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Abstract— This paper presents the central finite-dimensional
H∞ filters for linear systems with state and measurement
delays, that are suboptimal for a given threshold γ with respect
to a modified Bolza-Meyer quadratic criterion including the
attenuation control term with the opposite sign. The paper
first presents the central suboptimal H∞ filter for linear sys-
tems with state and measurement delays, which consists, in
the general case, of an infinite set of differential equations.
Then, the finite-dimensional central suboptimal H∞ filter is
designed in case of linear systems with commensurable state
and measurement delays, which contains a finite number of
equations for any fixed filtering horizon; however, this number
still grows unboundedly as time goes to infinity. To overcome
that difficulty, the alternative central suboptimal H∞ filter is
designed for linear systems with state and measurement delays,
which is based on the alternative optimal H2 filter from [39].
Numerical simulations are conducted to verify performance of
the designed central suboptimal filters for linear systems with
state and measurement delays against the central suboptimal
H∞ filter available for linear systems without delays.

I. INTRODUCTION

Over the past two decades, the considerable attention has

been paid to the H∞ estimation problems for linear and

nonlinear systems with and without time delays. The seminal

papers in H∞ control [1] and estimation ([2]–[4]) established

a background for consistent treatment of filtering/controller

problems in the H∞-framework. The H∞ filter design implies

that the resulting closed-loop filtering system is robustly

stable and achieves a prescribed level of attenuation from

the disturbance input to the output estimation error in L2/l2-

norm. A large number of results on this subject has been

reported for systems in the general situation, linear or

nonlinear (see ([5]–[13]). For the specific area of linear

time-delay systems, the H∞-filtering problem has also been

extensively studied (see [14]–[34]). The sufficient conditions

for existence of an H∞ filter, where the filter gain matrices

satisfy Riccati equations, were obtained for linear systems

with state delay in [35] and with measurement delay in

[36]. However, the criteria of existence and suboptimality

of solution for the central H∞ filtering problems based on

the reduction of the original H∞ problem to the induced H2
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one, similar to those obtained in [1], [4] for linear systems

without delay, remain yet unknown for linear systems with

state and measurement delays.

The paper first presents the central suboptimal H∞ filter

for linear systems with state and measurement delays, based

on the optimal H2 filter from [37], which consists, in the

general case, of an infinite set of differential equations. In

contrast to the results previously obtained for linear systems

with state [35] or measurement delay [36], the paper reduces

the original H∞ filtering problem to the corresponding H2

(mean-square) filtering problem, using the technique pro-

posed in [1]. To the best authors’ knowledge, this is the first

paper which applies the reduction technique of [1] to linear

systems with both, state and measurement, delays. Indeed,

application of the reduction technique makes sense, since

the optimal filtering equations solving the H2 (mean-square)

filtering problems have been obtained for linear systems with

state and measurement delays [38], [37]. Then, the finite-

dimensional central suboptimal H∞ filter is designed in case

of linear systems with commensurable state and measure-

ment delays, which contains a finite number of equations

for any fixed filtering horizon; however, this number still

grows unboundedly as time goes to infinity. To overcome

that difficulty, the alternative central suboptimal H∞ filter

is designed for linear systems with state and measurement

delays, which is based on the alternative optimal H2 filter

from [39]. The alternative filter contains only two differential

equations for determining the estimate and filter gain matrix,

regardless of the filtering horizon.

II. H∞ FILTERING PROBLEM STATEMENT FOR LTV

SYSTEMS WITH STATE AND MEASUREMENT DELAYS

Consider the following continuous-time LTV system with

state and measurement delays:

S1 : ẋ(t) = A(t)x(t −h)+B(t)ω(t), (1)

y(t) = C(t)x(t − τ)+D(t)ω(t), (2)

z(t) = L(t)x(t), (3)

x(θ) = ϕ(θ), ∀θ ∈ [t0 −h, t0] (4)

where x(t) ∈ R
n is the state vector, z(t) ∈ R

q is the sig-

nal to be estimated, y(t) ∈ R
m is the measured output,

ω(t) ∈ L
p

2 [0,∞) is the disturbance input. A(·), B(·), C(·),
D(·), and L(·) are known continuous functions. ϕ(θ) is an

unknown vector-valued continuous function defined on the

initial interval [t0−h, t0]. The state delay h and measurement

delay τ are known.
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For the system (1)–(4), the following standard conditions

