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Abstract— It is a fait accompli that heavy traffic analysis is a
very powerful technique, which allows us to model the number
of customers of a queueing system via a reflected diffusion (or
a reflected Lévy process). In this paper, we derive heavy traffic
type theorems for queueing systems that receive either Markov
modulated or independent positive and negative arrivals with
general service and inter-arrival time processes.

Keywords: Queueing, Heavy Traffic Analysis, G-Queues.

I. INTRODUCTION

Consider a queueing system with two types of arrivals,

negative and positive. The positive arrivals corresponds to

regular customers that enter the system in order to receive

service. A negative customer is a signal to the system

indicating that it must remove a regular customer from the

queue. These queueing systems are called G-queues. Since

their introduction in [8], these models have been extensively

studied (e.g., [6], [3], [11], [16], [9], [7], [12], [13], [2],

[5]) and are motivated by a series of practical applications.

For example, a negative arrival may represent a signal to

delete some transaction in a distributed database system [8],

packet loss in Internet traffic [6] or inhibitory signals in

mathematical models of neurons [8].

In this paper, we derive a model for G-queues under

heavy traffic. The main idea of heavy traffic analysis is to

approximate the stochastic processes that describe a queueing

system by a reflected diffusion, under an appropriate time

and space scaling. These approximations simplify the models

considerably. Heavy traffic analysis can be employed in situ-

ations where the rate of arrivals into the system is close to the

rate of departures (hence, the name heavy traffic). However,

they are known to give good estimates even for systems

under only moderate traffic [14]. A common application

is modelling computer systems (e.g., [1]). For a complete

account on the subject see [14].

To our knowledge, queues with negative arrivals have

not yet been treated under heavy traffic analysis. This kind

of model help us understand the general behavior of such

queues for arbitrary inter-arrival and service time distribu-

tions (usually, G-queues are treated only for arrival or de-

parture processes having some kind of Markovian structure)

in addition to clarifying the interactions among the model’s

parameter. Also, it describes the transient evolution of these

queues with a simple time-dependent equation, which is

otherwise difficult to obtain in such a convenient form.

The layout of the paper is as follows: in the next section,

we will introduce the notation and assumptions that will
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be used throughout the paper. Next, in section III, we will

state the heavy traffic theorems for the number of customers

and workload process. In section IV, we will apply these

results to approximate some queueing systems and compare

it against a computer simulation.

II. NOTATION AND ASSUMPTIONS

For this article, we will restrict ourselves to the first

come first served (FCFS) queue discipline. Also, we will

suppose that negative arrivals will remove customers from

the end of the queue. This discipline is usually called RCT

discipline (removal of customers from the tail of the queue)

[8]. In addition, we assume that a negative customer may

only remove positive customers if they are not being served.

This kind of customer removal discipline was called “RCT-

immune servicing” in [7].

As it is common in heavy traffic models, we consider a

“sequence” of queues indexed by the parameter n. When

this parameter grows larger, the difference between the rate

of customers leaving the queue and the rate of regular

arrival gets smaller, tending to what is called a “heavy traffic

situation.” This is enforced by equation (1).

The notation used here is mainly the one in [14]. Let

{∆a,n
l } and {∆r,n

l } be stochastic processes denoting the

inter-arrival times of positive and negative customers into

the queue, respectively. The service times are denoted by

{∆d,n
l }.

Assumption 2.1: The random variables ∆α,n
l are mutually

independent for each l and n, and they are identically

distributed with means 0 < ∆̄α,n < ∞, α = a, r, d,

for each l. Let σα,n be the coefficient of variation of

∆α,n
l . There are positive constants σα and ∆̄α such that

σα,n → σα and ∆̄α,n → ∆̄α, as n → ∞, for α = a, d, r.

Also, {∆a,n
l }, {∆r,n

l } and {∆d,n
l } are independent, and

{|∆a,n|2, |∆d,n|2, |∆r,n|2;n} is uniformly integrable.

