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Abstract— Despite the enormous complexity of the human
mind, fMRI techniques are able to partially observe the state
of a brain in action. In this paper we describe an experimental
setup for real-time fMRI in a bio-feedback loop. One of the
main challenges in the project is to reach a detection speed,
accuracy and spatial resolution necessary to attain sufficient
bandwidth of communication to close the bio-feedback loop.
To this end we have banked on our previous work on real-time
filtering for fMRI and system identification, which has been
tailored for use in the experiment setup.

In the experiments presented the system is trained to estimate
where a person in the MRI scanner is looking from signals
derived from the visual cortex only. We have been able to
demonstrate that the user can induce an action and perform
simple tasks with her mind sensed using real-time fMRI.

The technique may have several clinical applications, for
instance to allow paralyzed and "locked in" people to com-
municate with the outside world. In the meanwhile, the need
for improved fMRI performance and brain state detection poses
a challenge to the signal processing community. We also expect
that the setup will serve as an invaluable tool for neuro science
research in general.

I. INTRODUCTION

Revealing the functionality of the human brain continues

to be one of the grand scientific challenges. Although con-

siderable effort has been made toward this end, many issues

remain unresolved.

A new tool in this endeavor is functional Magnetic Reso-

nance Imaging (fMRI). The aim in fMRI is to map cognitive,

motor and sensor functions to specific areas in the brain

[22]. The physical foundation for the method is the fact that

oxygenated and deoxygenated blood have different magnetic

properties. When a neuron in the brain is active it consumes

oxygen, which is supplied by the blood. To compensate

for the increased rate of oxygen consumption in an active

brain area the blood flow is increased and the result is that

the oxygenation level of the blood to this area is, in fact,

increased. This increase, commonly known as the BOLD

(Blood Oxygen Level Dependent) effect, can be measured

in a magnetic resonance scanner. Thus, we can locate areas

of brain activity indirectly by locating areas with elevated

blood oxygen levels.

To map, for example, the sensory function area of a finger,

one can stimulate the finger on a volunteer with a brush,

while images of the brain are continuously acquired by the

MR-scanner. During the stimulation of the finger there is

an increase in image intensity (i.e. the active area becomes

brighter) compared to a resting state. Thus, to detect activity

we need to compare images where the finger is stimulated

by the brush to images acquired in a resting state. The

areas where the “activated” images are brighter than images

acquired in the “rest” state indicate brain areas involved when

the brush stimulates the finger.

In the project presented in this paper, we aim at using the

estimates of brain activity for the purpose of bio-feedback,

i.e. to use the information obtained in the fMRI scan to alter

the stimuli generating the fMRI response and thus generating

a feedback loop involving the brain. This requires that all

parts of the loop, in particular the brain activity estimation,

run in real-time. To capture real-time dynamics of the brain,

we must acquire each image-slice rapidly. Unfortunately, this

makes the images heavily contaminated with random noise.

Hence, it is not enough to acquire just one image in activity

and one in rest, as it is likely that we can not detect any

significant change in intensity due to the high noise level.

How the experiment and acquisition of the image volumes

are performed is termed the paradigm and is, as a rule, a

determining factor for success or failure.

Bio-feedback has since long been explored using elec-

tromyography (EMG), temperature and electroencephalog-

raphy (EEG), see among others [12], [8], [10], [21], [2],

[13], [15], [20], [19], [6], but is relatively new in the field

of fMRI. Some of the most known examples are the one by

DeCharms et al., who showed how patients suffering from

chronic pain could learn how to control their pain by bio-

feedback based on fMRI [4], and the one by Yoo et al., who

made it possible to navigate throw a 2D maze through fMRI

bio-feedback [24].

The long term vision behind the present project is to apply

techniques used in system identification for the analysis and

‘control’ of brain activity. Potentially the ‘state of mind’

could be steered towards a goal state (activation pattern) by

producing a sequence of stimuli that is dependent on the

estimated activation pattern sequence. A dual view is that a

person can be told to try to make the stimuli produced move

towards a target stimulus by will. In the future it may in this

way be possible to analyze certain brain functions in terms

of brain state transition probability matrices.
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However, being in the startup phase of the project, the goal

of this first experiment has been to explore the response times

that can be expected using fMRI for bio-feedback. We have

chosen to work with measurements from the visual cortex,

and based on those, track the sight of a person in the MRI

scanner.

