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Abstract— This paper proposes the use of a time-varying
sliding surface for stabilizing linear, possibly unstable, discrete-
time plants subject to saturating actuators, in the presence of
bounded matched uncertainties. The present work generalizes
our previous contributions in the discrete-time framework. A
constructive procedure is given, and a result about semiglobal
practical stabilization is given. Simulation results show both the
effectiveness of the control technique and the low computational
burden required.
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I. INTRODUCTION

The presence of actuator saturation in control systems,

though frequently ignored, is due to inherent (and unavoid-

able) physical limitations of devices. The relevance of this

issue from the practical viewpoint is more and more attract-

ing the attention of control system researchers, as failure

in accounting for actuator saturation may lead to severe

deterioration of closed loop system performance, even to

instability.

In the vast literature addressing the stabilization problem for

discrete-time linear systems subject to actuator saturation,

two lines of research have been mostly pursued. The first line

focusses on the estimation of the asymptotic stability region,

which often has a very conservative expression. To reduce

this conservatism, estimates are given as solution of suitable

LMI optimization problems [5], [14], [6], [8], [1]. The other

line of research focuses on the estimation, less conservative

as possible, of the null controllable region, i.e. the set of

state which can be driven towards the origin of the state

space using saturating actuators. In this latter framework,

the problem has been completely studied for plants known

as Asymptotically Null Controllable with Bounded Controls

(ANCBC), for which the null controllable region is the whole

state space [11], [12], [16]. Moreover, some results are avail-

able for general discrete-time systems about feedback laws

achieving semi-global stabilization on the null controllable

region. Broadly speaking, such techniques consist either in

dividing the null controllable region in polygons and finding

suitable controls driving the vertices to the origin [2], or in

designing a sequence of feedback laws such that the union of

the corresponding invariant sets is an invariant set contained
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in the domain of attraction [7]. Both techniques, however,

require a considerable computational burden also for plants

with relatively low order.

Furthermore, the problem of disturbance rejection for

linear systems subject to actuator saturation has been in-

vestigated only marginally in the discrete time framework.

Note that for continuous time plant an interesting research

line considers disturbances that are bounded in magnitude.

In such context, [15] proved that semiglobal practical stabi-

lization for a linear system subject to actuator saturation and

input additive disturbances can be achieved as long as the

open loop system is not exponentially unstable. For the same

class of systems, Lin [10] constructed nonlinear feedback

laws that achieve global practical stabilization. Recently, it

has been proved in [4] that a 2-dimensional linear systems

subject to actuator saturation and bounded input additive

disturbances can be globally practically stabilized by linear

state feedback, while a sliding mode approach has been very

recently presented [3].

Very few results are available, as far as authors are aware,

about the use of quasi sliding modes for controlling plants

with saturating actuators. In the continuous time framework,

it is worth mentioning the paper by [9], where a family of

low-gain based variable structure controllers are built using

a standard sliding mode design approach, and the recent

paper [3], which proposes a time-varying sliding surface. The

present work generalizes our previous contribution [3] in the

discrete-time framework, thus requiring a completely differ-

ent proof of the main result with respect to the continuous

time case. It will be shown that ultimate boundedness of a

single input discrete-time linear plant can be achieved by

means of a time-varying state feedback controller, derived

imposing the achievement of a quasi-sliding motion onto a

suitable time-varying sliding surface. It will be proved here

that a constructive procedure exists for designing the surface

as to guarantee the ultimately boundedness of plant trajecto-

ries in the presence of bounded matched uncertainties.

II. PROBLEM STATEMENT

Consider the following time invariant, uncertain discrete

time single input plant described by:

x(k + 1) = Ax(k) + B(u(k) + d(k)) (1)

where: x = [x1(k) · · ·xn(k)]T ∈ IRn is the state vector

(assumed available for measurement), u(k) ∈ IR is the

control input, and A ∈ IRn×n is the state matrix. The

uncertain term d(k) ∈ IR represents external disturbances

affecting the system.
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Assumption 1: The uncertain element d(k) is such that it

is bounded by a known constant ρ̄, i.e. |d(k)| ≤ ρ̄

Assumption 2: The pair (A,B) is controllable and, without

loss of generality is given in the controllable canonical form,

with:

A =





0 1 0 . . .

