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Abstract— This paper shows how the properties of a recently
proposed nonlinear output feedback controller for active brak-
ing control systems can be exploited to optimise the braking
performance. The control algorithm, in fact, allows to detect in
which region of the friction curve the system is operating. Thus,
via nonlinear analysis and bifurcation theory, we show that the
closed-loop system exhibits a supercritical Hopf bifurcation.
Based on this, we propose a way to estimate the current road
conditions and to adapt the set-point in order to optimise the
braking performance. A bifurcation diagram is also worked out
to study the closed-loop dynamics modifications due to possible
actuator faults or degradations.

I. INTRODUCTION

Electronic Anti-lock Braking Systems (ABS) have recently
become a standard for all modern cars. ABS can greatly
improve the safety of a vehicle, as it maximises the longi-
tudinal tire-road friction while keeping large lateral forces
which guarantee vehicle steerability. The current trend in
braking control systems design is to move from threshold-
based control logics, mainly based on wheel deceleration
measurements, to genuine slip-control (see e.g., [6], [3],
[11]). The main motivation behind this major change in
ABS design is due to the recent technological advances
in actuators, both electro-hydraulic and electro-mechanical,
which are replacing hydraulic brakes with discrete dynamics
and enable a continuous modulation of the braking torque. In
the field of automatic braking control many approaches have
been proposed, ranging from classical regulation loops based
on linearised models, to genuinely nonlinear control strate-
gies, see e.g., [3], [11], [10]. One of the main challenges in
designing ABS systems is to devise control logics which are
robust with respect to two significant sources of uncertainty
affecting the braking dynamics: the highly nonlinear tire-
road friction forces and the dynamic load transfer between
front and rear axle. Many research efforts have been devoted
to estimate the road characteristics on-line (see e.g., [5], [2],
[9]) as the knowledge of the current road conditions allows to
optimise both braking performance and passengers’ safety.
In this work, starting from the nonlinear output feedback
controller proposed in [11], the closed-loop properties are
exploited to adapt the set-point online in order to operate

The work of M. Tanelli and S.M. Savaresi is partially supported
by MIUR project “New methods for Identification and Adaptive Con-
trol for Industrial Systems”. M. Tanelli, A. Gragnani and S.M. Savaresi
are with the Dipartimento di Elettronica e Informazione, Politecnico
di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy. e-mail:
{tanelli,gragnani,savaresi}@elet.polimi.it. M. Tanelli is also with the Di-
partimento di Ingegneria dell’Informazione e Metodi Matematici, Università
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the system always on the peak of the tire-road friction curve,
thereby optimising the braking performance. Specifically, the
control algorithm in [11] is such that the closed-loop tra-
jectories either tend to an asymptotically stable equilibrium
or to an attractive limit cycle, according to the position of
the set-point with respect to the friction curve peak in the
current and unknown road conditions. We start by showing
that the closed-loop system exhibits a supercritical Hopf
bifurcation. Taking advantage of the system dynamics at the
bifurcation point, we show how to adapt the set-point online
and optimise the braking performance. Finally, a bifurcation
diagram is worked out to consider the case in which the
braking system performance degradates due to usage or faults
and we analytically study the resulting closed-loop dynamics.

II. SYSTEM DESCRIPTION

For the preliminary design of braking control algorithms
a simple but effective single corner model is typically used.
The model is given by the following equations [6]

Jω̇ = rFx−Tb, mv̇ =−Fx, (1)

where ω [rad/s] is the angular speed of the wheel, v [m/s]
is the longitudinal speed of the vehicle body, Tb [Nm] is the
braking torque, Fx [N] is the longitudinal tire-road contact
force, J [kgm2], m [kg] and r [m] are the rotational inertia
of the wheel, the quarter-car mass and the wheel radius,
respectively. In the rest of the paper the following values
will be employed: J = 1kgm2, r = 0.3m, m = 225kg. The
dynamic behavior of the system is hidden in the expression
of Fx, which depends on the state variables v and ω . The most
general expression of Fx is involved, since it depends on a
large number of features of the road, tire, and suspension.
However, it can be well-approximated as Fx = Fzµ(λ ;ϑ),
where Fz is the vertical force at the tire-road contact point;
λ = (v− ωr)/v is the longitudinal slip, and ϑ is a set
of parameters which characterise the shape of the static
function µ(λ ;ϑ). Many empirical analytical expressions for
the function µ(λ ;ϑ) have been proposed; a simple and
widely-used model is [7]

