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Abstract— In this paper we present a dual-based decom-
position method, called here the proximal center method, to
solve distributed model predictive control (MPC) problems
for coupled dynamical systems but with decoupled cost and
constraints. We show that the centralized MPC problem can
be recast as a separable convex problem for which our method
can be applied. In [9] we have provided convergence proofs and
efficiency estimates for the proximal center method which im-
proves with one order of magnitude the bounds on the number
of iterations of the classical dual subgradient method. The new
method is suitable for application to distributed MPC since it
is highly parallelizable, each subsystem uses local information
and the coordination between the local MPC controllers is
performed via the Lagrange multipliers corresponding to the
coupled dynamics. Simulation results are also included.

I. INTRODUCTION

Model predictive control (MPC) is one of the most suc-

cessful advanced control technology implemented in industry

due to its ability to handle complex systems with hard input

and state constraints [6]–[8]. The essence of MPC is to

determine a control profile that optimizes a cost criterion over

a prediction window and then to apply this control profile

until new process measurements become available. Then the

whole procedure is repeated. Feedback is incorporated by

using the measurements to update the optimization problem

for the next step.

For the control problem of large-scale networked systems,

centralized MPC is considered impractical, inflexible and

unsuitable due to information requirement and computational

aspects. The subsystems in the network may have different

authorities that prevent sending all necessary information

to one processing center. Moreover, the optimization prob-

lem yielded by centralized MPC is too big for real time

computation. Networks of vehicles, production units in a

power plant, networks of cameras in an airport are just a

few examples. Distributed MPC is proposed for control of

such large-scale systems, by decomposing the overall system

into small subsystems with distinct MPC controllers for each

subsystem that collaborate to achieve global decisions. In

order to derive the local MPC controllers we decompose the

MPC problem into a set of subproblems each solved by an

individual agent using local information. The coordination
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of the subproblems is achieved by an active communication

among the agents.

Approaches to distributed MPC design differ from each

other in the problem’s setup. In [5], Camponogara et al.

studied stability of coordination-based distributed MPC with

several information exchange conditions. In [4], Dunbar and

Murray proposed a distributed MPC scheme for problems

with coupled cost function, utilizing prediction trajectories

of the neighbors in each subsystem’s optimization. Keviczky

et al. proposed a distributed MPC scheme with a sufficient

stability test for dynamically decoupled systems in [13], in

which each subsystem optimizes the behaviors of its neigh-

bors. Richards and How in [12] proposed a robust distributed

MPC method for networks with coupled constraints, based

on constraint tightening and serial approach.

A distributed MPC scheme for dynamically coupled sys-

tems was proposed by Venkat et al. in [1], [15], based on

a parallel synchronous approach, i.e. iterating the Jacobi

algorithm pmax times [2]. But, there is no guarantee of the

Jacobi algorithm about how good is the approximation of

the optimum after pmax iterations and moreover we need

strictly convex functions to prove asymptotic convergence

to the optimum. However, if we solve the MPC problem

using the algorithm proposed in the present paper, we have

a guaranteed upper bound on the approximation of the

optimum after pmax iterations and it can be applied to general

convex functions.

In this paper we explore the potential of the proximal

center decomposition method for separable convex programs

proposed in [9] in distributed MPC problems for dynamically

coupled systems with decoupled constraints and cost. We

show that the distributed MPC problem corresponding to

linear systems with interacting subsystem dynamics and

decoupled costs can be recast in the framework of separable

convex problems for which our algorithm can be applied.

The algorithm involves every agent optimizing an objective

function that is the sum of his own objective function and

a smoothing term while the coordination between agents

is performed via the Lagrange multipliers. We show that

the solution of our distributed proximal center algorithm

converges to the solution of the centralized MPC problem

and we also provide estimates for the rate of convergence.