. . .

a1 a2 . . . an



 B =

[

0(n−1)×1

1

]

The plant is supposed to be preceded by a saturating device

u(k) = f(v(k)), such that it holds:

u(k) = f(v(k)) =











M if v(k) ≥ M

v(k) if − M < v(k) < M

−M if v(k) ≤ −M

(2)

with threshold M > 0 known.

Consider a vector C ∈ IR1×n of the form

C =
[

c1 c2 . . . cn−1 ǫ
]

(3)

with ci, ǫ ∈ IR, i = 1, . . . , n−1. In view of the controllability

hypothesis, coefficients appearing in the C vector can be

designed such that, when a sliding motion is achieved on

the following sliding surface:

ŝ(x(k)) = Cx(k) = 0 (4)

the corresponding reduced order system has assigned stable

eigenvalues, and, as a consequence, system (1) is stable, too.

Definition 1: Denote solutions of a general system x(k +
1) = f(x(k), k) as φ(k, k0,x(0)) with initial condition

x(0). Following [13], such solutions are defined uniformly

ultimately bounded (with bound B) if there exists a B > 0
and if corresponding to any α > 0 and for every k0 ∈ N,

there exists a T = T (α) > 0 (independent of k0) such

that ||x(0)|| < α implies that |φ(k, k0,x(0))| < B for all

k ≥ k0 + T (α).
In the absence of the saturating device (2), i.e. if the

control input u(k) could be directly manipulated, the fol-

lowing control law, obtained by imposing the inequality

|ŝ(x(k + 1))| < |ŝ(x(k))| outside the sector of width ρ̄,

uc(k) =











−(CB)−1
CAx(k) − θ(|ŝ(x(k))| − ρ̄)

if |ŝ(x(k))| ≥ ρ̄

−(CB)−1
CAx(k) if |ŝ(x(k))| < ρ̄

(5)

with |θ| ≤ 1 would ensure the achievement of a quasi

sliding motion on (4), hence plant practical stabilization

(i.e. stabilization outside the sector |ŝ(x(k))| < ρ̄). Since

only the input v(k) is available for direct manipulation, the

control problem addressed in this paper consists in finding

a feedback controller v(k) guaranteeing the robust practical

stabilization of the system (1) in the presence of a saturating

nonlinearity in the actuating device.

III. A TIME VARYING SLIDING SURFACE

Define

D =
[

d1 d2 . . . dn−1 0
]

(6)

and C̄(k)
def
= (C + Dλ̄k) = [(c1 + d1λ̄

k) . . . (cn−1 +
dn−1λ̄

k) ǫ] (note that dn = 0). Consider the following

time-varying sliding surface:

s(x(k),x(0), k) = C̄(k)
[

x(k) − x(0)λ̄k
]

=

=
[

(c1 + d1λ̄
k) . . . (cn−1 + dn−1λ̄

k) ǫ
]

·

·
[

x(k) − x(0)λ̄k
]

= 0, |λ̄| < 1; (7)

It is straightforward that, for any choice of di ⋚ 0,

i = 1, . . . n − 1, constraining the system to the surface

s(x(k),x(0), k) = 0 implies plant asymptotical stabilization.

Moreover, since s(x(0),x(0), 0) = 0, the surface (7) is such

that no reaching phase exists.

What motivates the introduction of the vanishing term

Dλ̄k
x with respect to standard surfaces is the need of

modulating the control input in order to cope with the

saturation limitation. Roughly speaking, we are aiming at

constraining the system on a sliding surface which, besides

being asymptotically stabilizing, has a tunable part such that

the control input is able to constrain the plant state on the

sliding hyperplane without violating the saturation bounds.

The following section is therefore devoted to show that the

coefficients of the D vector can always be found as to satisfy

the saturation limits, still preserving the persistence of the

sliding motion.

