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Abstract—Recent results on reduced-order approximation
in the ν-gap metric, characterised in terms of a non-convex
feasibility problem, are investigated further. A detailed analysis
of the properties of the constituent rank constrained Linear
Matrix Inequalities, when the nominal system has an LQG-
balanced state-space realisation, reveals that it is possible to
construct a feasible point directly for a particular choice of
reduced order and ν-gap error. This gives rise to a step-wise
procedure, based on constructing an optimal approximant at
each step. While as of yet, the freedom in the parameterisation
of optimal approximants has not been exploited, the new step-
wise technique developed in this paper appears to perform
well for numerical examples, yielding approximants between
the upper and lower bounds for approximation in the ν-gap
metric.

NOTATION

The symbols R and C denote the real and complex

numbers, respectively. F
m×q denotes an m-row by q-column

matrix with entries in F, which denotes either R or C. σ̄(X)
and σ(X) respectively denote the maximum and minimum

singular values of X ∈ F
m×q, while λi(X) represents the i-

th eigenvalue (in decreasing order of size) of X . The spectral

radius, i.e. maximum eigenvalue, is denoted by rad(·). A
superscript T denotes matrix transpose, whereas ∗ denotes

complex conjugate transpose. The superscript symbol † indi-
cates the Moore-Penrose inverse of a matrix, and ⊥ denotes

the orthogonal complement of a matrix.

Rm×q denotes the transfer functions P : C → C
m×q

(a.e.), with a (state-space) realisation of the form P (s) =
C(sI − A)−1B + D, for appropriate matrices A ∈
R

n×n, B ∈ R
n×q, C ∈ R

m×n and D ∈ R
m×q (i.e. proper

real rational functions). The order of such a realisation,

denoted (A,B,C,D) is said to be n and this is minimal

if
[

λI −A B
]

and
[

λI −AT CT
]

have full row rank

for all λ = σ + jω with σ > 0. The McMillan degree

is defined as the dimension of the A matrix of a minimal

state-space realisation. Note that if a state-space realisation

is minimal then the order and McMillan degree are the

same. Given P ∈ Rm×q, the conjugate transfer function

P∼ ∈ Rq×m is defined by P∼(s) := P (−s)T (a.e.), so that

P∼(jω) = (P (jω))
∗
(a.e.). For notational convenience the

input-output dimensions are frequently suppressed.

RL∞(jR) is the space of transfer functions P ∈ R that

satisfy ‖P‖∞ := supω∈R σ̄(P (jω)) < ∞. RH∞(C+) is the
space of transfer functions P ∈ RL∞(jR) that are analytic
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(i.e. have no poles) in the open right-half plane C+. For

P ∈ RH∞(C+), ‖P‖∞ = sups∈C+
σ̄(P (s)).

I. INTRODUCTION

The ν-gap metric provides a measure of the difference be-
tween open-loop systems from the perspective of closed-loop

behaviour [1], [2], [3]. Within the context of reduced order

modeling for feedback compensator design, it is therefore

sensible to measure modeling approximation errors with the

metric. In particular, when seeking to build a model with

smaller McMillan degree than a nominal (full-order) model,

it makes sense to keep the ν-gap error small.

To date, the only known procedure for reduced-order

approximation in the ν-gap metric appeared in [2]. This

method relies on a clever application of Hankel norm ap-

proximation [4] of a normalised graph symbol of the n-th
order nominal system to construct a graph symbol for an

optimal ν-gap metric approximant of order n − r, where r
is the multiplicity of the smallest Hankel singular value of a

normalised graph symbol. Utilising the inherent freedom in

the Hankel norm construction, the reduced-order graph sym-

bol is endowed with certain properties, e.g. it is normalised

and has smaller Hankel singular values. This optimal ν-gap
approximation gives rise to a step-wise procedure for model

order reduction in the ν-gap metric. The properties of the

optimal approximation constructed at each step are chosen

to yield a reduced-order model that satisfies a priori error

bounds by applying the metric properties of the ν-gap metric.

While this step-wise method of approximation constructs

optimal approximants at each step, the upper and lower

error bounds may be loose. In some cases, the reduced-order

model obtained may have a ν-gap error near the upper bound,
while for other cases it could be towards the lower bound.

