continuous” variation of the sampling periods

of real-time tasks under control of a preemptive real-time

operating system.

Another approach has been used in the framework of the

so-called (m,k)-firm schedulability policy, where the schedul-

ing strategy ensures the successful execution of at least m

instances of a given task (or message sending) for each time

window of length k slots. Hence a selective data drop policy

(as in [19]) or a computing power allocation to selected

tasks (as in [20]) can be used to perform optimal control

of a plant under constraint of computing or communication

limitations. This latter approach is well suited for non-

preemptive scheduling of control tasks and for networked

control systems subject to messages loss : the tasks or mes-

sages are scheduled to jointly perform congestion avoidance

and optimal control.

Finally the authors have used in [21] a LQG approach to

design the feedback scheduling controller while in [2] an

H∞ approach is proposed for a multi-task control systems,

assuming an a priori distribution of the computing resources

between the control tasks.

However the distribution is fixed and the feedback schedul-

ing strategy only ensures the use of computing resources

as a function of the resource constraints (availability). No
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plant information is used to make the resource distribution

optimal w.r.t the closed-loop performances of the plant to be

controlled by the real-time computer.

In the following section the approach in [2] is extended,

allowing to make the distribution of the computing resources

to vary according to the plant trajectory, which is new in the

context of real-time feedback scheduling.

The next section concerns the main paper result, i.e. the

design of a new methodology for real-time control. It consists

in designing a LPV feedback scheduler where the varying

parameter is function of the process to be controlled.

III. A LPV FEEDBACK SCHEDULER IN VIEW OF PLANT

CLOSED-LOOP PERFORMANCES

Feedback scheduling is a dynamic approach allowing a

better usage of the computing resources, in particular when

the workload changes (e.g. due to the activation of an

admitted new task). Here the CPU activity will be controlled

according to the resource availability by adjusting scheduling

parameters (i.e. period) of the plant control tasks. However

the use of computing resources should also be linked to

the dynamical behavior of the plant(s) to be controlled.

Indeed while controlling different subsystems in a single

computer it is natural to ensure the resource availability when

large transient behaviors occur. The main result given in

this section consists in deriving a new feedback scheduling

controller which will depend on the plant trajectory in view

of an ”optimal” resource sharing. It is designed in the

LPV/H∞ framework for polytopic systems.

Following previous authors’ results in [2], the feedback

scheduling is illustrated in Fig 2 as a dynamical system

between control task frequencies and processor utilisation.

As far as the adaptation of the control tasks is concerned,

the load of the other tasks is seen as an output disturbance.

Ur

+

−

+

Uothers

+
Plant

control tasks
fiScheduling

controller

Fig. 2. Feedback scheduling bloc diagram

We assume that the CPU utilization is measured or esti-

mated. Let us first recall that the scheduling is here limited

to periodic tasks. In this case the processor load induced by

a task is defined by U = c
h

where c and h are the execution

time and period of the task. Hence processor load induced by

a task is estimated, in a similar to way [1], for each period

hs of the scheduling controller, as:

Ûkhs
= λ Û(k−1)hs

+ (1 − λ)
ckhs

h(k−1)hs

(1)

where h is the sampling frequency currently assigned to

the plant control task (i.e. at each sampling instant khs) and

c is the mean of its measured job execution-time. λ is a

forgetting factor used to smooth the measure (here λ = 0.3).

Now for a n-multi-tasks control system, one should note

that, as shown in [22], if the execution times are constant,

then the relation, U =
∑n

i=1 Cifi (where fi = 1/hi is the

frequency of the task) is a linear function (while it would not

be the case if expressed as a function of the task periods).

Therefore, using (1), the estimated CPU load is given as:

Û(khS) =
(1 − λ)

z − λ

n
∑

i=1

ci(khS)fi(khS) (2)

However in practice, the execution-time of the control

tasks may vary according to the run-time environment (e.g.

processor speed). As proposed in [2], a ”normalized” linear

model of the task i (i.e independent on the execution time),

G′

i, is used for the scheduling controller synthesis where c is

omitted and will be compensated by on-line gain-scheduling

(1/c) as shown below.

G′

i(z) =
Û(z)

fi(z)
=

1 − λ

z − λ
, i = 1, . . . , n (3)

Also, as explained above the use of computing resources

is chosen to depend on the plant trajectory. Hence the control

scheme of computing resource control is illustrated in figure

3 for a 2-tasks control systems for simplicity.

K(z, α)

1
c2

Task2

6−

+ Task1
- ?

- H(z)Uothers

6

-Ur

+
+

+

f1

f2

1
c1

?