([4]) are assumed:

• the pair (A,B) is stabilizable; (C1)
• the pair (C,A) is detectable; (C2)
• D(t)BT (t) = 0 and D(t)DT (t) = Im. (C3)

Here, Im is the identity matrix of dimension m × m. As

usual, the first two conditions ensure that the estimation

error, provided by the designed H∞ filter, converge to zero

([40]). The last noise orthonormality condition is technical

and corresponds to the condition of independence of the

standard Wiener processes (Gaussian white noises) in the

stochastic filtering problems ([41]).

Now, consider a full-order H∞ filter in the following form

(S2):

S2 :ẋ f (t) = A(t)x f (t −h)+K f (t)[y(t)−C(t)x f (t − τ)],(5)

z f (t) = L(t)x f (t), (6)

where x f (t) is the filter state. The gain matrix K f (t) is to be

determined.

Upon transforming the model (1)-(3) to include the states

of the filter, the following filtering error system is obtained

(S3):

S3 : ė(t) = A(t)e(t −h)+B(t)ω(t)−K f (t)ỹ(t), (7)

ỹ(t) = C(t)e(t − τ)+D(t)ω(t), (8)

z̃(t) = L(t)e(t), (9)

where e(t) = x(t)− x f (t), ỹ(t) = y(t)−C(t)x f (t − τ), and

z̃(t) = z(t)− z f (t).
Therefore, the problem to be addressed is as follows:

develop a robust H∞ filter of the form (5)-(6) for the LTV

system with state delay (S1), such that the following two

requirements are satisfied:

1) The resulting filtering error dynamics (S3) is robustly

asymptotically stable in the absence of disturbances,

ω(t) ≡ 0;

2) The filtering error dynamics (S3) ensures a noise

attenuation level γ in an H∞ sense. More specifically,

for all nonzero ω(t) ∈ L
p

2 [0,∞), the inequality

‖z̃(t)‖2
2 < γ2

{

‖ω(t)‖2
2 +‖ϕ(θ)‖2

2,R,[−h,0]

}

(10)

holds, where ‖ f (t)‖2
2 =

∫ ∞
t0

f T (t) f (t)dt,

‖ϕ(θ)‖2
2,R,[t0−h,t0] =

∫ t0
t0−h ϕT (θ)Rϕ(θ)dθ , R is a pos-

itive definite symmetric matrix, and γ is a given real

positive scalar.

III. DESIGN OF CENTRAL H∞ FILTER FOR LTV SYSTEMS

WITH STATE AND MEASUREMENT DELAYS

The proposed design of the central H∞ filter (see Theorem

4 in [1]) for LTV systems with state and measurement delays

is based on the general result (see Theorem 3 in [1]) reducing

the H∞ controller problem to the corresponding H2 (i.e.,

optimal linear-quadratic) controller problem. In this paper,

only the filtering part of this result, valid for the entire

controller problem, is used. Then, the optimal mean-square

filter of the Kalman-Bucy type for LTV systems with state

and measurement delays [37] is employed to obtain the

desired result, which is given by the following theorem.

Theorem 1. I. The central H∞ filter for the unmeasured

state (1) over the observations (2), ensuring the H∞ noise

attenuation condition (10) for the output estimate z f (t), is

given by the equations for the state estimate x f (t) and the

output estimate z f (t)

ẋ f (t) = A(t)x f (t −h)+P0(t)C
T (t)[y(t)−C(t)x f (t − τ)],(11)

z f (t) = L(t)x f (t), (12)

with the initial condition x f (θ) = 0 for ∀θ ∈ [t0 − h, t0],
and the system of the equations for the matrices Pk(t),
k = . . . ,−1,0,1, . . .,

dPk(t)/dt = A(t)Pk−1(t −h)+Pk+1(t)A
T (t − τ − kh)+ (13)