For the surface (7), the control input ensuring the achieve-

ment of a finite-time sliding motion is, similarly to (5):

ǫv(k) = −

n−1
∑

i=1

(ci + diλ̄
k+1)xi+1(k) − ǫ

n
∑

i=1

aixi(k)+

+ ϕ(x(0), k) −

{

θ(|s(k)| − ρ̄) if |s(k)| ≥ ρ̄

0 if |s(k)| < ρ̄
(8)

where, with some abuse of notation, the variable

s(x(k),x(0), k) has been denoted by s(k), and with:

ϕ(x(0), k) =

n−1
∑

i=1

(ci + diλ̄
k+1)xi(0)λ̄k+1 + ǫxn(0)λ̄k+1.

Lemma 3.1: It is given the uncertain system (1) driven by

the feedback controller (8) under Assumptions 1, 2. For any

initial condition x(0), there exists a constant ∆
(max)
F ∈ IR+,

depending on the chosen x(0), such that:

||x(k)|| ≤ ∆
(max)
F , ∀k (9)

Proof. As already discussed, for the stabilizing surface (7)

no reaching phase exists. Hence, the plant is in quasi sliding

motion from k = 0, and the dynamics of the state variables

are governed by sliding mode. It follows that state trajectories

are always bounded.

IV. THE CONTROL LAW

The constraint induced by saturation (2) requires:

|v(k)| ≤ M ∀k ≥ 0 (10)
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Taking the worst case and considering (3), (6), (8) it follows

that the condition (10) can be rewritten as:
∣

∣

∣

∣

∣

λ̄

n
∑

i=1

(

ci + diλ̄
k+1
)

xi(0)λ̄k+1 − ǫ

n
∑

i=1

aixi−

n−1
∑

i=1

c̄ixi+1

∣

∣

∣

∣

∣

+ |s(x(k),x(0), k)| ≤ M |ǫ| (11)

Considering the expression of |s(x(k),x(0), k)|

|s(x(k),x(0), k)| ≤

n−1
∑

i=1

(|ci| + |di|)∆
(max)
F +

ǫ(∆
(max)
F + |xn(0)|) +

n−1
∑

i=1

(|ci| + |di|)|xi(0)| (12)

and taking again the worst case, one has:

n−1
∑

i=1

(

(1 + λ̄)|ci| + (1 + λ̄2)|di|
) |xi(0)|

∆
(max)
F

+ |ǫ|(1 +

n
∑

i=1

|ai|)+

+
n−1
∑

i=1

(

2|ci| + (λ̄ + 1)|di|
)

+ ǫ(λ̄ + 1)
|xn(0)|

∆
(max)
F

≤
M

∆
(max)
F

|ǫ|

(13)

The following Theorem provides a stabilizing controller

designed as to fulfill the constraint |v(k)| ≤ M associated

to saturation.

Theorem 1: It is given the uncertain system (1) preceded

by the saturating device (2), under Assumptions 1, 2. For any

given x(0), proper coefficients di, i = 1, . . . , n − 1, and a

suitable |λ̄| < 1 can always be found such that the feedback

controller (8) guarantees that plant trajectories are uniformly

ultimately bounded.

Proof. The proof is constructive. Define mj , j = 1, . . . , n−1
such that

n
∑

j=1

m−1
j ≤ 1. (14)

Condition (13) is equivalent to:

n−1
∑

i=1

(

(1 + λ̄)|ci| + (1 + λ̄2)|di|
) |xi(0)|

∆
(max)
F

+ |ǫ|(1 +

n
∑

i=1

|ai|)+

+

n−1
∑

i=1

(

2|ci| + (λ̄ + 1)|di|
)

+ ǫ(λ̄ + 1)
|xn(0)|

∆
(max)
F

≤ M1|ǫ|

n
∑

j=1

m−1
j

(15)

being M1
def
=

M

∆
(max)
F

. Condition (15) can be split into n

chained inequalities, to be fulfilled simultaneously.