In [9] we were able to prove that the efficiency estimates

for the new method improves the bounds on the number

of iterations of the classical dual subgradient scheme by an

order of magnitude (see [10] for more details). Therefore,

the proximal center MPC algorithm is suitable for online

implementation.
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The layout of the paper is as follows. In Section II we

define the centralized MPC problem followed by the decen-

tralized formulation, i.e. the division of the general problem

into decentralized subproblems. We show that the centralized

MPC can be recast as a separable convex program. In Section

III we describe briefly a dual-based decomposition method

for separable convex problems developed recently in [9].

Finally, numerical simulations are included to compare the

new approach with the approach in [1].

II. DISTRIBUTED MODEL PREDICTIVE CONTROL

The application that we will discuss in this section is

decentralized control of large-scale systems with interact-

ing subsystem dynamics, which can be found in a broad

spectrum of applications ranging from robotics to regulator

systems. Distributed MPC is promising in applications for

large-scale production systems in the factories, in water or

electric distribution and transportation networks. In such

applications there are not only the difficulties caused by

complex interacting dynamics, but also the limitation of

information structure due to organizational aspects. MPC or

other centralized optimal control methods still cannot deal

with these issues. A distributed MPC framework is appealing

in this context since this framework allows us to design local

subsystem-based controllers that take care of the interactions

between different subsystems and physical constraints.

We assume that the overall system model can be decom-

posed into M appropriate subsystem models:

xi(k+1)=
∑

j∈N (i)

Aijx
j(k) +Biju

j(k) ∀i = 1 · · ·M, (1)

where N (i) denotes the set of subsystems that interact with

the ith subsystem, including itself. The control and state

sequence must satisfy local constraints:

xi(k) ∈ Ωi, u
i(k) ∈ Ui ∀i = 1 · · ·M and ∀k ≥ 0,

where the constraint sets Ωi ⊆ R
nxi and Ui ⊆ R

nui are

usually convex compact sets with the origin in their interior.

Remark 2.1 (i) Note that the settings considered in this

paper are more general than those from [15]: we consider a

more general model for the coupling dynamics (the states of

the neighbors influences also the subsystem i) and moreover

we also consider state constraints.

(ii) It is worth nothing that the method that is presented

in this paper can also treat coupling inequalities (see [9] for

more details).

In general the control objective is to steer the state of

the system to origin or any other set point in a “best” way.

Performance is expressed via a stage cost, which is composed

of individual separate costs assumed to have the following

form (see also [15]):

ℓ(x, u) =
M
∑

i=1

ℓi(x
i, ui),

where usually ℓi(x
i, ui) is a convex quadratic function, but

not necessarily strictly convex.

In MPC we must solve at each step k, given xi(k) = xi, a

finite-horizon optimal control problem. The centralized MPC

problem for this application is formulated as follows:

min
xi

l
,ui

l

N−1
∑

l=0

M
∑

i=1

ℓi(x
i
l, u

i
l) +

M
∑

i=1

ℓ
f
i (xi

N ) (2)

s.t. : xi
0 = xi, xi

l+1 =
∑

j∈N (i)

Aijx
j
l +Biju

j
l

xi
N ∈ Ωi, x

i
l ∈ Ωi, u

i
l ∈ Ui ∀l = 0· · ·N−1, ∀i =1· · ·M,

where N denotes the prediction horizon and ℓ
f
i (xi

N ) denotes

some terminal cost introduced for stability reasons. Note

that a similar formulation of distributed MPC for coupled

linear subsystems with decoupled costs was given in [15], but

without state constraints (i.e. without imposing xi(k) ∈ Ωi).

The optimization problem (2) becomes interesting if the

computations can be distributed among the subsystems

(agents) and the amount of information that the agents must

exchange is limited. Now, we show that the centralized MPC

problem (2) that must be solved at each step k can be

recast as a separable convex problem, i.e. separable objective

function but with linear coupling constraints, for which the

distributed algorithm presented in Section III can be applied.