The paper is structured as follows: We start by formulating

our problem in Section II and follow up by describing the

experiments setup in Section III. The way we have chosen to

solve the problem is presented in Section IV, followed by a

description of obtained results in Section V. We finish with

a discussion in Section VI.

Fig. 1. The MRI scanner used in the experiments.

II. PROBLEM DESCRIPTION

As an example of generating stimuli based on feedback

from an fMRI signal, and thereby closing the loop, we here

consider a visually-based experiment.

The stimuli are selected to consist of a flashing checker-

board, placed either on the left or the right of the screen. The

aim of the experiment is to make the non-flashing part of the

visual stimuli to follow the eye movements of the subject,

i.e., to flash to the left if the subject is looking to the right,

and to flash on the right side if the subject is looking to

the left. Hence, the problem is to detect where the subject is

looking at the moment, using the measured fMRI data. Once

this is done, the stimulus is simply set to the opposite side.

To judge if the subject is looking to the left or to the right,

we need to build a prediction model, with the measurements

from the fMRI as the input, and the direction of the subject’s

gaze as the output. This is a regression problem of high-

dimensional nature. The input, i.e., the fMRI measurements,

will typically be a signal of approximately 40000 elements

or dimensions. Without any kind of regressor selection or

regularization, we would therefore get a severe overfit to

estimation data.

For the particular experiment setup described, we could

use a two-class classifier to determine whether the subject is

looking to the left or right. However, aiming at an extension

where the stimulus can be moved more than to the left or the

right side of the field of vision, regression was considered

and not classification.

Previous attempts to handle fMRI data have used a range

of various methods, from sliding-window general linear

modeling (GLM) to support vector machines (SVM), see e.g.

[17], [18], [3], [7], [5], [16]. A good overview is given in

[1].

III. EXPERIMENT SETUP

As mentioned, the goal of this first real-time feedback

experiment has been to create a simple eye-tracker, which

will detect if the subject in the scanner is looking to the left

or right and show a flashing checkerboard on the right or left

30% of the screen, respectively (see Figure 2, left figure).

The data was acquired using a 1.5 T Philips Achieva MR

scanner, see Figure 1. The acquisition resolution was 80 by

80 pixels in each slice, and 7 slices were acquired. Field

of view and slice thickness were chosen to obtain a voxel

size of approximately 3×3×3 mm. The use of cubic voxels

make three-dimensional signal processing (e.g. smoothing)

viable. The acquired data cover the primary visual cortex,

and a surface coil was used to provide an optimal signal-to-

noise ratio within this region. To obtain high BOLD contrast,

the echo time (TE) was set to 40 ms and the repetition time

(TR) was set to 1000 ms. Hence we acquire one volume per

second, which we consider to be sufficient to deliver close

to realtime feedback to the subject.

The subject in the scanner was exposed to a visual stimulus

through a pair of head mounted displays. The data processing

was done in Matlab on a standard laptop.

0

0

0

0

0

0

0

0

0

0

0

0

Fig. 2. Visual stimuli used. Left figure: left 30% of the screen as a
flashing checkerboard. Right figure: a centered vertical stripe, covering
100% vertically and 40% horizontally of the screen.

IV. TRAINING AND REAL-TIME FMRI

Before starting the real-time feedback phase, a training

phase was performed to build a prediction model.

A. Training phase

During the training phase, two training data sets were

gathered. First, the subject in the scanner was exposed to

a flashing checkerboard, a centered vertical stripe covering

100% vertically and 40% horizontally of the screen. Figure 2

shows the visual stimulus used. Data was gathered for

approximately 40 seconds.

The second training data set was gathered by instructing

the subject in the scanner to look away from a periodically
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shifting flashing checkerboard (15 seconds flashing checker-

board on the left, 15 seconds flashing checkerboard on the

right, see Figure 2). Data was gathered for approximately 90

seconds.