• Consider first i = 1, and choose d1 such that:

|d1| <

|ǫ|

(

M1

m1
− (1 + |a1|)

)

− (λ̄ + 1)|c1|
|x1(0)|

∆
(max)
F

+ K1

(1 + (1 + λ̄2)
|x1(0)|

∆
(max)
F

)

(16)

where a same constant K1, to be determined, has been

added and subtracted in (15). Condition (16) requires:

m1 >
M1

1 + |a1|
; K1 > (λ̄ + 1)|c1|

|x1(0)|

∆
(max)
F

def
= K∗

1

and

|ǫ| <

K1 − (λ̄ + 1)|c1|
|x1(0)|

∆
(max)
F

(1 + |a1|) −
M1

m1

def
= Q1. (17)

Taking into account condition (16), inequality (15) is

fulfilled if:

|c1|

(

2 − λ̄λ1
|x1(0)|

∆
(max)
F

)

+ |ǫ|λ̄

(

M1

m1
− (1 + |a1|)

)

+ 2|c2|

+ |ǫ||a2| + λ1|c2|
|x2(0)|

∆
(max)
F

+ (1 + (1 + λ̄2)
|x2(0)|

∆
(max)
F

)|d2|

+ λ̄|d2| + λ1K1 +

n
∑

i=3

|ǫ||ai| +

n−1
∑

i=3

(

2|ci| + (1 + λ̄)|di|
)

+

n−1
∑

i=3

(

λ1|ci| + (1 + λ̄2)|di|
) |xi(0)|

∆
(max)
F

+ ǫλ1
|xn(0)|

∆
(max)
F

≤ M1|ǫ|

n
∑

j=2

m−1
j (18)

with: λ1 = (λ̄ + 1).
• Consider i = 2 and choose d2 such that:

|d2| <
1

1 + (1 + λ̄2)
|x2(0)|

∆
(max)
F

· {|ǫ| (M1µ2 − ν2)

−|c1|

(

2 − λ̄λ1
|x1(0)|

∆
(max)
F

)

− λ1|c2|
|x2(0)|

∆
(max)
F

− λ1K1 + K2

}

(19)

being:

µ2
def
=

1

m2
− λ̄µ1; µ1

def
=

1

m1
; (20)

ν2
def
= |a2| − λ̄ν1; ν1

def
= 1 + |a1| (21)

Condition (19) requires:

|ǫ| <

K2 − λ1|c2|
|x2(0)|

∆
(max)
F

− |c1|γ1 − λ1K1

(ν2 − M1µ2)

def
= Q2

(22)

where γi
def
= 2− λ̄λ1

|xi(0)|

∆
(max)
F

, provided that K2 is large

enough

K2 > λ1|c2|
|x2(0)|

∆
(max)
F

+ |c1|γ1 + λ1K1
def
= K∗

2 (23)
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and provided that M1µ2 − ν2 < 0. To this purpose, one

can impose µ2 < 0 and ν2 > 0, corresponding to:

λ̄ <
|a2|

1 + |a1|

def
= λ̄2; m2 >

m1

λ̄
(24)

Taking into account (19) and (18), (15) is fulfilled if:

γ2|c2| − λ̄|c1|γ1 + |ǫ|λ̄ (M1µ2 − ν2) − λ1λ̄K1 + λ1K2

+
(

λ1|c3| + (1 + λ̄2)|d3|
) |x3(0)|

∆
(max)
F

+ |ǫ||a3| + λ1|d3|+

+ 2|c3| +

n−1
∑

i=4

(2|ci| + λ1|di|) +

n−1
∑

i=4

(

λ1|ci| + (1 + λ̄2)|di|
)

·

|xi(0)|

∆
(max)
F

+ |ǫ|
n
∑

i=4

|ai| + ǫλ1
|xn(0)|

∆
(max)
F

≤ M1|ǫ|
n
∑

j=3

m−1
j .