(1/2)[B(t)BT (t − τ − kh)+B(t − τ − kh)BT (t)]−

(1/2)[P0(t)C
T (t)(D(t)DT (t − τ − kh))−1C(t − τ − kh)×

PT
0 (t − τ − kh)− γ−2P0(t)L

T (t)L(t − τ − kh)P0(t − τ − kh)−

γ−2P0(t − τ − kh)LT (t − τ − kh)L(t)P0(t)+

P0(t−τ−kh)CT (t−τ−kh)(D(t−τ−kh)DT (t))−1C(t)PT
0 (t)].

with the initial conditions P0(t0) = R−1 and Pk(θ) = 0, k 6= 0,

θ ∈ [max{t0 −h, t0 + τ +(k−1)h},max{t0 + τ + kh, t0}].

II. If the state delay h in (1) and the measurement delay

τ in (2) are commensurable, that is, τ = qh, q = 1,2, . . . is a

natural number, then the equation (11) for the state estimate

x f (t) and the system of equations (13) for the matrices Pk(t),
k = −q,−q + 1, . . . ,0,1, . . ., take the following simplified

form

ẋ f (t) = A(t)x f (t −h)+P0(t)C
T (t)[y(t)−C(t)x f (t −qh)],

(14)

dPk(t)/dt = A(t)Pk−1(t −h)+Pk+1(t)A
T (t − (q+ k)h)+

(15)

(1/2)[B(t)BT (t − (q+ k)h)+B(t − (q+ k)h)BT (t)]−

(1/2)[P0(t)C
T (t)(D(t)DT (t − (q+ k)h))−1×

C(t − (q+ k)h)PT
0 (t − (q+ k)h)−

γ−2P0(t)L
T (t)L(t − (q+ k)h)P0(t − (q+ k)h)−

γ−2P0(t − (q+ k)h)LT (t − (q+ k)h)L(t)P0(t)+

P0(t − (q+ k)h)CT (t − (q+ k)h)(D(t − (q+ k)h)DT (t))−1×

C(t)PT
0 (t)], k = −q+1, . . . ,0,1, . . . ,

dP−q(t)/dt = A(t)PT
−q+1(t)+P−q+1(t)A

T (t)+B(t)BT (t)+

γ−2P0(t)L
T (t)L(t)P(t)−P0(t)C

T (t)C(t)PT
0 (t), k = −q,

with the same initial conditions as in (11),(13). If the current

filtering horizon t belongs to the semi-open interval (t0 +(k+
q)h, t0 +(k +q+1)h], where h is the state delay in (1), then

the number of equations in (15) is equal to k +q.

Proof. I. First of all, note that the filtering error system (7)-

(9) is already in the form used in Theorem 3 from [1]. Hence,
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according to Theorem 3 from [1], the H-infinity filtering part

of this H∞ controller problem would be equivalent to the

H2 (i.e., optimal mean-square) filtering problem, where the

worst disturbance wworst(t) = γ−2BT (t)Q(t)e(t) is realized,

and Q(t) is the solution of the equation for the corresponding

H2 (optimal linear-quadratic) control gain. Therefore, the

system, for which the equivalent H2 (optimal mean-square)

filtering problem is stated, takes the form

S4 : ė(t) = A(t)e(t −h)+ γ−2B(t)BT (t)Q(t)e(t) (16)

− K f (t)ỹ(t),

ỹ(t) = C(t)e(t − τ)+ γ−2D(t)BT (t)Q(t)e(t),(17)

z̃(t) = L(t)e(t). (18)

As follows from Theorem 3 from [1] and Theorem 1 in

[37], the H2 (optimal mean-square) estimate equations for

the error states (16) and (18) are given by

S5 : ė f (t) = A(t)e f (t −h)−K f (t)ỹ(t) (19)

+ P(t)CT (t)[ỹ(t)−C(t)e f (t − τ)],

z̃ f (t) = L(t)e f (t), (20)

where e f (t) and z̃ f (t) are the H2 (optimal mean-square)

estimates for e(t) and z̃(t), respectively. In the equation (19),

P(t) is the solution of the equation for the corresponding

H2 (optimal mean-square) filter gain, where, according to

Theorem 3 from [1], the observation matrix C(t) should be

changed to C(t)− γ−1L(t) (L(t) is the output matrix in (3)).