The assumption on the uniform integrability can be re-

placed by supposing that ∆α,n
l converges weakly to a

stochastic process (as n → ∞) that has mean ∆̄α and

coefficient of variation σα (e.g, Theorem 5.4 in [4]).

Also, we suppose that there exists a constant b ∈ R such

that

√
n

(

1

∆̄a,n
− 1

∆̄r,n
− 1

∆̄d,n

)

△

= bn → b. (1)

This condition is usually referred to as the “heavy traffic

condition.” For later use, define λα,n △

= 1/∆̄α,n, α = a, r, d.

Let Sa,n(t) (resp., Sr,n(t)) denote 1/n times the number

of positive (resp., negative) arrivals to the system by time

nt, and Sd,n(t) denote 1/n times the number of service
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completions by time nt. Observe that we may write, for α =
a, r,

Sα,n(t) =
1

n
max

{

m ∈ N0 :

m
∑

l=1

∆α,n
l ≤ nt

}

, (2)

Sd,n(t) =
1

n
max

{

m ∈ N0 :

m
∑

l=1

∆d,n
l ≤ nt − Tn(t)

}

(3)

where Tn(t) is defined as the total server idle time by time

nt.

Observe that the process xn(t), denoting 1/
√

n times the

number of customers in the system by time nt, can be written

as

xn(t) = xn(0) +
1√
n

nSa,n(t)
∑

l=1

1 − 1√
n

nSr,n(t)
∑

l=1

1

− 1√
n

nSd,n(t)
∑

l=1

1 + zn
0 (t), (4)

where xn(0) is 1/
√

n times the number of customers in the

system at time zero, and zn
0 (t) is 1/

√
n times the number of

negative customers that arrived when the queue was empty by

time nt. Notice that zn
0 (t) may increase only when xn(t) ≤

1/
√

n, since it will increase when a negative customer arrives

and finds an empty system and when it finds an empty queue

but one customer at service.

III. HEAVY TRAFFIC THEOREMS

In this section we will prove the main theorems of the

paper. We will begin considering the queue lenght process.

Next, we will derive a heavy traffic model for the workload

process. And finally, we present the result for a G-queue

with arrivals modulated by a Markov chain. It is perhaps

noteworthy that weak convergence here refers to convergence

in distribution, as in [4].

A. Number of Customers in Queue

Theorem 3.1: Suppose that xn(0) converges weakly to

x(0), and is independent of the inter-arrival and service time

processes. With the assumptions described in the previous

section, the process xn(·) converges weakly to the process

x(·) taking values

x(t) = x(0) + wa(λat) − wr(λrt) − wd(λdt)

+bt + z(t), (5)

where wa(·), wr(·) and wd(·) are independent Wiener pro-

cesses with variances (σa)2, (σr)2, and (σd)2, respectively,

b is the constant in (1), and z(·) is the reflection process (i.e.,

z(0) = 0, z(·) is nondecreasing and can increase only at t
where xn(t) = 0).

Proof: The proof of this theorem is inspired by the

proof of Theorem 5.1.1 in [14]. Observe that we may write

1√
n

nSα,n(t)
∑

l=1

1 =
1√
n

nSα,n(t)
∑

l=1

(

1 − ∆α,n
l

∆̄α,n

)

+
1

∆̄α,n
√

n

nSα,n(t)
∑

l=1

∆α,n
l , (6)

for α = a, r, d. Define wα,n(·) as

wα,n(t)
△

=
1√
n

nt
∑

l=1

(

1 − ∆α,n
l

∆̄α,n

)

. (7)

Now an application of Theorem 2.8.6 in [14], which is

an extension of Donsker’s Theorem or Functional Central

Limit Theorem, tells us that wα,n(·) converges weakly to

the Wiener process with variance

lim
n

E

[

(

1 − ∆α,n
l

∆̄α,n

)2
]

= (σα)2.