µ(λ ;ϑ) = ϑ1(1− e−λϑ2)−λϑ3. (2)

Note that the vector ϑ has three elements only: by changing
their values many different tire-road friction conditions can
be modeled. In Figure 1 the shapes of µ(λ ;ϑ) in four differ-
ent road conditions are displayed. The parameter values for
the given curves are from [7]. From now on, for simplicity,
also the dependency of µ(λ ;ϑ) on ϑ is omitted, and the
function in Equation (2) is referred to as µ(λ ).
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Fig. 1. Shapes of the function µ(λ ;ϑ) in different road conditions.

Employing the expression of Fx introduced above and
substituting λ̇ =− r

v ω̇ + rω

v2 v̇,ω = v
r (1−λ ) into (1) yields

λ̇ =−1
v
[
(1−λ )

m
+

r2

J
]Fzµ (λ )+

r
vJ

Tb, mv̇=−Fzµ (λ ) . (3)

In the following it is assumed (see e.g., [10]) that the
longitudinal dynamics of the vehicle are much slower than
the rotational dynamics of the wheel due to the large differ-
ence in inertia. Hence, v is considered as a slowly-varying
parameter and the second equation (describing the vehicle
dynamics) of system (1) is neglected.

III. PROBLEM FORMULATION AND MAIN ASSUMPTIONS

According to the assumption on the vehicle speed and
expressing v as v = ωr

1−λ
, the system dynamics are given by

λ̇ =−1−λ

Jω
(Ψ(λ )−Tb) , (4)

with ω ≥ 0 and

Ψ(λ ) =
(

r +
J

rm
(1−λ )

)
Fzµ(λ ). (5)

When µ(λ ) is as in (2) and the control input is constant i.e.,
Tb = T ss

b ≥ 0, the system exhibits the following equilibria (see
Figure 2): 1) if T ss

b > maxλ Ψ(λ ), the unique equilibrium

Fig. 2. Equilibrium points for the quarter-car system (4).

point is λ ss
1 = 1; 2) if T ss

b ≤ maxλ Ψ(λ ), the system has at
most three equilibria, namely λ ss

1 = 1, λ ss
2 = λ̄2 and λ ss

3 = λ̄3,
where λ̄2 ≤ λ̄3 are the two possibly coincident solutions of

T ss
b = Ψ(λ ), as shown in Figure 2. Note that, for any control

input Tb ≥ 0, the state variable is non-negative, i.e., λ ≥ 0. In
fact, for non-negative braking torques, the vehicle is either at
constant speed or it is braking, and λ ∈ [0,1] during braking.
In the following, we work under the following assumptions.
A1) The control input Tb takes values in a non-empty subset
of the non-negative real axis, i.e., Tb ∈ [T b,T b], for some
known values T b and T b such that 0 ≤ T b < T b. Note that
this hypothesis is always verified in practice, as the values
T b and T b are imposed by the actuator characteristics. We
consider that the actuator limits T b and T b are such that Tb =
0 and Tb > maxλ Ψ(λ ). A2) The longitudinal slip set-point
λ ∗ is selected such that T ∗b < maxλ Ψ(λ ). This inequality
(see Figure 2) is verified for all choices of λ ∗, but for the
exact peak point of the Ψ(λ ) curve.

IV. OUTPUT FEEDBACK CONTROLLER

We now briefly describe the output feedback control law
presented in [11], which is a dynamic update law such that a
desired equilibrium point of system (4) is robustly stabilised
in the sense of Lyapunov.

Proposition 4.1: [11] Consider the quarter-car model de-
scribed by Equation (4). Assume A1) and A2) hold.
Let λ ∗ ∈ (0,1) be the smallest solution of T ss

b = Ψ(λ ).
Suppose that either

λ
ss
3

(
1+

1
ln(1−λ ss

3 )

)
≤ λ

∗ < λ
ss
3 or λ

ss
3 ≥ 1. (6)

Then, for any θ(0) ∈ (0,T b), the dynamic output feedback
control law

Tb = θ , θ̇ = kλ

1
Jω

(λ −λ
∗)(θ −T b)(θ −T b) (7)

with kλ > 0 and ω > 0 is such that the equilibrium point
(λ ∗,θ ∗) of the closed-loop system (4),(7) is locally stable
and for any initial condition λ (0) in the region

