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Abstract— In this paper, we present a distributed algorithm
for detecting coverage holes in a sensor network with no location
information. We demonstrate how, in the absence of localization
devices, simplicial complexes and tools from computational
homology can be used in providing valuable information on
the properties of the cover. In particular, we capture the
combinatorial relationships among the sensors by the means of
the Rips complex, which is the generalization of the proximity
graph of the network to higher dimensions. Our approach
is based on computation of a certain generator of the first
homology of the Rips complex of the network. We formulate the
problem of localizing coverage holes as an optimization problem
to compute the sparsest generator of the first homology classes.
We also demonstrate how subgradient methods can be used
in solving this optimization problem in a distributed manner.
Finally, non-trivial simulations are provided that illustrate the
performance of our algorithm.

I. INTRODUCTION

Recent advances in computing, communication, sensing
and actuation technologies have brought networks composed
of hundreds or even thousands of inexpensive mobile sensing
platforms closer to reality. This has induced a significant
amount of interest in development of analytical tools for pre-
dicting the behavior, as well as controlling the complexities
of such large-scale sensor networks. Designing algorithms
for deployment, localization, duty-cycling, communication
and coverage verification in sensor networks form the core
of this active area of research.

Of the most fundamental problems in this domain is
the coverage problem. In general, this reflects how well a
region of interest is monitored or tracked by sensors. In
most applications, we are interested in a reliable coverage
of the environment in such a way that there are no gaps
left in the coverage. Algorithms for this purpose have
been extensively studied [1]. One of the most prominent
approaches for addressing the coverage problem has been the
‘computational geometry’ approach, in which the coordinates
of the nodes and standard geometric tools (such as Delaunay
triangulations or Voronoi diagrams) are used to determine
coverage [2]. The Art Gallery Problem is a very well-known
example of utilizing this approach [3].

This research is supported in parts by the following grants: DARPA/DSO
SToMP, NSF ECS-0347285, and ARO/MURI W911NF-05-1-0381.

Alireza Tahbaz-Salehi is with Department of Electrical and Systems
Engineering and Department of Economics, University of Pennsylvania,
Philadelphia, PA 19104 (e-mail: atahbaz@seas.upenn.edu).

Ali Jadbabaie is with the General Robotics, Automation, Sensing and
Perception (GRASP) Laboratory, Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, PA 19104 (e-mail:
jadbabai@seas.upenn.edu).

Such geometrical approaches often suffer from the draw-
back that they can be too expensive to compute in real-time.
Moreover, in most applications, they require exact knowledge
of the locations of the sensing nodes. Although, this infor-
mation can be made available in real-time by a localization
algorithm or by the means of localization devices (such as
GPS), it can only be used most effectively in an off-line pre-
deployment analysis for large networks or when there are
strong assumptions about the geometrical structure of the
network and the environment. This drawback becomes more
evident if the network topology changes due to node mobility
or sensor failure. Finally, localization equipment adds to the
cost of the network, which can be a limiting factor as the
size of the network grows. Consequently, a minimal geometry
approach for addressing these issues becomes essential.

More recently, topological spaces and their topological
invariants have been used in addressing the coverage problem
in the absence of geometric data, such as location or orienta-
tion [4]–[9]. One notable characteristic of these studies is the
use of topological abstractions which preserve many global
geometrical properties of the network while abstracting away
the small scale redundant details. For instance, in [4], [5],
[7], the authors construct the Rips complex corresponding to
the communication graph of the network and use the fact that
the first homology group of this simplicial complex provides
sufficient information about coverage. The first steps for
implementing this idea as a distributed algorithm are taken
in [8] and [9]. The authors show that the combinatorial
Laplacians are the right tools for distributed computation of
the elements of the homology groups, and hence, can be
used for decentralized coverage verification. They present a
consensus-like scheme based on a dynamical system whose
stability properties determine the existence of coverage holes,
although it fails to locate them.