Most of the freedom in the Hankel norm approximation has

already been exploited and it is not clear how any remaining

freedom can be exploited in order to sharpen any results.

Recently, in [5], a new characterisation of the ν-gap metric
was presented in terms of Linear Matrix Inequalities (LMIs)

and a rank constraint based on operator theoretic results

developed in [6]. In this paper, a slight modification of this

new characterisation of reduced-order approximation in the

ν-gap metric is presented in Section II in terms of a non-strict
norm bound on a Linear Fractional Transformation (LFT).

The existence of the factor forming this LFT is covered in

Section III. A particular choice of this factor is exploited in

a way that allows use of standard LMI analysis techniques

in Section IV. The construction of feasible points to the rank
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constrained LMIs obtained leads to a new technique for step-

wise model order reduction in the ν-gap metric, as developed
in Section V. A numerical example is presented in Section VI

to illustrate the algorithm.

II. REDUCED ORDER APPROXIMATION IN THE ν-GAP
METRIC

Given a P0 ∈ R and a minimal state-space realisation

(A,B,C,D) of order n, a natural model reduction problem

is to seek an order k < n realisation such that the corre-

sponding transfer matrix P1 ∈ R satisfies δν(P0, P1) < β
for some (small) constant β. To this end, the ν-gap metric

formula [2]

δν(P0, P1) = inf
Q,Q−1∈L∞, wno det(Q)=0

‖G0 −G1Q‖∞, (1)

suggests the problem of reduced-order approximation can be

approached via Hankel norm approximation of a minimal

realisation for the graph symbol G0 of P0, as discussed

in [7], [2]. Indeed, it can be shown that [2, Thm 8.6]

σk+1 ≤ inf
P1∈P(k)

δν(P0, P1) ≤ uk, (2)

with sk :=
∑n−r+1

i=k+1 arcsinσi and

uk :=

{

sin (sk) , if sk < π
2 ;

1, otherwise,

where P(k) denotes the transfer matrices P1 ∈ R which

have a minimal realisation of order less than or equal to

k < n, and the n Hankel singular values σi of the normalised

right graph symbol G0 are such that

1 > σ1 ≥ . . . ≥ σn−r > σn−r+1 = . . . = σn.

Note that the upper and lower bounds coincide when k =
n − r, where r is the multiplicity of the smallest Hankel

singular value σn. In [5], a characterisation of the ν-gap
metric in terms of strict LMIs and a rank constraint (LMI-

rank) was presented. Towards using this new characterisation

to recover a result of the type given by (2), whereby for k =
n− r, the lower bound on the ν-gap metric is achievable, it
makes sense to seek an LMI-rank characterisation in terms of

non-strict inequalities. The following lemma, underpinning

the subsequent development, is a slight modification to [5,

Theorem 3], where the strict norm-bound is now non-strict

(see [8, Theorem 3.3] for a proof, which is essentially the

same as the corresponding result in [5]).

Lemma 1: Given P0, P1 ∈ R and a

β < bopt(P0) := sup
C∈R s.t. [P0,C]∈RH∞(C+)

b(P0, C),

let R,R−1 ∈ RH∞(C+) be such that

[

βI G̃∼0
]

JG

[

βI

G̃0

]

= R∼JRR, (3)

where JG is a signature matrix of the form
[

I 0
0 −I

]

and JR

is of the form
[

−I 0
0 I

]

. Then the following are equivalent:

1) δν(P0, P1) ≤ β;

2) The LFT

F (R,P1) := (R11P1 +R12)(R21P1 +R22)
−1 (4)

is such that F (R,P1) ∈ RH∞(C+) and

‖F (R,P1)‖∞ ≤ 1.