Λ = {λ ∈ R | 0≤ λ ≤ 1} (8)

λ (t) remains in this region. Moreover, if λ (0) 6= 1, λ (t)
converges asymptotically to λ ∗. Let now λ ∗ ∈ (0,1) be
the largest solution of T ss

b = Ψ(λ ). Then the control law
(7) is such that, for any initial condition λ (0) ∈ Λ, λ (t)
remains in this region. Moreover, if λ (0) 6= 1, the closed-
loop system trajectory (λ (t),θ(t)) converges to an attractive
periodic orbit encircling the equilibrium (λ ∗,θ ∗).
Finally, in both cases, the control variable Tb remains in the
set [T b,T b] for all t ≥ 0.

Proposition 4.1 proves that if the selected set-point λ ∗

is the smallest solution of T ss
b = Ψ(λ ), then (λ ∗,θ ∗) is

locally asymptotically stable. On the other hand, if λ ∗ is the
largest solution of T ss

b = Ψ(λ ), then the control law makes
the closed-loop trajectory converge to an attractive periodic
orbit. From (5), as r m >> J, we see that Ψ(λ )' r Fzµ(λ ).
As such, the abscissa of the maximum of Ψ(λ ) is – for all
practical purposes – that of the peak of the friction curve.
For what follows we only need to remark that the region Λ

in (8) is invariant. Furthermore, the linearisation of system
(4),(7) (see [11] for details) allows to show that the boundary
equilibria (λ = 1,θ = T b), (λ = 1,θ = T b = 0) are saddles,
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whereas (λ = 0,θ = T b = 0) is an unstable node. Moreover,
the only initial conditions yielding trajectories that converge
to (1,T b) are such that θ(0) = T b, whereas the only initial
conditions yielding trajectories that converge to (1,T b) are
such that λ (0) = 1. Accordingly, the closed-loop trajectories
are such that the region

D =
{
(λ ,θ) ∈ R2 | 0≤ λ < 1,θ ∈ (T b,T b)

}
(9)

is a trapping region for the closed-loop system (4),(7).
Based on these properties it is worth noting that, on one
hand, the system stability and the related safety of the
braking maneuver are always guaranteed while, on the other,
the periodic behavior of the closed-loop trajectory can be
monitored to detect if the closed-loop working condition
lies in the unstable region of the friction curve. This very
peculiar feature of the proposed control law can be profitably
employed to adjust on-line the wheel slip set-point, once the
periodic behavior is detected.

V. COMPUTATION AND ANALYSIS OF THE HOPF
BIFURCATION

We now exploit the closed-loop system properties to
search in real-time for the wheel slip value which maximises
the friction force so to always operate with the best possible
braking performance. The closed-loop behavior suggests
that, considering the set-point value λ ∗ as a bifurcation
parameter, a Hopf bifurcation occurs. As such, one can
exploit the properties of this bifurcation together with the
amplitude and period of the limit cycle – which are in fact
functions of λ ∗ and of the road parameters – to estimate the
road conditions and adjust the set-point value accordingly.
First, we show that the closed-loop system (4),(7) exhibits
a supercritical Hopf bifurcation. To this end, consider the
Jacobian of the closed-loop system (4),(7) evaluated at the
equilibrium λ = λ ∗ and θ ∗ = ψ(λ ∗), which has the form

J =

[
− 1−λ ∗

Jω

dψ

dλ

∣∣∣
λ ∗

1−λ ∗
Jω

kλ
1

Jω
(θ ∗−T b)θ ∗ 0

]
. (10)

From (10), we obtain that tr(J) = − 1−λ ∗
Jω

dψ(λ )
dλ

∣∣∣
λ ∗

and

det(J) =− 1−λ ∗
Jω

kλ
1

Jω
(θ ∗−T b)θ ∗. Thus, as (1−λ ∗) > 0 and

(θ ∗−T b) < 0 due to A2), det(J) > 0. As such, to have a Hopf
bifurcation, we need tr(J) = 0 [12]. This is true if dψ

dλ

∣∣∣
λ ∗

= 0,
which translates into

− J
r m

µ(λ ∗)+
[

r +
J

r m
(1−λ

∗)
]

dµ(λ )
dλ

∣∣∣∣
λ ∗

= 0 (11)