In this paper, we present a distributed algorithm which
is capable of “localizing” coverage holes in a network of
sensors without any metric information. More precisely,
following [6] and [8], we use tools from algebraic topology
to represent the coverage properties of the sensor network
by its Rips complex. We show that given a homology class
of the Rips complex, the problem of finding the “tightest”
cycle encircling the hole represented by that class can be
formulated as an integer programming problem. Moreover,
we present conditions under which the linear programming
relaxation of this integer programming problem is exact and
therefore, its solution provides the location of the coverage
holes in the simplicial complex without use of any coordinate
information. Finally, we show that if subgradient methods
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[10] are used for solving this relaxation, the updates are
distributed in nature and therefore, one can implement the
computation of the tightest cycle around the hole as a de-
centralized algorithm. Our approach is quite interdisciplinary
in nature and combines results from multiagent systems,
agreement and consensus problems [11], with recent ad-
vances in coverage maintenance in sensor networks using
computational algebraic topology methods and optimization
techniques. Moreover, this novel approach is more general
than the algorithms presented in [12]–[15], where it is
explicitly assumed that the simplicial complex is embedded
on an orientable surface. It is also different from the results
in [16]: our hole detection algorithm is not limited to Rips
complexes, is distributed in nature, and does not use node
coordinates.

II. PROBLEM FORMULATION

Consider a collection of n stationary sensors, denoted by
V , deployed over a region of interest D ⊂ R2. We assume
that these sensors are equipped with local communication
and sensing capabilities, but are not capable of determining
neither distance nor direction; a complete absence of metric
information.

Throughout the paper, we assume that each sensor is ca-
pable of communicating with other sensors within a radially
symmetric domain of radius rb, called the broadcast disk. As
for the coverage, we assume a “capture” modality in which
any subset of nodes which are in pairwise communication
cover their entire convex hull. In other words, the region
covered by the sensors is given by

A(V ) =
⋃
{conv(Q)|Q ⊆ V , max

vi,vj∈Q
‖vi − vj‖2 ≤ rb}

where V is the set of sensor locations and vi represents
the the location of the i-th sensor. This model, which is
inspired by the results in [17], guarantees that the coverage
and communication capabilities of the sensors are limited
and based on proximity. As for the region of interest D, we
assume that it is connected and compact and its boundary
∂D is connected and piecewise linear. Moreover, to avoid
boundary effects, we assume that there are sensors, known
as fence nodes, located on ∂D such that each such sensor is
capable of communicating with its two closest neighbors on
∂D on either side.

In the rest of the paper, we develop the required tools
and present our distributed algorithm that is capable of
localizing coverage holes for the above mentioned coverage
framework. Our results are also applicable to a symmetric
coverage framework, in which each sensor can cover a
radially symmetric region. More details on this model can
be found in [4].

III. SIMPLICIAL COMPLEXES AND HOMOLOGY

This section is dedicated to the definition of simplicial
complexes and their homological properties as they are the
main mathematical tools used in this paper. A thorough
treatment of the subject can be found in [18].

Given a set of points V , a k-simplex is an unordered set
{v0, v1, · · · , vk} ⊆ V where vi 6= vj for all i 6= j. A face
of the k-simplex {v0, v1, · · · , vk} is a (k − 1)-simplex of
the form {v0, · · · , vi−1, vi+1, · · · , vk} for some 0 ≤ i ≤ k.
Clearly, any k-simplex has exactly k + 1 faces.

Definition 1: A simplicial complex X is a finite collection
of simplices which is closed with respect to inclusion of
faces, i.e., if σ ∈ X , then all faces of σ are also in X .

The dimension of a simplicial complex is the maximum
dimension of any of its simplices. A subcomplex of X is a
simplicial complex Y ⊆ X . A particular subcomplex of X
is its k-skeleton consisting of all simplices of dimension k or
less X(k) = {σ ∈ X : dim σ ≤ k}. Therefore, the 1-skeleton
of any non-empty simplicial complex is a graph. Given a
graph G, its flag complex F (G) is the largest simplicial
complex whose 1-skeleton is G; every (k + 1)-clique in G
defines a k-simplex in F (G).