Using this last data set, 8 voxels were picked out corre-

lating the best with the paradigm. The reason for not just

using the two best correlating voxels was to be able to use

the redundancy in data to reduce the impact of noise. The 8

voxels were picked out by first computing the correlation

to a sine wave with a period of 30 seconds. This was

done voxel-by-voxel. In order not to have to go through all

possible phase shifts for the sine wave, to find the phase shift

associated with the best correlation, canonical correlation

analysis (CCA, [11]) was used. In this context, CCA has

the property to automatically find the time delay in the sine

wave giving the best correlation. Note that this usage of CCA

would not be possible using a square wave. The voxel with

the best correlation was chosen as the first of the 8 voxels.

The three voxels with a phase within 90 degrees of the first

one and with the highest correlations were also picked out.

Finally, the 4 voxels correlating best with a sine wave at least

90 degrees out of phase compared to the best correlating

voxel were chosen.

At this time, the voxel locations were verified to be within

the visual cortex. This was done manually by inspection of a

plot like the one shown in Figure 3. To further reduce noise

and to gain some robustness against movements of the sub-

ject, the two training data sets were spatially smoothed. Note

that this will turn the 8 chosen voxels into 8 neighborhoods,

centered at the previously chosen voxels.

The 8 chosen neighborhood signals were then picked out

from the two training data sets, detrended voxel-by-voxel,

and merged together (90 seconds of data associated with the

left-right stimuli followed by 40 seconds of data associated

with the centered vertical flashing stripe). Finally, a linear

predictor, using the 8 signals as regressors, was fit to a square

wave, switching between −1 and +1 (in phase with first

sine wave used above), and followed by zeros for the last

40 seconds. Hence, the predictor was expected to give −1 if

the subject was looking to the left of the checkerboard, +1

if the subject is looking to the right, and zero otherwise.

The training phase is summarized in Algorithm 1.

B. Real-time phase

During the real-time data phase, the data was first spatially

smoothed, just as the training data set. The signals from

the 8 chosen neighborhoods were then detrended using a

windowed least squares (WLS) approach, with a window

size of 50 seconds. With X̄i(t) being the data at time t from

neighborhood i, let

~Xi(t) =
[

X̄i(t) X̄i(t −1) . . . X̄i(t −50)
]

.

We can remove a linear trend in ~Xi(t) by subtracting the best

fitted line

X̃i(t) = ~Xi(t)−
[

αi βi

]

[

1 1 . . . 1

t t −1 . . . t −50

]

Algorithm 1 Training phase

Given data from a voxel i associated with stimulus on the

left-right, X lr
i (t), t = 1 . . .90, and from stimulus as a centered

vertical stripe, X
f

i (t), t = 1 . . .40.

1) Use CCA to find how well X lr
i (t) correlates to a sine

wave with a period of 30 seconds.

2) Find the index for the voxel with the highest correla-

tion.

3) Find the three voxels with the highest correlation but

with a phase difference less then 90 degrees compared

to the best correlating voxel.

4) Find the 4 voxels with the highest correlation having

a phase difference of more than 90 degrees compared

to the best correlated voxel.

5) Make sure that the chosen voxels are in the visual

cortex.

6) For the chosen voxels, make a spatial smoothing using

a Gaussian spatial filter to obtain X̃ lr
i (t) and X̃

f
i (t).

7) Detrend, voxel-by-voxel, the signals X̃ lr
i (t) and X̃

f
i (t)

from the 8 chosen neighborhoods.

8) Concatenate the detrended X̃ lr
i (t) and X̃

f
i (t) to form

Xi(t).
9) Find the θi such that ∑

130
t=1 |y(t) − ∑

8
i=1 θiXi(t)|

2 is

minimized; y(t), t = 1 . . .90 being a −1/ + 1 square

wave in phase with the best correlated voxel, and

y(t) = 0, t = 91 . . .130.

where αi, βi minimizes

∥

∥

∥

∥

~Xi(t)−
[

αi βi

]

[

1 1 . . . 1

t t −1 . . . t −50

]∥

∥

∥

∥

2

.