Let us introduce the following notation:

xi = (xi
1 · · ·xi

N ui
0 · · ·ui

N−1), Xi = ΩN
i × UN

i ,

ψi(x
i) =

N−1
∑

l=0

ℓi(x
i
l, u

i
l) + ℓ

f
i (xi

N ),

where ψi’s are convex quadratic functions, not necessarily

strictly convex. Then, the control problem (2) can be recast

as a separable convex program:

min
xi∈Xi

{

M
∑

i=1

ψi(xi) :
M
∑

i=1

Cixi − b = 0
}

, (3)

where the matrices Ci and b are defined accordingly.

In [15] the optimization problem (2) (or equivalently (3))

was solved in a decentralized fashion, iterating the Jacobi

algorithm pmax times [2]: i.e. at each iteration p, where 1 ≤
p ≤ pmax, solve in parallel for i0 = 1 · · ·M

min
xi0

∈Xi0

{

ψi0(xi0) : Ci0xi0 +

M
∑

i6=i0,i=1

Cix
p−1
i −b = 0

}

, (4)

where x
p−1
i ’s are the values computed at (p− 1)th iteration

for the ith subsystem.

But, there is no theoretical guarantee of the Jacobi algo-

rithm about how good the approximation of the optimum

of (3) is after pmax iterations. Moreover, in order to ensure

asymptotic convergence of the Jacobi algorithm we need

the ψi’s to be strictly convex (see e.g. [2]), which is not

necessarily the case in the MPC settings. However, in the

next section we describe briefly a decomposition algorithm

for separable convex problems of the form (3) developed

recently in [9] which guarantees a priori an upper bound on

the approximation of the optimum after pmax iterations and
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it applies to general convex functions. Our algorithm can be

an alternative to the classical methods (e.g. Jacobi algorithm,

dual subgradient method, etc), leading to a new method of

solution.

III. A DUAL DECOMPOSITION METHOD FOR SEPARABLE

CONVEX PROBLEMS

In this section we describe a dual decomposition method

recently introduced in [9] for separable convex problems,

in which the Lagrange multipliers are updated according

to a first-order optimal method. We also present efficiency

estimates of the described method. Throughout the paper ‖·‖
denotes the Euclidian norm. For simplicity of the exposition

of the method we restrict ourselves to problems with only

two agents (subsystems), i.e. M = 2:

f∗= min
xi∈Xi

{

ψ1(x1)+ψ2(x2) : C1x1+C2x2−b=0
}

, (5)

where ψi are continuous convex functions and Xi are given

compact convex sets, i = 1, 2.

Remark 3.1 Note that the method developed in this paper

can treat also coupled inequalities C1x1 + C2x2 ≤ b (see

[9] for more details). This is a very important feature of

our method compared to existing distributed MPC algorithms

which cannot deal in general with coupled inequalities.

We assume that the constraint qualification condition [2], [9]

holds for (5). The dual function associated to (5) is defined

as follows:

f0(λ) = min
xi∈Xi

ψ1(x1) + ψ2(x2) + 〈λ,C1x1 + C2x2 − b〉,

where λ denotes the Lagrange multipliers associated with

the equality constraints and 〈·, ·〉 denotes the standard scalar

product on some Euclidian space. From standard duality

theory, the convex problem (5) is equivalent to solving an

unconstrained maximization problem having the objective

function f0. The usual approach is to apply the subgradient

method (steepest ascent update of the multipliers) to the

dual function f0 or the Jacobi algorithm directly to the

optimization problem (5) (see e.g. [2], [14]). Convergence of

these methods can be guaranteed under the assumption that

the functions ψi’s are strictly convex. However, in distributed

MPC problems the cost function is not necessarily strictly

convex. In the sequel we will describe a dual decomposition

method for general convex functions ψi’s whose efficiency

estimates improves with one order of magnitude the bounds

on the number of iterations of the classical dual subgradient

method (see [9] for more details).