Given a simplicial complex X , two k-simplices σi and σj

are upper adjacent (denoted by σi a σj) if both are faces of
a (k + 1)-simplex in X . The two k-simplices are said to be
lower adjacent (denoted by σi ` σj) if both have a common
face. Having defined the concept of adjacency, one can define
the upper and lower adjacency matrices, A

(k)
u and A

(k)
l

respectively, in order to book keep the adjacency relations
between the k-simplices. The zeroth upper adjacency matrix
of a simplicial complex A

(0)
u coincides with the well-known

notion of the adjacency matrix of the graph capturing its
1-skeleton.

A. Boundary Homomorphism

Let X denote a simplicial complex. Similar to the graphs,
an orientation can be defined for X by defining an or-
dering on all of its k-simplices. We denote the k-simplex
{v0, · · · , vk} with an ordering by [v0, · · · , vk]. For each
k ≥ 0, define Ck(X) to be the vector space whose
basis is the set of oriented k-simplices of X , where a
change in the orientation corresponds to a change in the
sign of the coefficient as [v0, · · · , vi, · · · , vj , · · · , vk] =
−[v0, · · · , vj , · · · , vi, · · · , vk]. We let Ck(X) = 0, if k is
larger than the dimension of X . Therefore, by definition,
elements of Ck(X), called k-chains, can be written as finite
formal sums

∑
j αjσ

(k)
j where the coefficients αj ∈ R and

σ
(k)
j are the oriented k-simplices of X . Also note that Ck

is a finite-dimensional vector space with the number of k-
simplices as its dimension. With the above in mind, we now
define the boundary map.

Definition 2: For an oriented simplicial complex X , de-
fine the k-th simplicial boundary map to be the homomor-
phism ∂k : Ck(X) → Ck−1(X), which acts on the basis
elements of its domain via

∂k[v0, · · · , vk] =
k∑

j=0

(−1)j [v0, · · · , vj−1, vj+1, · · · , vk].

Intuitively, the above operator maps a k-chain to its faces.
We denote the the matrix representation of the k-th boundary
map relative to the bases of Ck and Ck−1 by Bk ∈
Rnk−1×nk , where nk is the number of k-simplices of X .
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In particular, the matrix representation of the first boundary
map ∂1 is nothing but the edge-vertex incidence matrix of
the 1-skeleton of X . It is an easy exercise to show that

Lemma 1: The map ∂k ◦∂k+1 : Ck+1(X) → Ck−1(X) is
uniformly zero for all k ≥ 1.
In other words, the boundary of any k-chain has no boundary.

B. Simplicial Homology
Let X denote a simplicial complex. Consider the following

two subspaces of Ck(X):

ker ∂k = {x ∈ Ck(X) : ∂kx = 0}
im ∂k+1 = {x ∈ Ck(X) : ∃y s.t. x = ∂k+1y}

An element in ker ∂k is a subcomplex without a boundary
and therefore represents a k-dimensional cycle, while the
elements in im ∂k+1 are the boundary of a higher dimen-
sional chain, and therefore are known as k-boundaries.
The k-cycles are the basic objects that count the presence
of “k-dimensional holes” in the simplicial complex. But,
certainly, many of the k-cycles in X are measuring the
same hole; still other cycles do not really detect a hole at
all − they bound a subcomplex of dimension k + 1 in X .
In fact, we say two k-cycles ξ and η are homologous if
their difference is a boundary: ξ − η ∈ im ∂k+1. Therefore,
as far as measuring holes is concerned, homologous cycles
are equivalent. Consequently, it makes sense to define the
quotient vector space

Hk(X) = ker ∂k/im ∂k+1, (1)

known as the k-th homology of X , as the proper vector space
for distinguishing homologous cycles. Note that Lemma 1
implies that im∂k+1 is a subspace of ker ∂k, making Hk(X)
a well-defined vector space.