It should be noted that, in contrast to Theorem 3 from [1],

no correction matrix Z∞(t) = [In − γ−2P(t)Q(t)]−1 appears

in the last innovations term in the right-hand side of the

equation (19), since there is no need to make the correction

related to estimation of the worst disturbance wworst(t) in the

error equation (16). Indeed, as stated in ([4]), the desired

estimator must be unbiased, that is, z̃ f (t) = 0. Since the

output error z̃(t), satisfying (18), also stands in the criterion

(10) and should be minimized as much as possible, the worst

disturbance wworst(t) in the error equation (16) should be

plainly rejected and, therefore, does not need to be estimated.

Thus, the corresponding H2 (optimal mean-square) filter

gain would not include any correction matrix Z∞(t). The

same situation can be observed in Theorems 1–4 in [4].

However, if not the output error z̃(t) but the output z(t)
itself would stand in the criterion (10), the correction matrix

Z∞(t) = [In − γ−2P(t)Q(t)]−1 should be included.

Taking into account the unbiasedness of the estimator (19)-

(20), it can be readily concluded that the equality K f (t) =
P(t)CT (t) must hold for the gain matrix K f (t) in (5). Thus,

the filtering equations (5)-(6) take the final form (11)-(12),

with the initial condition x f (θ) = 0 for ∀θ ∈ [t0 − h, t0],
which corresponds to the central H∞ filter (see Theorem 4

in [1]). It is still necessary to indicate the equations for the

corresponding H2 (optimal mean-square) filter gain matrix

P(t) = P0(t). In accordance with Theorem 1 from [37], the

filter gain matrix P(t) = P0(t) is given by one of the equations

(13), where k = 0, with the initial condition P(t0) = R−1,

which corresponds to the central H∞ filter (see Theorems

3 and 4 in [4]). Note that the observation matrix C(t) is

changed to C(t)−γ−1L(t) according to Theorem 3 from [1].

Then, in view of Theorem 1 from [37], the equations (13)

for complementary matrices Pk(t), k 6= 0, should be added to

obtain a closed system of the filtering equations.

II. In the case of commensurable delays in the state and

observation equations (1),(2), the filtering equations (14),(15)

directly follow from the results of Subsection 3.1 in [37]

and the preceding discussion. It should be noted that, for

every fixed t, the number of equations in (15), that should be

taken into account to obtain a closed system of the filtering

equations, is not equal to infinity, since the matrices A(t),
B(t), C(t), D(t), and L(t) are not defined for t < t0. Therefore,

if the current filtering horizon t belongs to the semi-open

interval (t0 +(k+q)h, t0 +(k+q+1)h], where h is the delay

value in the equations (1),(2) the number of equations in (15)

is equal to k +q. ¥

Remark 1. The convergence properties of the obtained

estimate (14) are given by the standard convergence theorem

(see, for example, [40]): if in the system (1),(2) the pair

(A(t)Ψ(t − h, t),B(t)) is uniformly completely controllable

and the pair (C(t),A(t)Ψ(t − h, t)) is uniformly completely

observable, where Ψ(t,τ) is the state transition matrix for

the equation (1) (see [42] for definition of matrix Ψ), and

the inequality CT (t)DT (t)D(t−qh)C(t−qh)−γ−2LT (t)L(t−
qh) > 0 holds, then the error of the obtained filter (14),(15) is

uniformly asymptotically stable. As usual, the uniform com-

plete controllability condition is required for assuring non-

negativeness of the matrix P0(t) (13) and may be omitted,

if the matrix P0(t) is non-negative definite in view of its

intrinsic properties.