For given compact sets Xi we can choose finite and

positive constants DXi
such that

DXi
≥ max

xi∈Xi

‖xi‖2 for i = 1, 2.

Let us introduce the following family of functions:

fc(λ) = min
xi∈Xi

ψ1(x1) + ψ2(x2) + 〈λ,C1x1 + C2x2 − b〉+

c
(

‖x1‖2 + ‖x2‖2
)

, (6)

where c is a positive smoothness parameter that will be

defined in the sequel (see Theorem 3.5). Note that by adding

the smoothness term c(‖x1‖2+‖x2‖2) the objective function

in (6) remains separable in xi, i.e.

fc(λ) = −〈λ, b〉 + min
x1∈X1

[ψ1(x1) + 〈λ,C1x1〉 + c‖x1‖2]+

min
x2∈X2

[ψ2(x2) + 〈λ,C2x2〉 + c‖x2‖2]. (7)

Denote by xi(λ) the optimal solution of the minimization

problems in xi in (7). Then, the function fc has the following

smoothness properties:

Theorem 3.2: [9] The function fc is concave and con-

tinuously differentiable at any λ. Moreover, its gradient

∇fc(λ) = C1x1(λ) + C2x2(λ) − b is Lipschitz continuous

with Lipschitz constant

Lc =
‖C1‖2

2c
+

‖C2‖2

2c
.

The following inequalities also hold:

fc(λ) ≥ f0(λ) ≥ fc(λ) − c(DX1
+DX2

) ∀λ.
We now describe a distributed optimization method for

(5), called in [9] the proximal center algorithm, that has

the nice feature that the coordination between the agents

involves the maximization of a smooth convex objective

function (i.e. with Lipschitz continuous gradient). Moreover,

the resource allocation stage consists in solving in parallel

by the each agent of a minimization problem with strongly

convex objective using only local information. The new

method belongs to the class of two-level algorithms [3] and

is particularly suitable for separable convex problems where

the minimizations over xi’s in (7) are easily carried out.

We apply Nesterov’s accelerated method [10], [11], based

only on first-order information, to the unconstrained max-

imization problem whose objective function is the concave

function fc that has a Lipschitz continuous gradient:

max
λ

fc(λ). (8)

The proximal center algorithm can be described as follows:

Algorithm 3.3: [9] for p ≥ 0 do

1. given λp compute in parallel

x
p+1
i = arg min

xi∈Xi

ψi(xi) + 〈λp, Cixi〉 + c‖xi‖2

2. compute ∇fc(λ
p) = C1x

p+1
1 + C2x

p+1
2 − b

3. find

up = arg max
λ

〈∇fc(λ
p), λ− λp〉 − Lc

2
‖λ− λp‖2

4. find

vp = arg max
λ

−Lc

2
‖λ‖2 +

p
∑

l=0

l + 1

2
〈∇fc(λ

l), λ−λl〉

5. set λp+1 = p+1
p+3u

p + 2
p+3v

p.

Note that the maximization problems in Steps 3 and 4

of Algorithm 3.3 can be solved explicitly and thus com-

putationally very efficient. The main computational effort

is done in Step 1 of Algorithm 3.3. However, in some
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applications, e.g. distributed MPC, Step 1 can be performed

also very efficiently (see Section IV), making it suitable for

online implementation. The proximal center algorithm can

be applied in decomposition since it is highly parallelizable:

the agents can solve their corresponding local minimization

problems in parallel.

In the next two theorems we show that the solution gener-

ated by our distributed proximal center algorithm converges

to the solution of the original problem (5) and we provide

also estimates for the rate of convergence.

Theorem 3.4: [9] After p iterations we obtain an approx-

imate solution to the problem (5)

x̂i =

p
∑

l=0

2(l + 1)

(p+ 1)(p+ 2)
xl+1

i and λ̂ = λp

i = 1, 2, which satisfy the following duality gap:

[ψ1(x̂1) + ψ2(x̂2)] − f0(λ̂) ≤ c(DX1
+DX2

)−

max
λ

[

− 2Lc

(p+ 1)2
‖λ‖2+〈C1x̂1 + C2x̂2 − b, λ〉

]

.