Roughly speaking, when constructing the homology, we
are removing the cycles that are boundaries of a higher order
subcomplex from the set of all k-cycles, so that the remaining
ones carry information about the k-dimensional holes of the
complex. A more precise way of interpreting (1) is that any
element of Hk(X) is an equivalence class of homologous
k-cycles. Therefore, each non-trivial homology class1 in a
certain dimension identifies a corresponding “hole” in that
dimension. In fact, the dimension of the k-th homology group
of X (known as its k-th Betti number) identifies the number
of k-dimensional holes in X . For example, the dimension of
H0(X) is the number of connected components of X , while
the dimension of H1(X) is equal to the number of holes in
its 2-skeleton.

C. Combinatorial Laplacians
The definitions and results of this subsection can be found

in [19], [20].
Definition 3: Let X be a finite oriented simplicial com-

plex. The k-th combinatorial Laplacian of X is the homo-
morphism Lk : Ck(X) → Ck(X) given by

Lk = ∂∗k ◦ ∂k + ∂k+1 ◦ ∂∗k+1 (2)

1By the trivial homology class, we mean the equivalence class of all
null-homologous k-cycles on the simplicial complex.

where ∂∗k is the adjoint of the operator ∂k with respect to
the inner product that makes the basis orthonormal.
The Laplacian operator, as defined above, is the sum of two
positive semi-definite operators and therefore, any k-chain
x ∈ kerLk satisfies

x ∈ ker ∂k , x ⊥ im ∂k+1

In other words, the kernel of the k-th combinatorial Laplacian
consists of k-cycles which are orthogonal to the subspace
im ∂k+1, and therefore, are not k-boundaries. This implies
that the non-zero elements in the kernel of Lk are represen-
tatives of the non-trivial equivalence classes of cycles in the
k-th homology. This property was first observed by Eckmann
[19] and is formalized in the following theorem [20].

Theorem 1: If the vector spaces Ck(X) are defined over
R, then for all k there is an isomorphism

Hk(X) ∼= kerLk (3)

where Hk(X) is the k-th homology of X and Lk is its k-th
combinatorial Laplacian. Moreover, there is an orthogonal
direct sum decomposition of the vector space Ck(X) in the
form of

Ck(X) = im ∂k+1 ⊕ kerLk ⊕ im ∂∗k ,

in which the first two summands comprise the set of k-cycles
ker ∂k, and the first summand is the set of k-boundaries.
The immediate implication of the above theorem is that
the dimension of the subspace in the kernel of the k-th
combinatorial Laplacian operator is equal to the k-th Betti
number of the simplicial complex.

Note that for a finite simplicial complex, the boundary
operators have matrix representations with respect to the
bases of vector spaces Ck(X). Therefore, one can use
matrices to represent the combinatorial Laplacian operators
in a similar manner: define the k-th combinatorial Laplacian
matrix as

Lk = BT
k Bk + Bk+1B

T
k+1 ∈ Rnk×nk (4)

where Bk is the matrix representation of ∂k and nk is the
number of k-simplices of X . Note that the expression for L0

reduces to the well-known graph Laplacian matrix. Similarly,
the combinatorial Laplacian matrices can be represented
in terms of the adjacency and degree matrices [8] of the
simplicial complex. More precisely, for k > 0,

Lk = D(k)
u −A(k)

u + (k + 1)Ink
+ A

(k)
l , (5)

where A
(k)
u and A

(k)
l are the upper and lower adjacency

matrices, respectively and D
(k)
u represents the upper degree

matrix. (5) implies that the i-th row of Lk only depends on
the local interactions between i-th k-simplex and its upper
and lower adjacent k-simplices.
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IV. DISTRIBUTED COVERAGE VERIFICATION IN THE
ABSENCE OF LOCATION INFORMATION

In this section, we present a distributed coverage verifica-
tion algorithm that can be used in the absence of any metric
information. Unlike computational geometry approaches for
coverage, this algorithm is based on computational algebraic
topology which does not depend on location and orientation
information. In essence, we compute the kernel of the first
combinatorial Laplacian of a simplicial complex correspond-
ing to the cover and use the fact that the first homology of
the cover is trivial, if and only if the coverage is hole-free.
The contents of this section are mainly from [6] and [8].

Since no location information is available to the sensors,
we need to capture their communication and coverage prop-
erties combinatorially. For this purpose, we define what is
known as the Vietoris-Rips complex corresponding to a given
set of points [21].