Using Theorem 1.1 (in the appendix) and equation (2), we

observe that Sα,n(t) converges weakly to the process that

takes values λαt, α = a, r. Similarly, using equation (3),

Sd,n(t) is tight and any weak-sense limit has continuous

sample paths by the first part of Theorem 1.1. Hence, since

the Wiener process has almost certainly continuous sample

paths, wα,n(Sα,n(·)) converges weakly to wα(λa·), α =
a, r, and wd,n(Sd,n(·)) is asymptotically continuous.

Observe that, for α = a, r,

1

∆̄α,n
√

n

nSα,n(t)
∑

l=1

∆α,n
l =

nt

∆̄α,n
√

n
+ ǫn

α(t)

where ǫn
α(t) denotes 1/(∆̄α,n

√
n) times the time since last

arrival, which will be negligible as n → ∞. For α = d, we

have to account for server idle time

1

∆̄d,n
√

n

nSd,n(t)
∑

l=1

∆d,n
l =

nt − Tn(t)

∆̄d,n
√

n
+ ǫn

d (t)

where ǫn
d (t) is a negligible error.

Using expansion (4), we can write the following

xn(t) = xn(0) + wa,n(Sa,n(t)) − wr,n(Sr,n(t))

−wd,n(Sd,n(t)) +
√

n

(

1

∆̄a,n
− 1

∆̄r,n
− 1

∆̄d,n

)

t

+zn(t) + ǫn(t),

where zn(t) = zn
0 (t) + Tn(t)/(

√
n∆̄d,n), and ǫn(t) is the

sum of the negligible error terms.

The fact that {zn(·)} is tight and converges weakly to the

reflection term follows from Theorem 3.6.1 in [14], since

zn(0) = 0, zn
0 (t) is non-decreasing and has jump sizes

of 1/
√

n, and zn(t) may increase only at the times when

xn(t) ≤ 1/
√

n. This implies that {Tn(·)/√n} is tight and

Sd,n(·) converges weakly to the process taking values λdt,
by Theorem 1.1.
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B. Workload Process

Define the workload process as the total time that is

required to complete all work in the system. In other words,

the workload at time t is the sum of all service times for

all customers present in the system by this time. Following

the usual scaling, let wln(t) be 1/
√

n times the workload at

time nt.
Suppose that upon the arrival of a negative customer, the

system has to remove a fixed amount of work W̄ . This time,

we change the model slightly and we do not care if a negative

customer removes a customer at service. Similar to what was

done in (4), we write

wln(t) = wln(0) +
1√
n

nSa,n(t)
∑

l=1

∆d,n
l −

√
nt

− 1√
n

nSr,n(t)
∑

l=1

W̄ + zn(t), (8)

where wln(0) is the initial scaled amount of work, zn(t) =
zn
0 (t) + Tn(t)/

√
n, and the process Tn(t) is defined as the

total server idle time by time nt. zn
0 (·) is added to maintain

wln(·) positive, it will increase at the arrival of negative

customers that find wln(t) < W̄/
√

n.

Redefine bn and b as the following

√
n∆̄d,n

(

1

∆̄a,n
− 1

∆̄d,n
− W̄

∆̄r,n∆̄d,n

)

△

= bn → b ∈ R (9)

Then we arrive at the following result:

Theorem 3.2: Suppose that wln(0) converges weakly to

wl(0), and is independent of the inter-arrival and service

time processes. With assumption (9) and the ones described

in the previous section, the process wln(·) converges weakly

to the process wl(·), defined as

wl(t) = wl(0) + ∆̄dwa(λat) − W̄wr(λrt)

−∆̄dwd(λat) + bt + z(t) (10)

where wa(·), wr(·) and wd(·) are independent Wiener pro-

cesses with variances (σa)2, (σr)2, and (σd)2, respectively,

b is the constant in (9), and z(·) is the reflection process.