Theorem 3.5: Taking c = ǫ
DX1

+DX2

and

p+ 1 = 2
√

(‖C1‖2 + ‖C2‖2)(DX1
+DX2

)
1

ǫ
,

then after p iterations

−‖λ∗‖‖C1x̂1 + C2x̂2 − b‖≤ψ1(x̂1) + ψ2(x̂2)] − f∗≤ǫ
and the constraints satisfy

‖C1x̂1 + C2x̂2 − b‖ ≤ ǫ
(

‖λ∗‖ +
√

‖λ∗‖2 + 2
)

,

where λ∗ is the minimum norm optimal multiplier.

Proof:

max
λ

− 2Lc

(p+ 1)2
‖λ‖2 + 〈C1x̂1 + C2x̂2 − b, λ〉 =

(p+ 1)2

8Lc

‖C1x̂1 + C2x̂2 − b‖2.

We obtain the following bound on the duality gap (see

Theorem 3.4):

[ψ1(x̂1) + ψ2(x̂2)] − f0(λ̂) ≤

c(DX1
+DX2

) − (p+ 1)2

8Lc

‖C1x̂1 + C2x̂2 − b‖2 ≤

c(DX1
+DX2

).

It follows that taking c = ǫ
DX1

+DX2

, the duality gap

is less than ǫ. For the constraints we get that ‖C1x̂1 +
C2x̂2 − b‖ satisfies the second order inequality in y (see

[9] for more details):
(p+1)2

8Lc

y2 − ‖λ∗‖y − ǫ ≤ 0. Therefore,

‖C1x̂1 +C2x̂2 − b‖ must be less than the largest root of the

corresponding second-order equation, i.e.

‖C1x̂1+C2x̂2−b‖ ≤
(

‖λ∗‖+

√

‖λ∗‖2+
ǫ(p+1)2

2Lc

) 4Lc

(p+1)2
.

After some long but straightforward computations we get

that after p iterations, where p defined as in the theorem, we

also get the bound on the constraint violation.

Fig. 1. Setup of coupled oscillators

From Theorem 3.5 we obtain that the complexity of

Algorithm 3.3 for finding an ǫ-approximation of the optimum

for the centralized MPC problem (2) is of the order O( 1
ǫ
),

better than most non-smooth optimization schemes such as

the dual subgradient method that have an efficiency estimate

of the order O( 1
ǫ2

) (see e.g. [10]). The main advantage

of our scheme is that it is fully automatic, the parameter

c is chosen unambiguously, which is crucial for justifying

the convergence properties of Algorithm 3.3. Moreover, the

algorithm is suitable for solving distributed MPC problems

since the control inputs to each subsystem can be computed

based on local information and the information that the

agents must exchange is limited. Finally, our method can

also take into account coupled inequalities (see [9] for more

details) which arise very often in these type of applications

(they represent in general shared resources between agents).

IV. EXAMPLE

A. Problem description

In this section we explore the potential of the Algorithm

3.3 described in Section III in solving a distributed MPC

problem corresponding to coupled oscillators. The network

is a ring of 20 coupled oscillators that can move only on the

vertical axis and the goal is to stabilize the network around

the equilibrium, which in this case is the horizontal axis

passing through origin. The setup is shown in Figure 1. Each

oscillator is considered as one subsystem and is influenced

by two neighbors next to it, i.e. N (i) = {i− 1, i, i+ 1} ∀i.
The continuous dynamic equations of each subsystem i are

considered to have the following form:

mp̈i = k1p
i − fsṗ

i+k2[p
i−1 − pi]+

+ k2[p
i+1 − pi] + ui,

where pi denotes the position of oscillator i, ui denotes

a vertical force applied mainly to subsystem i and the

parameters are defined as

k1: stiffness of vertical spring at each oscillator

k2: stiffness of springs that connect the oscillators

m: mass of each oscillator

fs: friction coefficient of movements

From a given initial state the system needs to be stabilized

subject to the following state and input constraints:

Ωi = {xi : ‖xi‖ ≤ 2}, Ui = {ui : ‖ui‖ ≤ 1},
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where we recall that ‖ · ‖ denotes the Euclidian norm. Note

that in our decomposition method we can consider any

compact convex sets Ωi and Ui not necessarily Euclidian

balls. This choice is made only to illustrate the computational

advantages of our method in this case.

We choose for each subsystem i the state vector xi =
[pi ṗi]T and input ui, that means each state contains the po-

sition and velocity variables of the corresponding subsystem.

By choosing sampling time Ts and do discretization, we get

discrete linear coupled dynamics for each subsystem which

has the formula of general case described in (1).

For this example we formulate the distributed MPC prob-

lem as described in Section II, with the specific values:

ℓi(x
i, ui) = xiTQix

i + uiTRiu
i, ℓ

f
i (xi) = xiTPix

i

Pi = Qi =

[

10 0
0 0

]

, Ri = 1 ∀i = 1· · ·M

Ωi = {xi : ‖xi‖ ≤ 2}, Ui = {ui : ‖ui‖ ≤ 1}
Ts = 0.01s, M = 20, N = 20, pmax = 500

k1 = 0.4, k2 = 0.3, fs = 0.4, Ts = 0.05,m = 1.

Note that with this choice of Qi we are only interested

in penalizing the position of each oscillator. Therefore the

stage cost ℓi associated to each subsystem i is not a strictly

quadratic function in both states and inputs. This situation is

encountered in many MPC applications.

Constructing the variables xi, the sets Xi and the matrices

Ci, b as described in Section II, the centralized MPC problem

for this example can be rewritten as:

min
xi∈Xi

{
M
∑

i=1

xT
i Qixi :

M
∑

i=1

Cixi − b = 0}, (9)

where Qi = diag(Qi, · · · , Qi, Ri, · · · , Ri) with N terms of

Qi and N terms of Ri. Note that Xi ⊆ {x : ‖x‖ ≤ ri},

where ri =
√
N · 22 +N · 12.

B. Computational complexity

We apply Algorithm 3.3 to solve the separable convex

problem (9). Note that the sub-optimization problems oc-

curred in Step 1 of Algorithm 3.3 can be solved very effi-

ciently, due to the structure of (9) (we must solve quadratic

programming with quadratic constraints problems (QPQC)

with a special structure). Below we describe a fast algorithm

to solve this type of QPQC problems. Following Algorithm

3.3, we must first add the smoothness term c
∑M

i=1 ‖xi‖2
2 to

the Lagrangian of (9). Note that in this example DXi
= r2i .

For each iteration p, where 1 ≤ p ≤ pmax, we must solve

in Step 1 of the Algorithm 3.3 the following minimization

problems:

M
∑

i=1

min
xi∈Xi

xT
i Qixi + 〈λp, Cixi〉 + c‖xi‖2,

where the Lagrange multipliers λp was computed at previous

iteration p − 1. Observe that each minimization problem is

a convex program with separable and strictly convex cost

and decoupled constraints. In fact, since Qi has a diagonal

structure and the variables xi are coupled via the linear term

Cixi for each i, we can further decompose each minimization

problem into 2N QPQC problems with a particular structure:

min
‖x‖≤r

xTQx+ 〈q, x〉, (10)

where Q is a positive definite diagonal matrix (for our

example Q = Qi+cI2 for the state variables xi
l or Q = Ri+c

for the input variables ui
l). Here x represents the state or

control variable at one step and q contains two or one entry

of the vector CT
i λ

p that corresponds to x. Using duality

theory we can show that the optimization problem (10) can

be solved efficiently:

max
µ≥0

min
x
xTQx+ 〈q, x〉 + µ(‖x‖2 − r2)

or equivalently

max
µ≥0

min
x
xTHx+ 〈q, x〉 − µr2, (11)

where Hµ = Q + µI is a diagonal matrix and thus its

inverse can be computed immediately. Replacing x with

H−1
µ q in (11) we obtain a maximization problem in the scalar

variable µ whose optimal solution can be computed easily by

solving a fourth (for the state variable xi
l) or second (for the

input variable ui
l) order scalar equation (e.g. we can solve

it quickly by bisection algorithm or analytically). Therefore,

our algorithm has the advantage that at each iteration p we

must solve MN QPQC’s of dimension nx(= 2 for this

particular example) and MN QPQC’s of dimension nu (= 1)

as in (10). Note that with the Jacobi algorithm we must

solve M QPQC’s of dimension Nnx +Nnu and with Nnx

additional equality constraints (see (4)).

Remark 4.1 From the previous discussion we can ob-

serve that in general the proximal center method applied

to distributed MPC problems with quadratic stage costs

leads to decomposition in both “space” and “time”, i.e. the

centralized MPC problem can be decomposed into small

subproblems corresponding to the spatial structure of the

system (M subsystems) but also to the prediction horizon

(N the length of the prediction). Note that this is not the

case with Jacobi algorithm.

Once the optimal µ∗ is determined, we substitute its

value into H−1
µ∗ and find the optimal solution of (10):

x∗ = −H−1
µ∗ q. Following the same reasoning as above it

is easy to see that the maximization problems in Steps 3

and 4 of Algorithm 3.3 can be solved explicitly and thus

computationally very efficient. We also solved the centralized

MPC problem (9) with the same parameters, using the Jacobi

algorithm described in [15]. The simulation results will be

given in the next section.

C. Simulations

We compare the two algorithms (proximal center algo-

rithm 3.3 and the Jacobi algorithm) by looking at how the

position of the 10th subsystem evolves and how the global

cost of the full system decreases during simulations.
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Fig. 2. Evolution of position of the 10th subsystem: full-line proximal
center algorithm 3.3, dashed-line Jacobi algorithm [15].
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Fig. 3. The global cost: full-line proximal center algorithm 3.3, dashed-line
Jacobi algorithm [15].

Figure 2 displays the position of the 10th subsystem

over the simulation period. Note that the position of the

10th oscillator converges to the equilibrium faster using the

proximal center algorithm than using the Jacobi algorithm.

Figure 3 displays the global cost calculated at each step over

the simulation period. We note that for the same number of

iterations pmax our algorithm produces a better cost than

Jacobi algorithm. Computationally, with our non-optimized

matlab code we found out that Algorithm 3.3 is also faster

than Jacobi algorithm (see also Remark 4.1).

V. CONCLUSIONS

The proximal center decomposition method developed in

[9] is applied to distributed MPC problems for dynamically

coupled subsystems but with decoupled cost and constraints.

However, our method can be adapted easily to include also

coupled constraints that represents shared resources between

agents. It was shown that the centralized MPC problem

for this type of coupled subsystems can be rewritten as

a separable convex program for which our algorithm can

be applied. The algorithm involves every subsystem (agent)

optimizing at each step an objective function that is the sum

of his own local objective function and a smoothing term

while the coordination between the subsystems is performed

via the Lagrange multipliers corresponding to the coupled

dynamics. We proved that the solution generated by our dis-

tributed proximal center algorithm converges to the solution

of the centralized problem and we provided also estimates

for the rate of convergence. It was also proved that the main

steps of the algorithm can be computed efficiently and thus

making this method suitable for online implementation of

the corresponding distributed MPC scheme. The simulation

results confirm that the proposed distributed MPC method

works well in practice.
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