III. EXISTENCE AND SELECTION OF THE J -SPECTRAL
FACTOR

In this section the conditions for the existence of an

R,R−1 ∈ RH∞(C+) satisfying Lemma 1 are established,

utilising a minimal state-space realisation (A,B,C,D) of

P0 ∈ Rm×q . The existence of such an R for the case D = 0
was previously established in [5], and although the D 6= 0
case required here essentially follows a similar line of proof,

a particular choice of R is required to ensure that the state-

space representation of the LFT F (R,P1) can be expressed

as an affine function of the state-space matrices of P1. To

this end, let the symmetric matrices X > 0 and Y > 0 be

stabilising solutions of the generalised control and filtering

Riccati equations

X(A−BS−1DT C) + (A−BS−1DT C)T X

+ CT S̃−1C −XBS−1BT X = 0
(5)

and

(A−BDT S̃−1C)Y + Y (A−BDT S̃−1C)T

− Y CT S̃−1CY +BS−1BT = 0,
(6)

where S := I + DT D and S̃ := I + DDT .1 The positive

square roots of the eigenvalues of the product of the solutions

to (5) and (6), υi = λ
1/2
i (Y X), are called the LQG-

characteristic values of P0. The realisation (A,B,C,D)
is an LQG-balanced realisation [10], [11] if X = Y =
diag(υi) = Υ, are the solutions to (5) and (6) respectively,

with υ1 ≥ υ2 ≥ · · · ≥ υn > 0. The Hankel singular

values of a normalised graph symbol are related to the

LQG-characteristic values by σ2
i =

υ2
i

1+υ2
i

< 1, for i ∈
{1, n} [12].
By [9, Thm. 13.37], a state-space realisation for the

transfer matrix Ω0 :=
[

βIm+q

G̃0

]

in Lemma 1 is given by

Ω0(s) =





A+ LC
[

−L B + LD
]

0(m+q)×n

S̃−1/2C

βIm+q
[

−S̃−1/2 S̃−1/2D
]





=:

(

AΩ BΩ

CΩ DΩ

)

, (7)

where

L := −(BDT + Y CT )S−1. (8)

The existence of R,R−1 ∈ RH∞(C+) such that (3) holds

can be now established for β < bopt(P0), using the same

1Such solutions always exist, because (A, B, C, D) is a minimal reali-
sation [9, Corol. 13.8]
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steps as in Section IV of [5], choosing R :=
[

0 Im

Iq 0

]

Π,

where

Π :=

(

AΩ BΩ

LΠ Π∞

)

,

LΠ := J−1
qmΠ

−T
∞ (DT

ΩJlmCΩ +BT
ΩZ),

Z :=
β2

1− β2
X(I − β2

1− β2
Y X)−1 = ZT , (9)

and Π∞ is any non-singular matrix such that

DT
ΩJlmDΩ =

[

β2Im − S̃−1 S̃−1D

DT S̃−1 β2Iq −DT S̃−1D

]

= ΠT
∞JqmΠ∞.

(10)

In order to apply standard LMI analysis to the LFT

F (R,P1), a specific choice of Π∞ must be made. Let

Π∞ =

[

Π∞11 Π∞12

Π∞21 Π∞22

]

:=

[

0 β(Iq +DT (Im − β2S̃)−1D)
1
2

(S̃−1 − β2Im)
1
2 −(S̃−1 − β2Im)

− 1
2 S̃−1D

]

which is a non-singular solution of (10) if σ(D) <
√

1− β2/β, where S = I + DT D and S̃ = I + DDT .

Note that Π∞12 and Π∞21 are non-singular. For notational

convenience define

M1 := −Π−T
∞12(Π

T
∞22Π

−T
∞21 +DT ),

M2 := Π−T
∞12, M3 := Π−T

∞21,
(11)

The following lemma yields a state-space representation for

R and the LFT F (R,P1).
Lemma 2: Given a minimal state-space realisation

(A,B,C,D) for P0 ∈ Rm×q and a real β <
min{bopt(P0), 1/

√

1 + σ(D)2}, let the matrix L be

defined by (8), Z be defined by (9) and (M1,M2,M3) be
defined as in (11). Then the transfer matrix

R(s) :=





AR BR1 BR2

CR1 DR11 DR12

CR2 0 DR22



,

with

AR := A+ LC,
[

BR1 BR2

]

:=
[

−L B + LD
]

,
[

CR1

CR2

]

:=

[

−M3 0
M1 M2

] [

S̃−1C − LT Z
BT Z

]

,

[

DR11 DR12

DR21 DR22

]

:=

[

M−T
3 −M−T

3 (MT
1 M−T

2 +D)

0 M−T
2

]

,

is such that R,R−1 ∈ RH∞(C+) and (3) is satisfied.