Proof: This proof is similar to the one of Theorem 3.1.

For details see [15].

It is interesting to notice that if we set W̄ = ∆̄d and

assume zero initial conditions, the limit expressions (5) and

(10) differ only by the scale factor ∆̄d and the time scale of

the Wiener process wd(·). In order to compare the models

of section III-A and of this section which differ only in the

way that a negative customer removes work from queue, we

will consider the following theorem. It says that the limit

workload process of the two models are different only in the

time scale of the Wiener process wd(·), if W̄ = ∆̄d.

Theorem 3.3: Let w̃ln(·) denote 1/
√

n times the work-

load process at time nt for the model of section III-A. Using

assumptions of Theorem 3.1, the difference ∆̄d,nxn(t) −
w̃ln(t) converges weakly to the zero process.

Proof: We will follow the approach of Theorem 5.3.3
in [14]. Let In(t)

△

= number of customers that left the system

by time nt (by either the arrival of a negative customer

or service completion). Observe that In(t) is bounded by

n(Sd,n(t)+Sr,n(t)). Also, the processes Sd,n(t) and Sr,n(t)
are bounded with high probability on any interval [0, T ],
by Theorem 1.1. Re-index {∆d,n

l ; l} by the order that the

customers leave the system. Now, we may write

1√
n

In(t)+
√

nxn(t)
∑

l=In(t)+2

∆d,n
l ≤ w̃ln(t)

≤ 1√
n

In(t)+
√

nxn(t)
∑

l=In(t)+1

∆d,n
l . (11)

Observe that

1√
n

In(t)+
√

nxn(t)
∑

l=In(t)+1

∆d,n
l =

1√
n

In(t)+
√

nxn(t)
∑

l=In(t)+1

(∆d,n
l − ∆̄d,n) + ∆̄d,nxn(t). (12)

Since {xn(·)} is tight, {xn(·)/√n} converges to the zero

process. By the bound on Sd,n(t)+Sr,n(t), In(t)/n is also

bounded with high probability in any [0, T ]. Hence, since

{n−1/2
∑nt

l=1(∆
d,n
l − ∆̄d,n)} is tight and asymptotically

continuous, the right hand sum of (12) converges weakly

to the zero process. The same can be done for the left hand

sum of (11).

C. Markov Modulated Arrivals

In this section we will consider an extension of a model

defined in [8]. Markov modulated G-queues have also been

studied recently, for instance [6], [16], [7], motivated by the

fact that arrival streams in Internet traffic are bursty and often

correlated.

Suppose that there is only one arrival stream that feeds the

system with positive and negative customers. The decision of

whether an arrival will be positive or negative depends on the

state of a Markov chain. This chain can also interfere in the

distribution of ∆a,n
l . Similar to the model in section III, we

assume that a negative customer may not remove a client

from service. We formalize this model with the following

assumptions and definitions.

Let us define I
+,n
l (resp., I

−,n
l ) as the indicator function

of the event that the lth arrival is positive (resp., negative).

Let {Mn
l ; l} be a stationary time-homogeneous irreducible

Markov chain for each n on the state space S. We assume

that any p-step conditional probability converges geometri-

cally to the stationary distribution (πn
k , k ∈ S). That is, we

assume that there exists a constant Cn and 0 < ǫn < 1 such

that

∑

k

∣

∣

∣

∣

∣

∑

z

P
(

Mn
p = k

∣

∣ Mn
0 = z

)

µ(z) − πn
k

∣

∣

∣

∣

∣

≤ Cn(1 − ǫn)p,

for any initial distribution µ. Also, assume that πn
k → πk for

each k ∈ S as n → ∞. A Markov chain has geometrically

convergent transition probabilities if it, for example, satisfies
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Doeblin’s condition (e.g., [18]). For instance, it is sufficient

if we suppose that S is finite and the chain is aperiodic.