The first element in X̃i(t) after the trend has been removed

is used as input for the linear predictor. The resulting signal

from this procedure will take values close to one when the

subject is looking to the right and minus one when the

subject is looking to the left. The flashing checkerboard was

therefore moved to the left side when the predictor signal

exceeded a certain threshold, and correspondingly for the

right side.

For validation, the subject in the scanner was during the

real-time phase instructed to keep its eyes on a moving point

on the screen. In this way, we could keep track of where the

subject was looking, which was used to validate the results.

The real-time phase is summarized in Algorithm 2.

V. RESULTS

Figure 3 shows the 8 voxels picked out in the train-

ing phase. The 4 voxels correlating best with the flashing

checkerboard on the left are shown in the top row of Figure 3.

The best correlation was computed for the voxel shown in

the first column from the left, second best for the second

column from the left and so on. A correlation of 0.6 was

the highest correlation computed, and the signal from this

voxel during the training phase is shown in the top figure of

Figure 4.
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Algorithm 2 Real-time phase

Given new data Xi(t). Let T be a threshold and assume that

the θi and the 8 chosen neighborhoods are given from the

training phase. Do the following:

1) For the chosen voxels, perform a spatial smoothing

using a Gaussian spatial filter to obtain X̄i(t).
2) Detrend, voxel-by-voxel, the signals X̄i(t) from the 8

chosen neighborhoods to get X̃i(t).
3) Compute ŷ(t) = ∑

8
i=1 θiX̃i(t).

4) If ŷ(t) < −T : move the stimulus to the right side; if

ŷ(t) > T : move the stimulus to the left side; and if

−T < ŷ(t) < T : use the same stimulus as for t −1.

The bottom row of Figure 3 shows voxels with the highest

correlation to stimuli on the right, arranged in the same way

as the top row. As can be seen, the neighborhoods shown

in the second row, columns 2–4, are not within the visual

cortex. The signals from these neighborhood were therefore

not considered. The signal from the voxel correlating best

(correlation 0.55) with stimuli on the right side is shown in

the bottom figure of Figure 4.

The signal from the 5 remaining neighborhoods were

weighted together to give an as good fit to the stimuli as

possible (see Figure 5).

Fig. 3. Slices associated with the chosen 8 voxels. A red cross, centered
at the chosen voxel, is used to show the location of the chosen voxel. The
top row shows the voxels correlating best with stimuli to the left and the
bottom row with stimuli to the right. The best correlation was found for
voxels shown in the first column, then second best in the next column and
so on.

Figure 6 shows logged results from the real-time phase

using the computed weighting and choice of neighborhood.

The horizontal coordinate for the reference point where the

subject in the scanner was aiming to look at is shown in

the top subplot. The computed signal from the fMRI data

is given in the middle subplot. The bottom subplot shows if

the flashing checkerboard is to the left or the right (−1 if

the checkerboard is to the left and +1 if it is to the right). It

can be seen that, as the subject shifts focus from one side to

the other, it takes between 2.5 and 7 seconds until the visual

stimulus has changed.

VI. DISCUSSION

It should be emphasized that the purpose of this work has

not been to introduce a method for an eye-gaze interface;

0 20 40 60 80 100
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t (s)

0 20 40 60 80 100
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Fig. 4. The signals coming from the voxels correlating best with stimuli.
Top figure: best correlated signal with stimuli to the left, bottom figure: best
correlated signal with stimuli to the right.
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Fig. 5. The weighted signal computed from the 5 chosen neighborhoods
(solid line). Dash-dotted line represents the stimuli. First 105 seconds:
stimuli switching periodically between left and right. Last 43 seconds: the
flashing vertical stripe at the center of the field of view. Three of the 8
chosen neighborhoods have been removed because of their location outside
the visual cortex.

the authors are well aware that there exist more simple,

inexpensive and exact solutions for that specific purpose. The

main contribution is instead the closing of the bio-feedback

loop where the user experiences a real-time response from

the state of his or her mind and is able to perform a simple

task.