Moreover, for any transfer matrix P1 ∈ Rm×q , with a

realisation (Â, B̂, Ĉ, D̂), the linear fractional transformation
F (R,P1) in (4) has a realisation (AF , BF , CF , DF ) that

exhibits an affine dependence on the realisation for P1. In

particular, when Â ∈ R
k×k,

(

AF BF

CF DF

)

=

(

Ā+BΦ̂C B̄ +BΦ̂D22

C̄ +D11Φ̂C D̄ +D11Φ̂D22

)

,

where Φ̂ =
[

Â B̂
Ĉ D̂

]

,

Ā :=

[

Ā11 0
0 0k

]

, B̄ :=

[

−BR2D
−1
R22

0k×q

]

, B :=

[

0 BR1

Ik 0

]

,

C̄ :=
[

−CR1 +DR12D
−1
R22CR2 0m×k

]

, D̄ := DR12D
−1
R22,

C :=

[

0 Ik

−D−1
R22CR2 0

]

,

D11 :=
[

0m×k −DR11

]

, D22 :=

[

0k×q

−D−1
R22

]

,

and Ā11 := AR −BR2D
−1
R22CR2.

Proof: The proof follows by performing standard state-

space manipulations to yield the state-space realisation for

F (R,P1). See [8, Section 3.2] for further details.

IV. A RANK-CONSTRAINED LMI CHARACTERISATION

In this section, Lemma 1 and Lemma 2 are exploited,

via standard LMI analysis [13], to obtain a rank constrained

LMI sufficient condition which characterises the existence

of a transfer matrix P̂ ∈ P(k) that lies within a specified

ν-gap distance of a nominal transfer matrix P ∈ P(n). The
development of this sufficient condition follows closely that

in [5]. When k < n, P(k) ⊂ P(n), and this characterisation
is of a reduced-order model P̂ that approximates P to within

a given bound on the ν-gap error.

Theorem 3: Given a transfer matrix P ∈ Rm×q,

with a minimal realisation (A,B,C,D) of order n (i.e.

A ∈ R
n×n), and given a number 0 < β <

min{bopt(P ), 1/
√

1 + σ(D)2}, let the matrix L be as de-

fined in (8) and Z be as defined in (9). Then there exists a

P̂ ∈ P(k) ⊂ Rm×q, where k < n, such that δν(P, P̂ ) ≤ β
if there exists matrices Ξ = ΞT > 0 and Ψ = ΨT > 0 such

that

ΞAΞ +AT
ΞΞ + SΞ ≤ 0 (12)

AΨΨ+ΨAT
Ψ + TΨ ≤ 0 (13)

[

Ξ I
I Ψ

]

≥ 0 (14)

and rank(Ξ−Ψ−1) ≤ k, (15)

where

AΞ := A+ LC, AΨ := AΞ +
[

L B
]

S̄

[

LT Z − S̃−1C
BT Z

]

,

SΞ :=

[

LT Z − S̃−1C
BT Z

]T

S̄

[

LT Z − S̃−1C
BT Z

]

,

TΨ := −
[

L B
]

S̄

[

LT

BT

]

,

S̄ :=
1

1− β2

[

S̃ D
DT Iq − 1

β2 S−1

]

,

S := I +DT D and S̃ := I +DDT .

Proof: The proof follows using standard LMI analy-

sis [14] of the state-space realisation of the LFT F (R, P̂ ),
Schur complement arguments, the non-strict version of the
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Elimination Lemma given in [15] and the sufficient non-

strict bounded real LMI condition in [8, Lemma B.4]. See [8,

Section 3.3] for details.

Given a feasible point in the set of matrices defined by the

rank constrained LMI condition, a state-space realisation for

P̂ can be constructed explicitly, from a family of realisations

parameterised in an affine fashion.