Assume that the processes {Mn
l ; l}, {∆a,n

l ; l}, and

{Iα,n
l ; l, α = +,−} are independent of {∆d,n

l ; l}. Also,

conditioned on the modulating states, the random variables

{∆a,n
l , Iα,n

l ; l, α = +,−} are mutually independent.

Let wd,n(·), defined as in (7), converge weakly to a Wiener

process with variance σ2
d, where ∆̄d,n is a constant such

that ∆̄d,n → ∆̄d ∈ R>0. This condition is attended if, for

example, we use assumption (2.1) for ∆d,n
l .

Define Fa,n
l as the minimal σ-algebra that measures all

processes up to the time of the lth arrival, not including ∆a,n
l

and I
α,n
l , α = +,−. Suppose that the distribution of ∆a,n

l

given Fa,n
l and the event {Mn

l = k} does not depend on l
or Fa,n

l and converges weakly as n → ∞. Also, let

∆̄a,n(k)
△

= E [∆a,n
l | Fa,n

l ,Mn
l = k]

= E [∆a,n
l |Mn

l = k] → ∆̄a(k) ∈ R>0,

va,n(k)
△

= E
[

(∆a,n
l )2

∣

∣Fa,n
l ,Mn

l = k
]

= E
[

(∆a,n
l )2

∣

∣ Mn
l = k

]

→ va(k) ∈ R>0,

when n → ∞, for each value of k, and

sup
n

sup
k∈S

|va,n(k)| < ∞ sup
n

sup
k∈S

|∆̄a,n(k)| < ∞.

In addition, let {|∆a,n
l |2;n, l} be uniformly integrable.

Suppose that for each value k ∈ S, there are constants

qα(k) ∈ R>0 such that

E [ Iα,n
l | Fa,n

l ,Mn
l = k] = E [ Iα,n

l |Mn
l = k]

= qα,n(k) → qα(k)

for α = +,−, as n → ∞. Note that (q+,n(k) + q−,n(k))
and (q+(k) + q−(k)) can take values less than 1. This is

done to account for problems where there is a possibility that

an arrival might not get to the queue when the modulating

Markov chain is at state k.

We will also need the following heavy traffic condition

√
n

(

q̄+,n − q̄−,n

∆̄a,n
− 1

∆̄d,n

)

△

= bn → b ∈ R. (13)

Similar to what was done in (4) and (8), we can write the

process xn(t) as

xn(t) = xn(0) +
1√
n

nSa,n(t)
∑

l=1

(

I
+,n
l − I

−,n
l

)

− 1√
n

nSd,n(t)
∑

l=1

1 + zn
0 (t), (14)

where zn
0 (t) is the total number of negative customers that

arrived when the queue was empty by time nt.
Define the following constants

q̄α,n △

=
∑

k

qα,n(k)πn
k ∆̄a,n △

=
∑

k

∆̄a,n(k)πn
k

hα,n
a

△

=
∑

k

∆̄a,n(k)qα,n(k)πn
k v̄a,n △

=
∑

k

va,n(k)πn
k

and denote by q̄α, ∆̄a, hα
a , and v̄a their respective limits as

n → ∞. Also, define the matrices

Σ0
△

=





q̄+ − (q̄+)2 −q̄+q̄− h+
a − q̄+∆̄a

−q̄+q̄− q̄− − (q̄−)2 h−
a − q̄−∆̄a

h+
a − q̄+∆̄a h−

a − q̄−∆̄a v̄a − (∆̄a)2



 , (15)

Σ1 = lim
n

∞
∑

u=1

∑

k,m

ζn(k)ζn(m)′Dn,k,m(u),

where Dn,k,m(u)
△

= [P (Mn
u = m|Mn

0 = k) − πn
m]πn

k , and

ζn(k)
△

= (q+,n(k), q−,n(k), ∆̄a,n(k)).
It is perhaps noteworthy here that the above assumptions

are standard in the framework of heavy traffic analysis [14].