Definition 4: Given a set of points V = {v1, · · · , vn} in a
finite dimensional Euclidean space and a fixed radius ε, the
Vietoris-Rips complex of V , Rε(V ), is the abstract simplicial
complex whose k-simplices correspond to unordered (k+1)-
tuples of points in V which are pairwise within Euclidean
distance ε of each other.

The Rips complex corresponding to the set of sensors
contains some information about the covered region A(V ).
More precisely, the set A(V ) is nothing but the image of the
canonical projection map p : Rε(V ) → R2 that maps each
simplex in the Rips complex affinely onto the convex hull of
its vertices in R2, known as the Rips shadow. The following
theorem due to Chambers et. al [17] indicates that the Rips
complex is rich enough to contain the required topological
and geometric properties of its shadow.

Theorem 2: Let V denote a finite set of points in the
plane, with the corresponding Rips complex Rε(V ). Then
the induced homomorphism π∗ : π1(Rε(V )) → π1(A(V ))
between the fundamental groups of the Rips complex and its
shadow is an isomorphism.

Equivalently, Theorem 2 states that a cycle γ in the
Rips complex is contractible if and only if its projection
p(γ) is contractible in the Rips shadow [16]. The important
implication of this theorem is that the first homologies of
the Rips complex and its shadow are isomorphic as well.
Therefore, the triviality of the first homology of the Rips
complex provides a necessary and sufficient condition for a
hole-free coverage of D.

In addition to the above, the Rips complex has the de-
sirable property that it can be easily formed just by using
communication among nearest neighbors. This is due to
the fact that the Rips complex is the flag complex of the
proximity graph and as a result, solely depends on connec-
tivity information. This property makes the Rips complex
a desirable combinatorial abstraction of the sensor network,
which can be used for distributed coverage verification in
the absence of location information. On the other hand,
the combinatorial Laplacians carry valuable information
about the topological properties of a simplicial complex.

In particular, ker L1 (Rrb
) = {0} guarantees that H1(Rrb

)
is trivial and as a result, all the 1-cycles over the Rips
complex are null-homologous. Therefore, based on Theorem
2, ker L1 (Rrb

) = {0} serves as a necessary and sufficient
condition for the Rips shadow to be hole-free. One way to
compute a generic element in the kernel of the Laplacian
matrix is through the dynamical system ẋ(t) = −L1x(t)
which asymptotically converges to such an element. This
implies the following theorem which was first stated and
proved in [8].

Theorem 3: The linear dynamical system

ẋ(t) = −L1x(t), x(0) = x0 ∈ Rn1 (6)

is globally asymptotically stable if and only if H1(R) =
0, where x(t) is a vector of dimension n1 (the number of
1-simplices of the simplicial complex) and L1 is the first
combinatorial Laplacian matrix of the Rips complex Rrb

.
Note that for any initial condition x(0), the trajectory

x(t); t ≥ 0 always converges to a point in ker L1. Thus
the asymptotic stability of the system is an indicator of
an underlying trivial homology. In different terms, since
x∗ = limt→∞ x(t) is an element in the null space of L1, it
is a representative of a homology class of the Rips complex.
Clearly, if x∗ = 0 for all initial conditions, then the first
homology group of the simplicial complex consists of only
a trivial class and therefore, the simplicial complex is hole-
free.

The importance of using the first combinatorial Laplacian
of the simplicial complex is not limited to the above theorem.
Its very specific structure guarantees that the update equation
(6) is effectively a local update rule. In fact, this update
rule works in the spirit of a certain class of distributed
algorithms known as gossip algorithms [22], whereby the
local state value of an edge is updated using estimates from
edges that are adjacent to it. The reader may also note
the connection between the distributed update (6) and the
distributed, continuous-time consensus algorithms, in which
the graph Laplacian is used in order to reach a consensus (a
point in the kernel) over a connected graph [11].