Remark 2. According to the comments in Subsection V.G

in [1], the obtained central H∞ filter (14),(15) presents a

natural choice for H∞ filter design among all admissible H∞

filters satisfying the inequality (10) for a given threshold γ ,

since it does not involve any additional actuator loop (i.e.,

any additional external state variable) in constructing the

filter gain matrix. Moreover, the obtained central H∞ filter

(11)–(14) has the suboptimality property, i.e., it minimizes

the criterion J = ‖z̃(t)‖2
2−γ2{‖ω(t)‖2

2 +‖ϕ(θ)‖2
2,R,[−h,0]} for

such positive γ > 0 that the inequality CT (t)DT (t)D(t −
qh)C(t −qh)− γ−2LT (t)L(t −qh) > 0 holds.

Remark 3. Following the discussion in Subsection V.G in

[1], note that the complementarity condition always holds

for the obtained H∞ filter (11)–(14), since the positive

definiteness of the initial condition matrix R implies the

positive definiteness of the filter gain matrix gain P0(t) as

the solution of (15). Therefore, the stability failure is the

only reason why the obtained filter can stop working.

IV. ALTERNATIVE CENTRAL H∞ FILTER FOR LTV

SYSTEMS WITH STATE AND MEASUREMENT DELAYS

Consider now another design for the central H∞ filter for

LTV systems with commensurable state and measurement

delays in (1),(2), which is based on the alternative H2

(optimal mean-square) filter obtained in [39]. In doing so,

the system of the equations (14),(15) for determining the
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filter gain matrix P0(t), whose number grows as the filtering

horizon tends to infinity, is replaced by the unique equation

for P0(t), which includes the state transition matrix Ψ(t,τ)
for the time-delay equation (1) (see [42] for the definition).

The result is given by the following theorem.

Theorem 2. The alternative ”central” H∞ filter for the

unmeasured state (1) over the observations (2), ensuring the

H∞ noise attenuation condition (10) for the output estimate

z f (t), is given by the equations (14) for the state estimate

x f (t), the equation (12) for the output estimate z f (t), and the

equation for the filter gain matrix P0(t)

dP(t) = A(t)(Ψ(t −h, t))P0(t)+P0(t)(Ψ(t −h, t))T AT (t)+
(21)

(1/2)[B(t)BT (t −qh)+B(t −qh)BT (t)]−

(1/2)[P0(t)C
T (t)(D(t)DT (t −qh))−1C(t −qh)PT

0 (t −qh)−

γ−2P0(t)L
T (t)L(t −qh)P0(t −qh)−

γ−2P0(t −qh)LT (t −qh)L(t)P0(t)+

P0(t −qh)CT (t −qh)(D(t −qh)DT (t))−1C(t)PT
0 (t)],

with the initial condition P(t0) = R−1.

Proof. In view of Theorem 1 in [39], the alternative

equation for determining the H2 (optimal mean-square) filter

gain matrix P0(t) in the estimate equation (15) is given by

the equation (21), with the initial condition P(t0) = R−1,

which corresponds to the central H∞ filter (see Theorems

3 and 4 in [4]). The observation matrix C(t) is changed to

C(t)− γ−1L(t) according to Theorem 3 from [1].¥

Note the designed alternative filter contains only two

differential equations, the estimate equation (14) and the

gain matrix equation (21), regardless of the filtering horizon.

This presents a significant advantage in comparison to the

preceding filter (14),(12),(15) consisting of a variable number

of the gain matrix equations, which is specified by the ratio

between the current filtering horizon and the delay value in

the state equation and unboundedly grows as the filtering

horizon tends to infinity. This advantage seems to be even

more significant upon recalling that the state space of the

time-delay system (1) is infinite-dimensional [42].

V. EXAMPLE

This section presents an example of designing the central

H∞ filter for a linear state with delay over linear delayed

observations and comparing it to the best H∞ filter available

for a linear system without delays, that is the filter obtained

in Theorems 3 and 4 from [4].

Let the unmeasured state x(t) = [x1(t),x2(t)] ∈ R2 with

delay (a mechanical oscillator with a delayed force input

and delayed observations) be given by

ẋ1(t) = x2(t −5), (22)

ẋ2(t) = −x1(t −5)+w1(t),

with an unknown initial condition x(θ) = ϕ(θ), θ ∈ [−5,0],
the scalar observation process satisfy the equation

y(t) = x1(t −5)+w2(t), (23)

and the scalar output be represented as

z(t) = x1(t). (24)

Here, w(t) = [w1(t),w2(t)] is an L2
2 disturbance input. It can

be readily verified that the noise orthonormality condition

(see Section 2) holds for the system (22)–(24).