α

Fig. 3. Control scheme for CPU resources

In figure 3 the interval of frequencies is limited by

the ”saturation” block, α represents a set of real parame-

ters {α1, α2, . . . , αn} dedicated to the set of control tasks

{U1, U2, . . . , Un}. These parameters will be used to make

the resource sharing vary according to the plant trajectory.

For instance, in a 2 control-tasks system, where U = U1+U2,

we will require that :

U1 = αU (4)

U2 = (1 − α)U (5)

α being a varying parameter.

This makes the control scheme flexible enough to dis-

tribute on-line the use of computing resources to the different

control tasks. The choice of the value of the time-varying pa-

rameters {α1, α2, . . . , αn} can be realized by many different

ways, from on-line computation of optimal cost functions, to

a dependency on the control effort. It will be illustrated in

details in section IV for the robot-arm control example.

Here the design of the controller K(α) is done using the

H∞ control approach for LPV systems. The H∞ control

scheme to synthesize the controller K(α) is given in figure

4.
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Fig. 4. A LPV Hinf controller for CPU resources

In figure 4, G′ is the model of the scheduler, the output

of which is the vector of all task loads. To get the sum

of all task loads as in (3), we use C ′ = [1 . . . 1]. The H
transfer function represents the sensor dynamical behaviour

which measures the load of the other tasks. It may be a first

order filter. The template We specifies the performances on

the load tracking error. It is chosen in the continuous-time

domain as :

We(s) =
s/Ms + ωb

s + ωsǫ
(6)

with Ms = 2, ωs = 10rad/s, ǫ = 0.01 to obtain a closed-

loop settling time of 300ms, a static error less than 1% and

a good robustness margin.

The resource distribution is realized through the M(α)
matrix defined below. Note that for a n-multi-tasks system:

U = U1 + U2 + . . . + Un (7)

U = (α1 + α2 + . . . + αn)U (8)

where α1 + α2 + . . . + αn = 1. Then:

U1 = α1U (9)

U2 = α2U =
α2

α1
U1 (10)

U3 = α3U =
α3

α2
U2 (11)

...
... (12)

Un = αnU =
αn

αn−1
Un−1 (13)

Then to ensure the on-line distribution of the computing

resources M is chosen as follows:

M =











−α2 α1 0 . . . . . . 0
0 α3 α2 0 . . . 0
... · · · · · · · · · . . . 0

. . . · · · · · · · · · −αn αn−1











(14)

= α1M1 + α2M2 + . . . + αnMn (15)

Using [7] the LPV controller K(α) is obtained through the

solution of the H∞ control problem for polytopic systems,

and consists in solving 2 LMIs. Then the design of K(α)
can be done directly in the discrete-time domain or in the

continuous-time one and then discretized. In this paper K(α)
has been synthesized in the continuous-time domain using

the H∞ control approach for polytopic systems, as described

in the Appendix.

By solving the H∞ problem for the LPV system using the

Yalmip interface and Sedumi solver [9], [10], one obtains

γopt = 1.8885, and a controller of order 7.

IV. APPLICATION TO A ROBOT-ARM CONTROL

We consider here a seven degrees of freedom Mitsubishi

PA10 robot arm that has been previously modelled and

calibrated [2].

The problem under consideration is to track a desired

trajectory for the position of the end-effector. Using the

Lagrange formalism the following model can be obtained:

Γ = M(q)q̈ + Gra(q) + C(q, q̇) (16)

where q stands for the positions of the joints, M is the

inertia matrix, Gra is the gravity forces vector and C gathers

Coriolis, centrifugal and friction forces.

The structure of the (ideal) linearising controller includes

a compensation of the Gravity, Coriolis/centrifugal effect and

Inertia variations as well as a Proportional-Derivative (PD)

controller for the tracking and stabilisation problem, of the

form:

Γ = Gra(q) + C(q, q̇) + Kp(qd − q) + Kd(q̇d − q̇), (17)

leading to the linear closed-loop system M(q)q̈ = Kp(qd −
q) + Kd(q̇d − q̇),
where qd and q̇d stand for the reference trajectory positions

and velocities.

The controller is split in five tasks, i.e. a specific task is

considered for the PD control, the trajectory generation and

for the Gravity, Inertia and Coriolis compensations, in order

to use a multi-rate controller. In this feedback scheduling

scheme, only the periods of the compensation tasks will be

adapted, as they are time consuming compared with the PD

task while being less critical for the stability.

A. Performance evaluation of the control tasks in view of

optimal resource distribution

In order to associate the use of computing resources

with the robot trajectory, the contribution of each of the

3 control tasks to the closed-loop system performances has

been evaluated as a function of its execution period.