where µ(λ ) is as in (2). Note that, as r m >> J, condition
(11) shows that λ ∗Hop f ' λpeak, where λ ∗peak indicates the
abscissa of the peak of the friction curve. In fact, λ ∗Hop f
is slightly to the left of λpeak. Thus, if we take the system
to operate at λ ∗Hop f , we are in fact maximising the braking
torque. Now that the existence of the Hopf bifurcation has
been verified, it is interesting to investigate whether it is
super- or sub-critical, [12], [4], [1]. A supercritical Hopf
bifurcation is non-catastrophic, in the sense that, for small
perturbations of the parameter values around the bifurcation

condition, the system trajectories move from an attractor to a
nearby other. On the contrary, a subcritical Hopf bifurcation
is catastrophic, in the sense that, for small perturbations of
the parameter values around the bifurcation condition, the
system state suddenly jumps from an attractor to some distant
one. To establish the type of the Hopf bifurcation, one needs
to compute the so-called first Lyapunov coefficient [4], [1]:
if it is positive, then the bifurcation is subcritical, if it is
negative, then it is supercritical. If the coefficient happens to
be equal to zero, then the bifurcation is said to be degenerate.
To study the Hopf bifurcation, we consider the closed-loop
system in the form

λ̇ = f1(λ ,θ), θ̇ = f2(λ ,θ). (12)

Then, we use the change of coordinates δλ = λ −λ ∗ and
δθ = θ −θ ∗ to shift the equilibrium (λ ∗,θ ∗) to the origin.
Evaluating the Jacobian of system (12) in the new coordinate
system for the value of λ ∗ which satisfies (11), we find that
it has a simple pair of purely imaginary eigenvalues. The
system dynamics can thus be written in the form( ˙δλ

˙δθ

)
= F

(
δλ

δθ

)
+
(

g1(δλ ,δθ)
g2(δλ ,δθ)

)
, (13)

where gi(δλ ,δθ), i = 1,2 are nonlinear in δλ and δθ . It can
be shown, [12], that the functions gi(δλ ,δθ), i = 1,2 contain
no even terms and that, if we consider small perturbations
about the Hopf bifurcation, only the cubic terms need to
be considered. The stability of the periodic orbit is then
determined, [8], [12], by the sign of the first Lyapunov
coefficient `1 - which represents the coefficient of the cubic
terms of g1(δλ ,δθ) for the parameter value corresponding
to the Hopf bifurcation. Namely, its expression is [4]

`1 = 1
16

{[
g1

δλ3
g1

δλ1 δθ2
+g2

δλ2 δθ1
+g2

δθ3

]
+ 1

β

[
g1

δλ1 δθ2
×

×(g1
δλ2

+g1
δθ2

)− g2
δλ1 δθ1

(g2
δλ1

+g2
δθ2

)−g1
δλ2

g2
δλ2

+g1
δθ2

g2
δθ2

]}
,

where gi
x j yk

= ∂ j+kgi(x,y)
∂x j∂yk and all partial derivatives are evalu-

ated at the bifurcation point. For our system, the (long and
tedious) calculations needed to compute `1 have been carried
out with the help of a symbolic mathematical toolbox. After
further re-elaboration of the results, the final expression of
the first Lyapunov coefficient is

`1 =− Fz

16Jωrm

[
4J

dµ(λ )
dλ

∣∣∣∣
λ ∗

+ Jϑ1ϑ3e−λ ∗ϑ2(λ ∗−1)2+

+ 5Jϑ1ϑ
2
2 e−λ ∗ϑ2(1−λ

∗)+ (14)

+ r2mϑ1ϑ
2
3 e−λ ∗ϑ2(1−λ

∗)+2r2mϑ1ϑ
2
2 e−λ ∗ϑ2(1−λ

∗)
]
.