Theorem 3.4: Suppose that xn(0) converges weakly to

x(0) and is independent of the inter-arrival and service time

processes. With the assumptions above, the process xn(·)
converges weakly to the process x(·) taking values

x(t) = x(0) − λa(q̄+ − q̄−)wa(λat)

+w+(λat) − w−(λat) − wd(λdt)

+bt + z(t) (16)

where wd(·) is a Wiener processes with variance (σd)2,

w̃a(·) △

= (w+(·), w−(·), wa(·)) is a Wiener process with

covariance matrix Σ
△

= Σ0 + 2Σ1, b is the constant in

assumption (13), and z(·) is the reflection process.

Proof: The proof is based on the ideas of Theorem

5.5.1 in [14]. For details see [15].

Let us now study the heavy traffic assumption (13) based

on the result in [8], where it was considered a stability

condition for a G-queue with Markov type decision for

positive or negative arrival. Put in our notation, the scenario

treated in [8] was the following: {Mn
l ; l} is a Markov chain

with state space S = {0, 1}, the chain is identical for each

n, hence we drop this superscript. The transition matrix is

given by
(

0 1
1 − p p

)

where p ∈ (0, 1), and define q = 1 − p. The decision of

whether a customer was negative or positive was based on

the current state of the chain, if it were 1 the arrival was

positive, and if it were 0 the arrival was negative. Therefore,

we have

q+(0) = 0, q+(1) = 1, q−(0) = 1, q−(1) = 0.

The stationary distribution can be easily computed to be π =
(q/(1 + q), 1/(1 + q)). Hence, we have that q̄+ = 1/(1 + q)
and q̄− = q/(1 + q). The inter-arrival time was independent

of the modulating Markov chain, therefore ∆̄a,n(k) is just

the mean inter-arrival time, for any k.

The result in [8] is that {Nn(t)}, where Nn(t) is the

number of customer in the queue by real time t, is a positive

recurrent regenerative process if and only if

1

∆̄a,n
<

1

∆̄d,n

(

1 + q

1 − q

)

.
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Notice that there was a typographical error in [8], p is written

in place of q. Now, assumption (13) tells us that, ∆̄d,n(q̄+−
q̄−)/∆̄a,n ↑ 1, or for this particular case,

∆̄d,n

∆̄a,n

(

1 − q

1 + q

)

↑ 1.

Hence, as n → ∞ the system approaches the limit of

stability, which characterizes the heavy traffic scenario. We

believe that the stability condition ∆̄d,n(q̄+− q̄−)/∆̄a,n < 1
is valid for the larger class of Markov modulated G-queues,

which is treated in this paper.

IV. NUMERICAL RESULTS

In applications, one uses the heavy traffic approximation

above in the following way. First, one chooses n ∈ N such

that bn is of moderate size. Then one may approximate the

number of customers (or the workload) at time t, denoted

by N(t), using N(nt) ∼ √
nx(t; bn), where x(t; bn) is the

limit expression for the queueing process (i.e., equations (5),

(10), (16)) with the drift constant b set to bn.

In order to illustrate the approximation, we have calculated

the mean number of customers and mean workload under

steady-state in two different scenarios, using the heavy traffic

approximation and a computer simulation for varying values

of ρ. We can calculate the expected value of any ergodic

reflected Brownian motion x(t) = σw(t)+ bt + z(t), x(t) ∈
R+, under steady state using σ2/2|b| (see for instance [17]).

Let us first consider the non-Markov modulated models,

where ρ
△

= λa/(λr + λd). For convenience, we set λa = ρ,

(λr + λd) = 1, and assume that the distribution of the inter-

arrival and service times are hyper-exponentially distributed

for all examples. For the first problem, we set the squared

coefficient of variation to 1, 1.5 and 2 for the positive

customer inter-arrival time, negative customer inter-arrival

time and service time distributions, respectively. Also, we

set λr = 1/4 and λd = 3/4. For the second problem,

we set ((σa)2, (σr)2, (σd)2) = (2, 1.5, 1) with unchanged

mean values. For the workload model we set W̄ = ∆̄d

(the workload model used is the one in Theorem 3.2).