Theorem 4: For any matrices Ξ > 0 and Ψ > 0 that

satisfy the conditions in Theorem 3, and defining

Ξ2Ξ
T
2 := Ξ−Ψ−1 ≥ 0,

X :=

[

Ξ Ξ2

ΞT
2 I

]

, H :=





ĀT X +XĀ XB̄ C̄T

B̄T X −I D̄
C̄ D̄ −I



 ,

UX :=
[

BT X 0 DT
11

]

, V :=
[

C D22 0
]

,

where the matrices Ā, B̄, and so on, are defined in Sec-

tion III, a realisation (Â, B̂, Ĉ, D̂) of order k for P̂ such

that δν(P, P̂ ) ≤ β is given by

Φ̂ =

[

Â B̂

Ĉ D̂

]

:= Φ̂0 + Φ̂1ΓΦ̂2,

where

Φ̂0 := (VW UT
X)
−1(H23H

†
33H

T
13 −HT

12)(V UT
W )−1

Φ̂1 := (VW UT
X)
−1(H23H

†
33H

T
23 −H22)

1/2

Φ̂2 := (H12H
†
33H

T
13 −H11)

1/2(V UT
W )−1

W⊥ :=
[

UT
X V T

]⊥
, UW :=

[

UT
X W⊥T

]⊥

VW :=
[

V T W⊥T
]⊥





H11 H12 H13

HT
12 H22 H23

HT
13 HT

23 H33



 :=





UW

VW

W⊥



H





UW

VW

W⊥





T

and Γ is an arbitrary matrix such that ‖Γ‖ ≤ 1.
Proof: See [8, Theorem 3.13].

In the next section, it is shown how to constructively obtain,

for sufficiently large β, feasible Ξ and Ψ satisfying Theo-

rem 3 by exploiting the structure of the LMIs in the case

k = n−r, where r is the multiplicity of the smallest Hankel
singular value of a normalised graph symbol of P ∈ R. This
gives rise to the step-wise model order reduction procedure

developed therein.

V. A STEP-WISE PROCEDURE FOR MODEL ORDER

REDUCTION

In this section, a step-wise technique for model order

reduction in the ν-gap metric is developed, utilising an

explicitly constructed feasible point to Theorem 3 at each

step. In particular, if an initial LQG-balancing of the state-

space realisation of P is performed, feasible Ξ, Ψ can be

explicitly expressed in terms β and the LQG-characteristic

values υi : 1 ≤ i ≤ n.
Lemma 5: Given P ∈ R with a state-space realisation

that is LQG-balanced with LQG-characteristic values υ1 ≥

. . . ≥ υn−r > υn−r+1 = . . . = υn > 0, the positive definite
matrices

Ξ = (1 + υ2
n)× diag

(

υi

(1 + υ2
i )(1− υ2

nυ2
i )

)

Ψ = (1 + υ2
n)× diag

(

υi(1− υ2
nυ2

i )

(1 + υ2
i )υ

2
n

)

satisfy the LMI and rank conditions of Theorem 3 for β =
υn√
1+υ2

n

and k = n− r.

Proof: The proof follows using the definitions of Ξ and

Ψ, some lengthy algebra, and the observation that

ΞAΞ +AT
ΞΞ + SΞ = 0

AΨΨ+ΨAT
Ψ + TΨ = 0.

So Ξ and Ψ satisfy the LMIs but not necessarily the rank

constraint in Theorem 3 for any β < bopt(P ). However,
setting β = υn√

1+υ2
n

= σn, gives

ΞΨ =
(1 + υ2

n)
2

υ2
n

× diag

(

υ2
i

(1 + υ2
i )

2

)

,

which has r eigenvalues equal to one, and n− r eigenvalues

greater than one. Thus the rank constraint (15) is also

satisfied for k = n− r for this value of β.
The feasible Ξ, Ψ from Lemma 5 in fact characterise

the P̂ ∈ P(k) that satisfy the optimal lower ν-gap error

bound (2) for a given full-order model P ∈ P(n), and
k = n− r, where r is the multiplicity of the smallest LQG-

characteristic value of P .

Theorem 6: Given a P ∈ R with McMillan degree n, with
LQG characteristic values υ1 ≥ . . . ≥ υn−r > υn−r+1 =
. . . = υn > 0, there exists a P̂ ∈ P(k), where k = n − r,
such that

δν(P, P̂ ) =
υn

√

1 + υ2
n

= σn,

where σn is the smallest Hankel singular value of a right (or

left) normalised graph symbol of P . Furthermore, such P̂
are given by Theorem 4.