The filtering problem is to find the H∞ estimate for the

linear state with delay (22) over delayed linear observations

(23), which satisfies the noise attenuation condition (10) for

a given γ , using the designed H∞ filter (14),(15) or the

alternative H∞ filter (14),(21). The filtering horizon is set

to T = 8. Note that since 8 ∈ [1× 5,2× 5], where 5 is the

delay value in the state and observation equations (22),(23),

only the first two of the equations (15), for k = −1,0, along

with the equations (14), should be employed.

The filtering equations (14) and the first two of the

equations (15) take the following particular form for the

system (22),(23)

ẋ f1(t) = x f2(t −5)+P011
(t)[y(t)− x f1(t −5)], (25)

ẋ f2(t) = −x f1(t −5)+P012
(t)[y(t)− x f1(t −5)],

with the initial condition x f (θ) = 0, θ ∈ [−5,0];

Ṗ011
(t) = P−112

(t −5)+P112
(t)− (1− γ−2)P011

(t)P011
(t −5),

(26)

Ṗ012
(t) = P−122

(t −5)−P111
(t)−

1

2
(1− γ−2)×

[P011
(t)P012

(t −5)+P012
(t)P011

(t −5)],

Ṗ021
(t) = −P−111

(t −5)+P122
(t)−

1

2
(1− γ−2)×

[P011
(t)P012

(t −5)+P012
(t)P011

(t −5)],

Ṗ022
(t) = 1−P−112

(t −5)−P121
(t)−

(1− γ−2)P012
(t)P012

(t −5),

with the initial condition P0(0)= R−1, P0(θ)= 0, θ ∈ [−5,0);
and

Ṗ−111
(t) = 2P012

(t)− (1− γ−2)P2
011

(t), (27)

Ṗ−112
(t) = −P011

(t)+P022
(t)− (1− γ−2)P011

(t)P012
(t),

Ṗ−112
(t) = 1−2P021

(t)− (1− γ−2)P2
012

(t),

with the initial condition P−1(0) = 0; finally, P1(θ) = 0, θ ∈
[5,8).

The estimates obtained upon solving the equations (25)–

(27) are compared to the conventional H∞ filter estimates,

obtained in Theorems 3 and 4 from [4], which satisfy the

following equations, where the gain matrix equation is a

Riccati one and the equations for matrices Pi(t), i ≥ 1, are

not employed:

ṁ f1(t) = m f2(t −5)+P11(t)[y(t)−m f1(t −5)], (28)

ṁ f2(t) = −m f1(t −5)+P12(t)[y(t)−m f1(t −5)],

with the initial condition m f (θ) = 0, θ ∈ [−5,0];

Ṗ11(t) = 2P12(t)− (1− γ−2)P2
11(t), (29)
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Ṗ12(t) = −P11(t)+P22(t)− (1− γ−2)P11(t)P12(t),

Ṗ22(t) = 1−2P12(t)− (1− γ−2)P2
12(t),

with the initial condition P(0) = R−1.

Finally, the previously obtained estimates are compared

to the alternative H∞ filter estimates satisfying the equations

(14),(21). The equation (14) for the estimate x f (t) remains

the same as (25), with P0(t) = P(t), and the gain matrix

equation (20) takes the following particular form for the

system (22),(23)

Ṗ11(t) = 2Ψ22(t −5, t)P12(t)− (1− γ−2)P11(t)P11(t −5),
(30)

Ṗ12(t) = −Ψ11(t −5, t)P11(t)+Ψ22(t −5, t)P22(t)−

1

2
(1− γ−2)[P11(t)P12(t −5)+P11(t −5)P12(t)],

Ṗ22(t) = 1−2Ψ11(t −5, t)P12(t)− (1− γ−2)P12(t)P12(t −5),

with the initial condition P(0) = R−1, where it is taken

into account that the state transition matrix Ψ(τ, t) for the

linear time-delay state (22) is calculated as a diagonal matrix

according to the algorithm suggested in Section 4.