The methodology is the following. Assuming a nominal

sampling period for each task of 1ms, the period of each

compensation control task is changed, and new simulations

are performed during which the following cost is computed:

J =

∫ tf

ti

(Phi,hg,hc
(t)−Pref (t))2 −

∫ tf

ti

(Pc(t)−Pref (t))2

(18)

where Pref is the desired position in the operational space

of the end tip, computed from qd using the geometric model,

Pc is the position obtained when all the control tasks act with

the minimal sampling period of 1 ms. Finally Phi,hg,hc
is

the position obtained when the sampling period of one of

the compensation tasks is increased from 1 to 30 ms.

Simulations are performed for a particular robot trajectory,

defined by the reference vector (qd, q̇d) for all the robot
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joints. Here qd goes from π/2 to −π/2. We get the following

results presented in figures 5, 6 and 7, where the evolution

of the cost function J is shown for the three compensation

control task.
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Fig. 5. Cost variation due to varying sampling for gravity compensation
task
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Fig. 6. Cost variation due to varying sampling for Coriolis compensation
task

While it is difficult to infer the relations between the com-

pensation tasks execution period and the trajectory tracking

performance, a natural interpretation is as follows. First the

Gravity compensation effect is very sensitive to the increase

of the sampling period at the end of the trajectory, as the

cost increases in the second part of the trajectory (first part

of the graph as the trajectory goes from π/2 to −π/2). We

will require to ensure the availability of CPU resources to

this task, in a linear way with the trajectory position. Then

the situation is almost reverse for the Inertia effect. Finally,

even if some variations can be observed, we will ask for a

constant use of CPU resources of the Coriolis compensation

task, all along the trajectory.

We have then chosen that the distribution of control task

periods should be:

UI = αIU, UG = αGU, UC = αCU (19)

where αC = 0.25, αI = 1 − αG, and αG is linked to the

plan trajectory by:

αG = αmin + (αMax − αmin) ×
qd − qend

qini − qend

(20)
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Fig. 7. Cost variation due to varying sampling for Inertia compensation
task

where [αmin; αMax] = [0.1; 0.65], qini is the initial

position and qend the final trajectory position.

B. Simulation with TrueTime

TrueTime (www.control.lth.se/truetime/) [14]

is a MATLAB/Simulink-based simulator for real-time control

systems that eases simulation of the temporal behaviour of

a multi-tasking real-time system executing controller tasks.

The tasks are controlling processes that are modelled as

ordinary continuous-time Simulink blocks.

In this section, simulations have been performed using

TrueTime. In this application, the period of the feedback

scheduler has been fixed to 30ms to be larger than the robot

control tasks periods, which limits have been set from 1ms
to 30ms.

In the experiment depicted in figure 10 the desired CPU

usage is initially set to 50% of the maximum usage. The

upper plots show the tasks periods and CPU usage. The PD

loop period is fixed at 1ms and the trajectory generator at

5ms.

As seen in figure 10, the load of the compensation tasks

(Gravity, Coriolis and Inertia) vary on line as expected

according to the parameter αI (see figure 12). The corre-

sponding evolution of the task periods is shown in figure 11.

Moreover, in figure 13, the adaptive LPV case (α varying)

is compared with the constant case (α = 0.375). It can be

seen that the LPV case leads to a smaller cost function which

emphasizes the real interest of the provided approach.

V. CONCLUSIONS

In this paper a new approach for integrated control/real-

time scheduling has been proposed in the framework of the

robust theory for LPV systems. It consists in a LPV/H∞

feedback control of computing resources, where the varying

parameters can be linked to the controlled plant perfor-

mances. The given control structure is open enough to allow

for many plant performance criteria to be used for the

on-line variation of the parameters. Here it is illustrated

through the real-time control of a robot-arm, and the varying

parameters are in this case linked to the robot reference

trajectory, leading to a better use of computing resources
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and an increase of closed-loop performances. The provided

simulation results using TrueTime emphasize the interest and

efficiency of the proposed methodology, which highlights the

benefits of the robust control approach.

Note that, as explained in [2] and depicted in Figure 14,

the scheduling feedback loop can be easily implemented on

top of an off-the-shelf real-time operating system (e.g. Posix)

under the form of an additional real-time periodic task, i.e. a

control module which function is specified and encoded by

the control designer. The inputs are the measured execution

times of the control tasks. The set point is a desired global

computing load. Outputs are the sampling intervals of the

Gravity, Coriolis and Inertia control tasks which are triggered

by programmable timers provided by the operating system.

Thanks to the use of a hierarchical control structure, the

given results may also be integrated with existing methods

for the design of varying sampled controllers, as in [3], [6].

This makes this integrated approach easier and generic.
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