Proof: Lemma 5 gives feasible Ξ and Ψ for Theorem 3,

when β = υn√
1+υ2

n

= σn. Thus, by Theorem 4, a P̂ of order

k = n − r can be constructed, with an arbitrary choice

of ‖Γ‖ ≤ 1 such that δν(P, P̂ ) ≤ υn√
1+υ2

n

= σn. But,

by (2) which states that the ν-gap between P and P̂ in this

case cannot be smaller than σn, this inequality must be an

equality.

Reduced-order transfer matrices satisfying Theorem 6 can be

parameterised by Theorem 4 in terms of an arbitrary matrix

‖Γ‖ ≤ 1– i.e. there is freedom in the choice of such a P̂ .

Although the exploitation of this is not yet fully understood

note the affine dependence of the realisation matrix Φ̂ on the

“free” parameter Γ.
A sequential step-wise scheme is now introduced, based

on constructing a feasible Ξ and Ψ at each step, to obtain a

reduced order model with a computable ν-gap error bound

for a desired k < n − r. The reduced order model con-

structed at each step is optimal in that the lower bound
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in (2) is achieved. To this end, consider a P ∈ P(n) and
applying Lemma 5 to repeatedly construct a sequence of

feasible points to satisfy Theorem 3, generating a sequence

of approximants P̂0, · · · , P̂j such that

order{P̂j} = n−
j−1
∑

i=0

ri, P̂0 := P,

where order{·} denotes the order of a transfer matrix and rj

is the multiplicity of the smallest LQG-characteristic value

for the model P̂j . For simplicity, if ri = 1 for all i, then
the number of iterations required is n− k, and

order{P̂j} = n− j.

As the ν-gap metric obeys the triangle inequality (and a

tighter trigonometric inequality involving arcsines [1, Theo-

rem 3.1]), it can be readily seen that the repeated application

of Lemma 5 yields the following bound

δν(P, P̂ ) ≤ sin

(

n−k
∑

i=0

arcsin(δν(P̂i, P̂i+1))

)

≤
n−k
∑

i=0

δν(P̂i, P̂i+1). (16)

The following algorithm summarises the step-wise technique.

Algorithm 7: Given a minimal LQG-balanced realisation

(A,B,C,D) for P ∈ Rm×q, of order n, a reduced-order

P̂ ∈ Rm×q , of order k, that satisfies (16) can be constructed
in the following manner:

1) Set i = 0, n0 = n, P̂0 = P ;

2) Set βi =
υni√
1+υ2

ni

, where υni
has multiplicity ri, and

ni = order(P̂i);
3) Construct Ξ, Ψ using Lemma 5 for ki := ni − ri;

4) Construct Φ̂i+1 =
[

Âi+1 B̂i+1

Ĉi+1 D̂i+1

]

by Theorem 4 with

Γ = 0;
5) Perform LQG-balancing on P̂i+1 :=

(Âi+1, B̂i+1, Ĉi+1, D̂i+1);
6) Store δν(P̂i, P̂i+1) ≡ βi;

7) If ni+1 := order(P̂i+1) ≤ k, set P̂ = P̂i+1, stop;

8) Set i = i+ 1; loop from step 2;

Note that, while producing a reduced-order model that satis-

fies the ν-gap metric error bound in (16), this bound is not

an a priori bound. In step 4, the “central” solution Φ̂ from

Theorem 4 is used, with Γ = 0. The key to obtaining an a

priori upper bound on the ν-gap error would be to somehow
exploit the freedom associated with Γ in Theorem 4 so that

at each step there is a reduction in the size of the LQG-

characteristic values of the synthesised realisation of P̂i+1.

This is a topic of ongoing research.

VI. EXAMPLES

In this section, the algorithm developed in Section V

will be put to use for reduced-order modeling in the ν-gap
metric. In particular, the step-wise technique described by

Algorithm 7 will be compared to a step-wise iterative method

based on Hankel norm approximation of a normalised graph

symbol from [2, Section 8.2] (HankG) within the context of

an example system. In particular, we consider a reduced-

order approximation of a MIMO model of a distillation

column with I/O delays, taken from MATLAB (see [16] for

more details). The distillation column is used to separate a

mix of methanol and water (the feed) into bottom products

(mostly water) and a methanol-saturated distillate. The reg-

ulated output variables are:

• Percentage XD of methanol in the distillate;

• Percentage XB of methanol in the bottom products.