Numerical simulation results are obtained solving the

systems of filtering equations (25)–(27), (28)–(29), and

(25),(30). The obtained estimate values are compared to the

real values of the state vector x(t) in (22).

For each of the three filters (25)–(27), (28)–(29), and

(25),(30) and the reference system (22) involved in simu-

lation, the following initial values are assigned: ϕ1(θ) = 1,

ϕ2(θ) = 1, θ ∈ [−5,0]; R = I2 = diag[1 1]. The L2 distur-

bance w(t) = [w1(t),w2(t)] is realized as w1(t) = 1/(1+ t)2,

w2(t) = 2/(2 + t)2. Since C(t) = L(t) = [1 0] in (22),(23)

and the minimum achievable value of the threshold γ is

equal to ‖L‖/‖C‖ = 1, the value γ = 1.1 is assigned for the

simulations.

The following graphs are obtained: graphs of the output

H∞ estimation error z(t)−z f (t) corresponding to the estimate

x f (t) satisfying the equations (25)–(27) (Fig. 1); graphs of

the output H∞ estimation error z(t)− z f (t) corresponding

to the conventional estimate m f (t) satisfying the equations

(28)–(29) (Fig. 2); graphs of the output H∞ estimation error

z(t)− z f (t) corresponding to the alternative estimate x f (t)
satisfying the equations (25),(30) (Fig. 3). The graphs of the

output estimation errors are shown in the entire simulation

interval from t0 = 0 to T = 8. Figures 1–3 also demonstrate

the dynamics of the noise-output H∞ norms corresponding

to the shown output H∞ estimation errors in each case.

The following values of the noise-output H∞ norm

‖Tzw‖
2 = ‖z(t)−z f (t)‖

2
2/(‖ω(t)‖2

2 +‖ϕ(θ)‖2
2,R,[−h,0]) are ob-

tained for the simulated disturbances w1(t) and w2(t) at the

final time T = 8: ‖Tzw‖ = 0.513 for the H∞ estimation error

z(t)− z f (t) corresponding to the estimate x f (t) satisfying

the equations (25)–(27), ‖Tzw‖ = 1.7318 for H∞ estimation

error z(t)− z f (t) corresponding to the conventional estimate

m f (t) satisfying the equations (28)–(29), and ‖Tzw‖= 0.5461

for H∞ estimation error z(t)− z f (t) corresponding to the

alternative estimate x f (t) satisfying the equations (25),(30).

It can be concluded that the central suboptimal multi-

equational H∞ filter (25)–(27) and the central suboptimal

alternative H∞ filter (25),(30) provide reliably convergent

behavior of the output estimation error, yielding very small

values of the corresponding H∞ norms, even in comparison

to the assigned threshold value γ = 1.01. In contrast, the

conventional central H∞ filter (28)–(29) provides divergent

behavior of the output estimation error, yielding a larger

value of the corresponding H∞ norm, which exceeds the

assigned threshold. Thus, the simulation results show definite

advantages of the designed central suboptimal H∞ filters

for linear systems with state and measurement delays, in

comparison to the previously known conventional H∞ filter.
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Fig. 1. Above. Graph of the output H∞ estimation error z(t)− z f (t)
corresponding to the estimate x f (t) satisfying the equations (25)–(27), in
the simulation interval [0,8].Below. Graph of the noise-output H∞ norm
corresponding to the shown output H∞ estimation error, in the simulation
interval [0,8].
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Fig. 2. Above. Graph of the output H∞ estimation error z(t)− z f (t)
corresponding to the estimate x f (t) satisfying the equations (28)–(29), in
the simulation interval [0,8].Below. Graph of the noise-output H∞ norm
corresponding to the shown output H∞ estimation error, in the simulation
interval [0,8].
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Fig. 3. Above. Graph of the output H∞ estimation error z(t)− z f (t)
corresponding to the estimate x f (t) satisfying the equations (25),(30), in
the simulation interval [0,8].Below. Graph of the noise-output H∞ norm
corresponding to the shown output H∞ estimation error, in the simulation
interval [0,8].

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB02.4

677