Thus, as λ ∗ < 1, dµ(λ )
dλ

∣∣∣
λ ∗

> 0 at the bifurcation point and all
other parameters are positive, `1 < 0 and the Hopf bifurcation
is supercritical. Notably, this condition holds for all road
conditions.
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VI. ONLINE FRICTION ESTIMATION AND BRAKING
PERFORMANCE OPTIMIZATION

We now illustrate a strategy based on the Hopf bifurcation
by means of which the braking performance can be optimised
by first estimating the current (unknown) road conditions
and then adapting the set-point value to take the system to
operate on the peak of the tire-road friction curve. Exploiting
the relationships between the three parameters ϑ character-
ising (2), one may notice that ϑ3 = αϑ1, with α = 0.4065
if dry and wet asphalt are considered. Thus, in what follows
we restrict the parameter space to (ϑ1,ϑ2). To estimate the
road conditions we first let the braking maneuver start with
a choice of the set-point λ ∗ such that a limit cycle exists for
all road conditions. For illustration purposes, in the following
we work considering the dry and wet asphalt cases and set
λ ∗ = 0.3. Then, upon braking, we measure the amplitude1

A, the period T and the maximum value of the braking
torque θ Max. Then, we employ pre-computed look-up tables
in which the values of the amplitude A(ϑ1,ϑ2) and the period
T (ϑ1,ϑ2) of the limit cycle and the maximum value of the
braking torque θMax(ϑ1,ϑ2) for λ ∗ = 0.3 in the parameter
space (ϑ1,ϑ2) – recall that ϑ3 = αϑ1 – are stored to estimate
the current road conditions. Namely, we look for

(ϑ ∗1 ,ϑ ∗2 )=argmin(ϑ1,ϑ2)[(A−A(ϑ1,ϑ2))2 +(T−T(ϑ1,ϑ2))2

+(θ Max−θMax(ϑ1,ϑ2))2]. (15)

Specifically, the iso-amplitude A(ϑ1,ϑ2) = A, iso-period
T (ϑ1,ϑ2) = T and iso-θMax curves for dry asphalt in the
parameter space (ϑ1,ϑ2) for λ ∗ = 0.3, with a 70× 70 grid
have been computed. Figure 3 shows the intersections which
exist for dry and wet asphalt, respectively, and the estimated
(ϑ ∗1 ,ϑ ∗2 ) pair. For readability, only the iso-amplitude and iso-
period curves are shown. Note, however, that the third error
component of (16), which accounts for the maximum value
of the braking torque θMax on the limit cycle, is crucial
to find the estimate of the correct point. Once the road

Fig. 3. Intersections between iso-amplitude (dashed line) and iso-period
(solid line) curves for dry asphalt in the parameter space and estimated pair
(ϑ ∗1 ,ϑ ∗2 ) (asterisk).

conditions have been estimated, one can find the new value

1In what follows, we denote with amplitude the limit-cycle amplitude in
λ , which can be obtained by simply monitoring the controlled variable.

to assign to the set-point λ ∗ so that it corresponds to the
bifurcation point. This is done by looking for the value of
λ which maximises the function Ψ(λ ), see (11). Practically,
by means of a stored matrix which contains the λ ∗Hop f for
all (ϑ1,ϑ2), we need only to query the corresponding look-
up table. As an indication, with a 70× 70 matrix, we have
a relative percentage estimation error in the λ ∗Hop f value of
0.1%. In braking control applications, it is crucial that the
control algorithm can correctly manage sudden changes in
the road conditions (called µ-jumps), which possibly occur
when the braking maneuver has begun. We now show how
the proposed strategy can handle this situation.

Fig. 4. Limit cycle amplitude (samples: crosses; fit: dashed line) and period
(samples: circles; fit: solid line) for dry asphalt as functions of λ ∗.

A. Dry-Wet µ-jump and set-point adaptation

We consider the case when a µ-jump from dry to wet
asphalt occurs: based on the previous discussion, we already
know how to estimate the dry road conditions and set λ ∗

at the bifurcation point for this type of asphalt. To manage
the µ-jump from dry to wet, we analyse the relationship,
for fixed road conditions, between amplitude and period of
the limit cycle and the set-point value λ ∗. As can be seen
in Figure 4, where the limit cycle amplitude and period as
functions of λ ∗ are shown, the data can be fitted with a
parabolic curve, thus requiring three parameters only. This
is true also for the relationship between λ ∗ and the maximum
value of the braking torque θMax on the limit cycle. Thus,
always with offline computations, nine matrices have been
computed