The goal is to maximise XD by designing a controller that

adjusts the reflux flow rate R and the steam flow rate S in

the re-boiler. To obtain a linearised model around the steady-

state operating conditions, the transient responses to pulses

in steam and reflux flow are fitted by first-order plus delay

models. The resulting transfer function model is

[

XD(s)
XB(s)

]

=

[

12.8e−1s

16.7s+1
−18.9e−3s

21.0s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1

]

[

R(s)
S(s)

]

=: Ptd

[

R(s)
S(s)

]

,

where the exponential transfer function e−sT is the Laplace

transform of a T second delay. This irrational transfer

function Ptd can be approximated by a rational transfer

function P using a Padé [17] approximation. Choosing :

• a 3-rd order Padé approximation for the 1 second and

3 second delays;

• a 5-th order Padé approximation for the 7 second delay;

yields an approximate transfer matrix P with a minimal state-

space realisation of order 15. It is desired to approximate

P , using the ν-gap metric as a measure of approximation

error, for instance in order to design a low-order feedback

controller with sufficient performance with the full-order

model.

The bounds for the best possible approximation in the ν-
gap metric are calculated via (2) for this system and given

in Table I. It can be seen that a reduction to a 9-th order

inf
P̂∈P(k) δν(P, P̂ )

Order (k) Lower bound Upper bound

12 0.002954 0.005614
11 0.005375 0.010988
10 0.044564 0.055538
9 0.050754 0.106143
8 0.142019 0.246283
7 0.201343 0.436380

TABLE I

Upper and lower ν-gap bounds for distillation column.

system would appear to provide a good balance between the

order of the approximation and the ν-gap error.

Table II gives the results of applying both step-wise model

order reduction procedures, HankG and Algorithm 7, to the

distillation column, which has bopt(P ) = 0.2851. These are
also shown graphically in Figure 1. Note that Algorithm 7

yields approximants nearer the lower error bound even
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Algorithm 7 HankG

Order (k) δν(P, P̂ ) sin
∑

i
arcsin(δν(P̂i, P̂i+1)) δν(P, P̂ )

12 0.0036 0.0047 0.0056
11 0.0061 0.0088 0.0101
10 0.0483 0.0531 0.0537
9 0.0557 0.0784 0.1028
8 0.1805 0.2130 0.2258
7 0.2766 0.3457 0.4142

TABLE II

Comparison of step-wise methods for approximating distillation column.

7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

k

δ
ν

Fig. 1. ν-gap approximation bounds for distillation column : (△)

inf
P̂∈P(k) δν(P, P̂ ) lower bound; (▽) inf

P̂∈P(k) δν(P, P̂ ) upper

bound; (+) δν(P, P̂ ) using HankG; (∗) δν(P, P̂ ) using Alg. 7.

though we are just simplistically using Γ = 0 at each step,

while HankG yields approximants towards the upper error

bound.

A plot of the function κ(P, P̂ )(jω), which represents

the point-wise chordal distance [2] between the full-order

nominal model and the approximate model, is shown in

Figure 2. Due to the fact that

δν(P, P̂ ) = sup
ω∈R

κ(P, P̂ )(jω),

which along with Figure 2, shows that a smaller ν-gap error
is indeed possible if the value of κ(jω) is sacrificed slightly
around cross-over. Although HankG has smaller κ around

cross-over, i.e. better approximation, it yields a higher ν-gap
error than Algorithm 7 overall.

VII. CONCLUSIONS

While as of yet, the freedom in the parameterisation

of optimal approximants has not been exploited, the new

step-wise technique for approximation in the ν-gap metric

presented in this paper appears to perform well for numerical

examples, yielding approximants between the upper and

lower approximation bounds. In particular, for SISO systems,

the algorithm from [2] and the new step-wise method yield

identical results– see [8]. For MIMO systems, numerical

experience generally shows improvement in the actual ν-gap
error obtained over [2], so far without exploiting any of the

freedom in the optimal approximant at each step. Further

work lies in choosing a particular optimal approximant
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Fig. 2. κ(P, P̂ )(jω) for 9-th order approximation of distillation column :
(dashed) HankG; (solid) Alg. 7.

to satisfy additional desired properties or achieve certain

objectives.
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