V. HOLE LOCALIZATION ALGORITHM

In this section, we present a distributed algorithm which
is capable of “localizing” coverage holes in a sensor network
with no location or metric information. By hole localization,
we mean detecting cycles over the proximity graph of the
network that encircle the coverage holes. The tightest of
such cycles provides information on the location and the
size of the hole in the Rips shadow. Similar to the previous
algorithm, the results of this section are also based on the
algebraic topological invariants, namely the homology, of
the cover and the Rips complex of the network. In essence,
given a representative of a non-trivial homology class, our
algorithm is capable of computing a sparse representative
of that homology class in a distributed fashion, simply by
removing components corresponding to contractible cycles
and “tightening” it around the holes. Therefore, in order to
find the shortest cycle in a homology class, the algorithm
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needs an initial non-trivial 1-cycle in that class. Clearly, any
non-zero point in ker L1 can potentially serve as such an
initial 1-cycle. The immediate advantage of using x ∈ ker L1

is that one can easily compute such a point in a distributed
manner as the limit of linear dynamical system (6).

Before presenting the algorithm, note that since no loca-
tion information is available, we are using simplicial com-
plexes which are combinatorial objects. Therefore, for hole
localization in the absence of metric information, the best
we can hope for is computing the shortest cycle encircling
a hole, which is also a combinatorial object.

A. Computing the Sparsest Generator

Consider a simplicial complex X with the first combi-
natorial Laplacian L1. By construction, any element in the
null space of L1 is a 1-cycle that is orthogonal to the
subspace spanned by the boundaries of the 2-simplices. In
other words, x ∈ ker L1 ⊂ Rn1 implies x ∈ ker B1 and
x ⊥ im B2. Therefore, as stated in section III, any non-
zero x in the kernel of the first combinatorial Laplacian is
a representative element of a non-trivial homology class of
X . However, x is not necessarily the sparsest representative
of the homology class it belongs to. In general, given a
generator x of a homology class, the sparsest generator of
that class can be computed as the solution to the following
integer programming optimization problem:

Minimize
y,z

‖y‖0
subject to y = x + B2z

(7)

where ‖ · ‖0 is the `0-norm of a vector, equal to the number
of non-zero elements of that vector, and B2 is the matrix
representation of the second boundary operator ∂2. Note that
if x is a 1-cycle, then the minimizer y∗ is also a 1-cycle in
the kernel of B1. Moreover, the constraint y − x ∈ im B2

guarantees that both x and y∗ are representatives of the same
homology class, or in other words, adding and subtracting
null-homologous cycles does not change the homology class.
Therefore, any solution of the above optimization problem is
the sparsest generator of the homology class that x belongs
to, and has the desired property that it is the tightest possible
cycle (in terms of the length) around the holes represented
by that homology class.

B. LP Relaxation

The optimization problem (7) has a very simple formula-
tion. However, due to the 0-1 combinatorial element in the
problem statement, solving it is not, in general, computation-
ally tractable. In fact, in [23] the authors show that computing
the sparsest generator of an arbitrary homology class is NP-
hard. A popular relaxation for solving such a problem is to
minimize the `1-norm of the objective function rather than
its `0-norm [24]:

Minimize
y,z

‖y‖1
subject to y = x + B2z

(8)

This relaxation is equivalent to a linear programming (LP)
problem and can be solved quite efficiently. An argument

similar to before shows that the minimizer of the above
optimization problem is also a 1-cycle and is homologous to
x, since their difference is simply a null-homologous cycle
in the image of B2.

In general, due to the relaxation, the minimizer of (8) is
simply an approximation to the minimizer of (7) and has a
larger `0-norm. However, in certain cases the solutions of
the two problems coincide. In the next theorem, we present
conditions under which the two minimizers have the same
zero/nonzero pattern. Under such conditions, we would be
able to compute the sparsest generator of the homology class
of x efficiently.

Theorem 4: Suppose X is a simplicial complex with first
combinatorial Laplacian L1, and consider the non-trivial gen-
erator x ∈ ker L1. Also suppose that the sparsest generator of
any homology class is unique and is a linear combination of
the shortest cycles that encircle the holes represented by that
class. Then, the minimizers of problems (7) and (8) coincide.