MiX (ϑ1,ϑ2) = pi(ϑ1,ϑ2), i = {1,2,3}, X = {A,T,θMax},

where i = {1,2,3} indicates the three parameters needed
to represent the parabolic fit, A, T and θMax denote the
amplitude, period and maximum value of the braking torque
θMax on the limit cycle, respectively, and pi is the i− th
parameter of the fitting curve. The size of such matrices
depends on the memory availability on the final micro-
controller.
Assume now that the µ-jump from dry to wet asphalt has
just occurred and that λ ∗ was set to the bifurcation value
for dry asphalt, that is λHop f ,dry = 0.166. Once on wet road,
with such a λ ∗ we observe a limit cycle with amplitude Adw
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and period Tdw. To reduce the parameter space, we need to
search only for those pairs (ϑ1,ϑ2) for which a limit cycle
exists when λ ∗ = 0.166. Such a reduction can be performed
by means of the already computed matrix which stores the
λ ∗Hop f for all (ϑ1,ϑ2). Thus, the new road conditions are
estimated as

(ϑ ∗1 ,ϑ ∗2 ) = argmin(ϑ1,ϑ2)[(A−A(ϑ1,ϑ2))2 +(T−T(ϑ1,ϑ2))2

+(θ Max−θMax(ϑ1,ϑ2))2]. (16)

Figure 5 shows the estimated values of (ϑ1,ϑ2) obtained

Fig. 5. True (asterisk) and estimated (dot) pair (ϑ ∗1 ,ϑ ∗2 ) obtained via (16)
by intersecting the iso-amplitude (dashed line) and iso-period (solid line)
curves when a dry-to-wet µ-jump occurs.

via (16) when a dry-to-wet µ-jump occurs. For readability,
only the iso-amplitude and iso-period curves are shown in
Figure 5. Again, the error component of (16) which accounts
for the maximum value of the braking torque θMax on the
limit cycle is crucial to find the estimate of the correct point.
Notably, the percentage relative estimation error obtained -
with matrices of size 70×70 - is of 0.001% for ϑ1 and ϑ3
and 1.3% for ϑ2. Once the asphalt has been estimated, by
means again of the matrix which stores λ ∗Hop f for all (ϑ1,ϑ2),
the new optimal set-point value is set.

Fig. 6. Settling time for the stable node (samples: circles, fit: solid line)
in linear scale and for the stable focus (samples: crosses, fit: dashed line)
in logarithmic scale as functions of λ ∗ on dry asphalt.

B. Wet-Dry µ-jump and set-point adaptation

When moving from wet to dry asphalt, assuming that the
µ-jump occurs when the system was operating at λ ∗Hop f ,wet ,
on the new road conditions – according to Proposition 4.1 – a
transient to an asymptotically stable equilibrium point will be
observed. Let tt be the time interval needed to reach this new
stationary condition. Thus, tt can be approximated as tt '
5τd = 5/|max[Re(σi)]|, where σi are the eigenvalues of the
Jacobian matrix evaluated at the newly reached equilibrium.
The nature of the transient depends on the type of the new
equilibrium point: it can be either a stable node or a stable
focus. In fact, as λ ∗ approaches λ ∗Hop f from the left, we
first have a stable node, then the real eigenvalues coincide
and a stable focus arises, which is maintained until λ ∗Hop f
is reached and the eigenvalues become purely imaginary.
According to the nature of the equilibrium (which can be
evaluated on-line by simply plugging the equilibrium values
into the eigenvalues expression), we can evaluate tt as

tt = tµ− jump− t f , t f : dθ

dt < ε, 0 < ε < T b, (17)

where tµ− jump is the time instant when the change of asphalt
occurs, and t f is the fist time instant when the condition
on the time derivative of the braking torque is satisfied. A
suitable value for ε was found to be 0.005. Again, we analyse
the relationship between tt and the set-point value λ ∗. As can
be seen in Figure 6, where tt as a function of λ ∗ is shown
both for the stable node and the stable focus case, the data
can be fitted with a parabolic curve. Specifically, to obtain a
parabolic relationship for the stable focus case tt has to be
evaluated on a logarithmic scale. This is due to the fact that,
for a second order system with complex conjugate poles, the
envelope of the step response is given by Ye = 1± eRe(σi)t .
Thus, with off-line computations, six new matrices have been
built, which store the coefficients of the fitting curves for the
chosen grid of (ϑ1,ϑ2). Based on these data, after the µ-
jump occurred and the system settled to the new equilibrium,
the pair (ϑ1,ϑ2) corresponding to the estimated tt is found.
Having considered only a single parameter tt , this analysis
identifies a curve - and not a single point - in the parameter
space (ϑ1,ϑ2). To find the pair corresponding to the new dry
road conditions, a second factor needs to be considered, that
is the new equilibrium value of the control variable θ ∗. As
such, one needs to evaluate – in this case for λ ∗Hop f ,wet – the
equilibrium values of θ ∗ for the considered pairs (ϑ1,ϑ2).
Doing this, thus searching for