Hence, we have that σ2 = λa(σa)2 + λd(σd)2 + λr(σr)2

and b = λa − λd − λr = ρ − 1, for the queue length,

and σ2 =
(

λa(σa)2 + λa(σd)2 + λr(σr)2
)

/(λd)2 and b =
(

λa − λd − λr
)

/λd, for the workload process. The results

are given in Figure (1).

For the Markov modulated model, we consider the sce-

nario of [8] (but with the mean for the arrival stream

dependent on the Markov chain) in two different set-

tings. As it was discussed in section III-C, the traffic

intensity is defined to be ρ
△

= λa(1 − q)/λd(1 + q).
For simplicity, let λd = λa(1 − q)/ρ(1 + q), and let

the distribution for the inter-arrival and service times be

hyper-exponentially distributed. For the first setting we let

(∆̄a(1), ∆̄a(0), (σa)2, (σd)2, q) = (2, 1, 2, 1, .1), and, for

the second, (∆̄a(1), ∆̄a(0), (σa)2, (σd)2, q) = (1, 2, 1, 2, .9).
For this example, the matrix Σ1 is simply

Σ1 =
−q2

(1 + q)3

∑

k,m

(−1)k(−1)mζ(k)ζ(m)′.

In order to calculate the mean number of customers under

steady state, let Σ̃ be defined as Σ = Σ0 + 2Σ1 but with the

elements of last row and column multiplied by (λa(q̄+ −
q̄−))2. Let A be a matrix such that Σ̃ = AA′, and define

B = νA, where ν is the row vector (1,−1,−1). Then σ2 =
BB′λa + (σd)2λd and b = λa(q̄+ − q̄−) − λd. The results

are also in Figure (1).

V. CONCLUSION

We have presented heavy traffic models of a queue that

receives both positive and negative type of customers. Also,

we apply this model to some examples to calculate the mean

queue length and workload. The results seem to indicate that

the approximations work well even for relative small values

of ρ.
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Fig. 1. Plot of mean number of customers in the queue and mean workload in two different scenarios for varying values of ρ. These
values were computed using a computer simulation (SIM) and the heavy traffic approximation (HTA). For the simulation, it is also plotted
the 95% t confidence interval (see [10], pg. 392). Figures (a) and (b) (resp., (c) and (d)) depict the average number of customer (resp.,
workload) for the first and second examples. Figures (e) and (f) show that average number of customers for the Markov modulated model.

[18] D.W. Stroock. An Introduction to Markov Process. Springer-Verlag,
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APPENDIX

The following theorems is shown here to facilitate refer-

encing. The theorem is a result which is part of Theorem

5.1.1 in [14].

Theorem 1.1: Consider a set {ξn
l , l < ∞}, where ξn

l

takes positive values, such that the set {hn(·)}, with process

defined by

hn(t)
△

=
1√
n

nt
∑

l=1

(

ξn
l − ξ̄n

)

, (17)

is tight, where ξ̄n ∈ R>0 and ξ̄n → ξ̄ ∈ R>0 as n → ∞.

Let J n(·) be a nondecreasing process such that J n(0) = 0
and for every t ∈ R

+, J n(t) ≤ nt. Then {Nn(·)}, where

Nn(t)
△

=
1

n
max

{

m ∈ N0 :
m

∑

l=1

ξn
l ≤ nt − J n(t)

}

,

is tight and any weak-sense limit has Lipschitz continuous

sample paths, with Lipschitz constant no greater than 1/ξ̄.

If in addition {J n(·)/√n} is tight, the process Nn(·) con-

verges weakly to a process N(·) taking values N(t)
△

= t/ξ̄.

Proof: See [15].
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