(25)

• Consider i = 3 and choose d3 such that:

|d3| <
1

1 + (1 + λ̄2)
|x3(0)|

∆
(max)
F

· {|ǫ| (M1µ3 − ν3)

− + λ̄|c1|γ1 − |c2|γ2 − λ1|c3|
|x3(0)|

∆
(max)
F

− λ1K2 + K3

}

(26)

being:

µ3
def
=

1

m3
− λ̄µ2; ν3

def
= |a3| − λ̄ν2; (27)

Differently from the previous case, where µ2 < 0 and

ν2 > 0, the condition Mµ3 − ν3 < 0 has now to be

imposed explicitly, i.e.

λ̄(ν2 − Mµ2) < |a3| −
M

m3
(28)

where, setting m3 >
M

|a3|
and recalling the step 2, both

members are positive. Substituting the expressions (20),

one gets

λ̄(λ̄(
M

m1
− 1 − |a1|) + |a2| −

M

m2
) < |a3| −

M

m3
(29)

and, setting m1 >
M

1 + |a1|
, a strongest condition is

λ̄(|a2| −
M

m2
) < |a3| −

M

m3
(30)

providing, for m2 >
M

|a2|
,

λ̄ <
|a3| −

M
m3

(|a2| −
M
m2

)

def
= λ̄3 > 0 (31)

Condition (26) requires:

|ǫ| <

K3 − λ1|c3|
|x3(0)|

∆
(max)
F

+ λ̄|c1|γ1 − |c2|γ2 + λ1K2

(ν3 − M1µ3)

def
= Q3

(32)

provided that K3 is large enough

K3 > λ1|c3|
|x3(0)|

∆
(max)
F

− λ̄|c1|γ1 + |c2|γ2 +λ1K2
def
= K∗

3 .

(33)

Taking into account (26) and (34), (15) is fulfilled if:

λ̄γ2|c2| − λ̄2|c1|γ1 + |ǫ|λ̄ (M1µ3 − ν3) − λ1λ̄K2 + λ̄K3

+
(

λ1|c4| + (1 + λ̄2)|d4|
) |x4(0)|

∆
(max)
F

+ |ǫ||a4| + λ1|d4|+

+ 2|c4| +

n−1
∑

i=5

(2|ci| + λ1|di|) +

n−1
∑

i=5

(

λ1|ci| + (1 + λ̄2)|di|
)

·

|xi(0)|

∆
(max)
F

+ ǫλ1
|xn(0)|

∆
(max)
F

≤ M1|ǫ|
n
∑

j=4

m−1
j (34)

• The above procedure can be generalized for any i =
r ≤ n − 1. Choose di such that:

|dr| <
1

1 + (1 + λ̄2)
|xr(0)|

∆
(max)
F

· {|ǫ| [M1µr − νr]+

−λ1|cr|
|xr(0)|

∆
(max)
F

−

r−1
∑

ℓ=1

|cℓ|
(

−λ̄
)r−ℓ−1

γℓ − λ1Kr−1 + Kr

}

(35)

and:

µr
def
=

1

mr

− λ̄µr−1; r = 2 . . . n. (36)

νr
def
= |ar| − λ̄νr−1 r = 2 . . . n − 2; (37)

νn−1
def
= |an|+|an−1|+λ1

|xn(0)|

∆
(max)
F

−λ̄νn−2; νn = λ̄νn−1

(38)

Condition (35) requires:

|ǫ| <

−

r−1
∑

ℓ=1

|cℓ|
(

−λ̄
)r−ℓ−1

γℓ − λ1Kr−1 + Kr

(νr − M1µr)
+

−

λ̄|cr||
|xr(0)|

∆
(max)
F

|

(νr − M1µr)

def
= Qr (39)

and: M1µr − νr < 0, which implies the following

conditions:






























λ̄ <
|ar|

νr−1

def
= λ̄r; mr >

mr−1

λ̄
r even

λ̄ <
|ar| −

M
mr

|ar| −
M

mr−1

def
= λ̄r; r odd

mr >
M

|ar|
∀r

(40)

Kr >

r−1
∑

ℓ=1

|cℓ|
(

−λ̄
)r−ℓ−1

γℓ + λ̄|cr||
|xr(0)|

∆
(max)
F

| + λ1Kr−1

def
= K∗

r (41)
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• Finally, taking into account (35), (36) for r = n

and (41), the last condition to be fulfilled in order to

guarantee (15) is the following:

λ̄λ1Kn−2 >

n−1
∑

ℓ=1

|cℓ|
(

−λ̄
)n−ℓ−1

γℓ + λ1Kn−1 (42)

which provides a further constraint on Kn−2. Note that

(42) is the second condition imposed on Kn−2, and

needs to be satisfied together with (35) for r = n − 2.