Proof: See the Appendix.
The above theorem states that, under the given conditions,

the `1 minimizer is the sparsest generator of its homology
class as well, and therefore, its non-zero entries indicate
the edges of the 1-cycle that are tight around the holes.
As a consequence, one can compute this sparse generator
efficiently, using methods known for solving LPs.

One very important case for which the conditions of
Theorem 4 hold is the case that the simplicial complex has
only one hole. Another is the case that the holes in the
simplicial complex are far from each other relative to their
sizes. In either case, the shortest representative cycle of any
homology class is simply a linear combination of the shortest
cycles encircling the holes separately. It is important to note
that even when the condition does not hold, the solution of
(8) is a relatively sparse (although not necessarily the sparest)
1-cycle, and therefore, can be used as a good approximation
to localize the holes.

C. Decentralized Computation: The Subgradient Method

As mentioned before, unlike the original IP problem (7),
one can convert (8) to a linear programming problem and
solve it efficiently using methods known for solving LPs.
However, applying the subgradient method [25] enables us to
compute the `1 minimizer in a distributed manner. Although
the convergence would be slower than usual methods for
solving linear programs, the added value of decentralization
makes the method worthwhile.

One can rewrite the optimization problem (8) as

Minimize
z∈Rn2

‖x + B2z‖1 (9)

where n2 is the number of the 2-simplices of the simplicial
complex. A subgradient for the objective function in the
above problem is the sign function. Therefore, the subgradi-
ent update can be written as

z(k+1) = z(k) − αkBT
2 sgn(B2z

(k) + x) (10)

with the initial condition z(0) = 0. Note that z is a face-
dimensional vector and the iteration updates an evaluation
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(a) The Rips shadow (b) Initial point in ker L1 (c) 1000 iterations (d) 4000 iterations

Fig. 1. Subgradient methods can be used to localize the holes in a distributed fashion.

on the 2-simplices of the simplicial complex. The most
important characteristic of (10) is that, due to the local
structure of B2, it can be implemented in a distributed
manner, if the initial x is known locally. By picking a
small enough constant step size αk, it is guaranteed that the
update (10) gets arbitrarily close to the optimal value [25].
By choosing more sophisticated dynamic step sizes we can
improve the convergence properties of the above algorithm to
the optimal solution, which under the conditions of Theorem
4 is the sparsest generator (or a convex combination of the
sparsest generators) of the homology class of the initial 1-
cycle x.

VI. SIMULATIONS

We demonstrate the performance of our algorithm with
a randomly generated numerical example. Fig. 1(a) depicts
the Rips shadow of a simplicial complex on n = 81
vertices distributed over R2. The 2-skeleton of this simplicial
complex consists of 81 vertices, 372 edges, and 66 faces (2-
simplices). As expected from Fig. 1(a), the null space of
the first combinatorial Laplacian of this Rips complex has
dimension 2. We generated a point in x ∈ ker L1 by running
the distributed linear dynamical system (6) with a random
initial condition x(0). The edge-evaluation of the limiting
x ∈ ker L1 is depicted in Fig. 1(b), where the thickness
of an edge is directly proportional to the magnitude of its
corresponding component in x. It can be seen that for this
1-cycle in the null space of L1, all the components more or
less have the same order of magnitude. In order to localize
the two holes, we ran the subgradient update (10) with a
diminishing square summable but not summable step size.
The edge evaluation of the 1-cycles after 1000 and 4000
iterations are depicted in Figs. 1(c) and (d). These figures
illustrate that after enough iterations, the subgradient method
converges to a 1-cycle that has non-zero values only over
the cycles that are tight around the holes. Therefore, the
algorithm is capable of localizing the coverage holes. In Fig.
1(d), the value of the 12 edges adjacent to the holes are 3
orders of magnitude higher than all the others.

Note that our algorithm is only capable of finding the
tightest minimal-length cycles surrounding the holes, which
do not necessarily coincide with the cycles that are closer
distance-wise to the holes. As stated before, after all, we

are not using any metric information and the combinatorial
relations between vertices is the only information available.
Moreover, in case there are two minimal-length cycles sur-
rounding the same hole (as in the upper hole in Fig. 1), then
any convex combination of those is also a minimizer to the
LP relaxation problem (8). In such cases, the subgradient
method in general converges to a point in the convex hull of
the two solutions, rather than a corner solution.