The choice of a visual stimulus is not of central importance

for this work. A reason for choosing the specific experimental

setup was that MR-compatible goggles provide a simple

perception of a stimulus inside the MR-scanner, and the

flashing checkerboard pattern enables a distinctive activation

in the visual cortex due to both temporal variation and spatial

high contrast edges.

The use of an MR-scanner as a Brain Computer Inter-

face (BCI) in a real-time bio-feedback loop stresses the
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Fig. 6. Logged results. Top figure: The reference signal showing where
the subject should focus. A small value corresponds to the subject in the
scanner looking to the left, while a high value corresponds to looking to the
right. Middle figure: Computed signal from the fMRI measurements. Bottom
figure: The location of the stimuli. Small value: flashing checkerboard on
the left part of the screen; high value: checkerboard on the right part of the
screen.

boundaries for image acquisition and signal processing to

the absolute limit. In our current setup an average user

experiences a response time of 5 seconds. However, we

observed times down to 2.5 seconds. Similar results have

recently been shown by LaConte et al [17]. Considering that

the BOLD signal, in itself, has a response time of the same

order, these response times can be seen as quite good results.

However, it has been shown that it is possible to spot activity

in the BOLD signal considerably earlier, see [14] and [23].

The question of whether these early signs of activity are large

enough to be able to reliably detect activity is still open. MRI

is continually improving with respect to acquisition time,

SNR and resolution. A limiting factor for functional-MRI

is the temporal dynamics of the BOLD response. For the

visual cortex, stimuli like the flashing checkerboard pattern

induce a BOLD response that is present for approximately 30

seconds [9]. During the first half, the BOLD signal increases

in intensity apart from a very small initial dip. After that time,

the blood oxygen control system of the brain compensates the

blood oxygen distribution for this new state, and the BOLD

response disappears.

An objective method to evaluate the performance of such

a real-time fMRI system is to estimate the bandwidth in the

bio-feedback loop. For the present setup the bandwidth is

approximately 0.2 bits/s. A shorter acquisition time (currently

about 1 s) will not by itself be a key factor to increase of

the bandwidth above 1 bit/s limit, considering the temporal

dynamics of the BOLD response. An improved SNR of

the MRI would on the other hand provide the means to

discern the BOLD response within the noise at a much earlier

stage in the activation process, which has the potential to

increase the bandwidth several orders of magnitude. This is

a real future challenge both for the manufacturers of MRI

equipment as well as for the signal processing community.

Although it is convenient to use visual stimuli inside

the MR-scanner some issues must be considered. During

the training phase, both unconscious and reflex-based eye

movements degrade the training data. Using more advanced

VR-goggles with an eye tracker device that fixate the stimuli

at a local area in the visual cortex, independently of the

eye motions of the user, would provide a significant im-

provement of the training data set. An additional problem

using a gaze based BCI is that the user may unintentionally

move the head a little synchronously to the movement of

the gaze. These motion artifacts are the main reason why

neighborhoods outside the visual cortex sometimes may

provide high correlation to the paradigm. To detect and

compensate for occasional head motions would improve the

performance of the real-time phase. The head motion can be

modeled as a rigid body motion and the new locations of

the selected neighborhoods are straight forward to compute

once the global head motion is estimated. To compensate

for a user that continuously moves his or head is much more

cumbersome due to the complex motion artifacts which are

associated to MRI. Detection and compensation for small

occasional head movements should be possible to perform

within this setup.

A next step in our research is to extend the simple left/right

response to a more complicated task involving a graded

response. A possible task would be a virtual pole balancing

problem. Such a graded response could be computed in

different ways, but a straight-forward method is to apply a

temporal integration on the present output signal.

A possible way to further increase the bandwidth in the

bio-feedback loop would be to use parallel or sequential

activation of different brain areas. Broca’s and Wernicke’s

areas are e.g. activated in speech processing using language

or signs. An activation in these areas could be deliberately

induced by the person in the scanner by focusing the mind

on a sentence, which can be done without any movement

of the eyes. Activating several cortical areas at once will

make the training phase more complex, and more advanced

adaptive training methods will be required to fully explore

these possibilities. To optimize the BCI bandwidth for a

specific task, adaptation to each user’s own capabilities is

necessary.
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