Condition (42) does not provide any further constraint

on ǫ.

Summing up, all components of the control input v can

be computed choosing

• the parameter |λ̄| < 1 such that:

λ̄ < min{1, min
i

λ̄i, i = 2, . . . , n} (43)

• parameters Ki fulfilling both (41) and (42)

Ki > max
i

K∗

i , , i = 1, . . . , n − 1 (44)

• parameters |di|, i = 1, . . . , n − 1, fulfilling conditions

(16), (35), (42), and

• the parameter ǫ such that:

|ǫ| < min {Q1, Q2, . . . , Qn−1}
def
= Q. (45)

♦
According to the proof of Theorem 1, the following

operative procedure can be given for the determination of

the coefficients di, i = 1, . . . , n− 1, of the vector D in (7).

1) Set λ̄ < min{1, λ̄2, λ̄3, . . . , λ̄n}.

2) Fix m1 = n, and compute all the further mi according

to (40).

3) Compute νi and µi, i = 1, . . . , n according to (36),

(37), (38).

4) Determine numerically an (even rough) estimate of

the bounding constant ∆
(max)
F , based on the initial

condition and the assigned eigenvalues.

5) Compute all Ki’s, i = 1, . . . , n− 1, according to (41)

and considering also (42).

6) Compute all Qi’s, i = 1, . . . , n − 1, according to

(17),(22), (39).

7) Choose ǫ according to (45), and finally, select di, i =
1, . . . , n − 1, according to (16), (19), etc.

V. SIMULATION RESULTS

In order to validate previous theoretical results, the pro-

posed control approach, based on sliding surface (7) and

control law (8), has been applied by simulation to the plant

used by [1] with: n = 3, a1 = 1; a2 = −3; a3 = 3.

The control input u feeding the plant is the output of a

saturation device, with threshold M = 1. A disturbance

term of the form d(k) = A sin(ωk) has been supposed

to perturb the system, with |A| ≤ 0.1 and ω = 0.2.

The following set of parameters were found: λ̄ = 0.34,

m1 = 3; m2 = 9.82; m3 = 29.9. The vector C has

been selected as C =
[

0.005 −0.15 1
]

while the

vector D has been designed according to Theorem 1 as

D =
[

−7 4 0
]

. The reported simulations have been

performed with initial conditions x(0) = [1 1 1]T . Results

have been reported in Figures 1-4. Figures 1,2 shows the

state variables x1(k) and x2(k), while Figures 3,4 display the

control input v(k) (which coincides exactly with u(k) since

the saturation threshold is never violated) and the sliding

surface s(x(k),x(0), k) respectively. It can be easily verified

that the controller proposed here is able to keep both the

input v(k) (and consequently u(k)) far below the saturation

threshold by the proposed algorithm, as theoretically proved,

and a substantial improvement of the control activity is

achieved. In order to perform a comparison, the same plant

has been driven by a standard sliding mode controller built

using the standard surface (4). Results have been reported

in Figures 5-8, showing the state variables x1(k) and x2(k),
the control input u(k), and the sliding surface (4)respectively.

The improvement of the control activity is evident and the

”unavailable” control input shows values remarkably larger

that in the previous case.
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Fig.1 - State variable x1(k)
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Fig.2 - State variable x2(k)
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Fig.3 - Control input v(k)
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Fig.4 - Sliding surface s(x(k),x(0), k)
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Fig.5 - State variable x1(k): plant driven by
the controller built with (4)
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Fig.6 - State variable x2(k): plant driven by
the controller built with (4)
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Fig.7 - Control input v(k): plant driven by the
controller built with (4)
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Fig.8 - Sliding surface (4)
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