(ϑ ∗1 ,ϑ ∗2 )= argmin(ϑ1,ϑ2)[(tt−tt(ϑ1,ϑ2)2 +(θ ∗−θ
∗(ϑ1,ϑ2))2],

one finds the point of intersection between the curves, that
is tt(ϑ1,ϑ2;λ ∗Hop f ,wet) and θ ∗(ϑ1,ϑ2;λ ∗Hop f ,wet). The relative
percentage estimation error - with all matrices of size 70×70
- is of 0.005% for ϑ1 and ϑ3 and 0.3% for ϑ2.

VII. BIFURCATION ANALYSIS AND BRAKING
PERFORMANCE DEGRADATION

Bifurcation theory offers powerful tools to analyse how
the closed-loop behavior of a system may vary in face of
possible perturbations in the parameters. For the application
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at hand, it is of particular interest to investigate the nature
of the closed-loop trajectories when the braking system
undergoes faults or performance degradation which can be
due to usage. The analysis can be performed via a bifurcation
diagram made with respect to the set-point value λ ∗ and
to the upper bound of the braking torque T b. In fact, the
controller has been developed assuming – in particular – that
Tb > maxλ Ψ(λ ). Now, the case in which T b may vary due to
undesired events is considered, and the bifurcation diagram
in the parameters space (λ ∗,T b) (see Figure 7) is built.
This diagram shows that there are seven different regions in
the parameters space separated by four bifurcation curves.
The bifurcations which can occur are: a Hopf bifurcation
(solid line in Figure 7), saddle-node bifurcations (dashed
line in Figure 7) and trans-critical bifurcations (dotted lines
in Figure 7). From the asymptotic behavior viewpoint, the

Fig. 7. Bifurcation diagram in the parameter space (λ ∗,T b) for dry asphalt:
Hopf (solid line), saddle-node (dashed line) and transcritical bifurcation
(dotted line) curves.

seven regions can be grouped as follows (see also Figure 7).
A = {I, III,V I}: all closed-loop system trajectories evolve
towards the equilibrium (λ ∗,Ψ(λ ∗)). B = {II}: the closed-
loop system trajectories evolve towards an attractive periodic
orbit. C = {IV,V,V II}. The closed-loop system trajectories
evolve towards the equilibrium (λ ,T b) with Ψ(λ ) = T b. In
this case, the choice of the set-point λ ∗ does not influence
the closed-loop behavior, which is determined only by the
intersections between the trapping region (9) and the curve
Ψ(λ ).

From the braking performance view-point, if we assume
that the braking system undergoes a fault or a degradation
due to usage, this means that the upper bound on the
admissible braking torque T b decreases. According to the
set-point value λ ∗, this implies that - in the parameter space
- we move either from region A to region C or from
region B to region C . Based on the bifurcation analysis, the
only potentially dangerous situation occurs when the latter
happens. In fact, when the bifurcation curve from region II
to region V is crossed, there is a saddle-node bifurcation in
which the two equilibria - a saddle and an unstable node
- on the boundary of region V collide and disappear in
region II. The collision occurs on the cycle which exists

Fig. 8. Phase portrait of the closed-loop system in region V, with λ ∗ =
0.85 and T b = 700Nm on dry asphalt and with initial conditions λ (0) =
0.85,θ(0) = 560Nm.

in region II and disappears via heteroclinic connection. The
cycle is heteroclinic because it contains portions of the
trajectories connecting the saddle point (1,0) and (1,T b).
This is therefore a saddle-node bifurcation on a heteroclinic
cycle. Thus, in this situation, the system might come close
to the locked wheel condition. This can be appreciated by
inspecting Figure 8, where a phase portrait of the closed-loop
system in region V on dry asphalt is shown. The closed-
loop trajectory, even though in the end converges to the safe
equilibrium point (λ ,T b), gets close to wheel locking. This
analysis suggests that, if a gradual degradation of the braking
performance is observed, a sensible strategy would be to
switch to a fixed set-point value placed to the left of the
peak of the friction curve for all road conditions. This would
make the performance sub-optimal but guarantee passengers’
safety.
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