VII. CONCLUSIONS

In this paper, we presented a distributed algorithm for
detecting coverage holes in a sensor network, when no metric
information is available. We used the simplicial complexes
and their combinatorial Laplacians in order to abstract away
the topological properties of the network. Furthermore, we
showed how the simplicial homology groups of the Rips
complex can provide information about the cover. In par-
ticular, we illustrated the relationship between the kernel of
the first combinatorial Laplacian of the Rips complex and
the number of coverage holes. Moreover, we formulated the
problem of localizing the coverage holes (in the sense of
finding the tightest 1-cycle encircling them) as an optimiza-
tion problem and used subgradient methods to solve it in a
distributed fashion.

APPENDIX
STATEMENT AND PROOF OF THEOREM 4

Consider an oriented simplicial complex X with the first
Betti number b, where the holes are labeled 1 through b. By
h(α1, . . . , αb) we denote the class of homologous 1-cycles
that encircle the i-th hole αi many times in a given direction.
We also assume that the shortest representative cycle that
encircles one single hole is unique and is denoted by c∗i . In
other words,

c∗i = arg min ‖c‖0
s.t. c ∈ h(ei)

where ei is the i-th coordinate vector. Since c∗i is the sparsest
1-cycle that encircles the i-th hole only once, we have the
following lemma.

Lemma 2: c∗i is 1-cycle which only has value in
{0, 1,−1}.
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We now restate and prove Theorem 4.
Theorem 4: Given a simplicial complex X , suppose that

arg minc∈h(α) ‖c‖0 =
∑b

i=1 αic
∗
i , for all α ∈ Rb. Then, for

all α ∈ Rb we have,

arg min
c∈h(α)

‖c‖0 = arg min
c∈h(α)

‖c‖1.

Proof: First we prove that the two minimizers have
the same zero/non-zero pattern. Given a class h(α), suppose
that the `1 minimizer denoted by y does not have the same
pattern as the `0 minimizer. This means that there exists an
edge σ1 in the simplicial complex such that y has a positive
value on, but the `0 minimizer does not. Since y is a 1-cycle,
there exists another edge σ2 lower-adjacent to σ1 with a non-
zero value. Without loss of generality, we assume that the
directions are defined such that all the values are positive.
Reapplying the same argument implies that σ1 belongs to a
set E of edges, all with positive values and forming a simple
loop over the simplicial complex. Moreover, it implies that
c̃j = I{σj∈E} is a 1-cycle. Note that c̃ is a simple 1-cycle
which only takes values in {0, 1,−1}. Finally, define γ > 0
to be the smallest value that the edges in E take in the `1
minimizer y.

The 1-cycle c̃ belongs to some homology class h(µ), that
is, the class of 1-cycles that encircle the i-th hole µi many
times. Without loss of generality, we can assume that µi ≥ 0
for all 0 ≤ i ≤ b. Define y′ = y − γc̃ + γ(

∑b
i=1 µic

∗
i ) for

which we have,

‖y′‖1 ≤ ‖y − γc̃‖1 + γ
b∑

i=1

µi‖c∗i ‖1

= ‖y‖1 − γ‖c̃‖1 + γ
b∑

i=1

µi‖c∗i ‖1

= ‖y‖1 − γ‖c̃‖0 + γ

b∑
i=1

µi‖c∗i ‖0 < ‖y‖1,

The first inequality is a consequence of the triangular in-
equality. The following equality is due to the fact that we
assumed that γ is the smallest value on the edges of c̃ at y.
In the next equality, we use that fact that c̃ and all c∗i are
1-cycles with values in {0, 1,−1}, which means that their
`1 and `0 norms are equal. Finally, the last inequality is due
to assumption of the theorem.

In summary, there exists a 1-cycle y′ homologous to
y with a smaller `1-norm, which contradicts the fact that
y is the `1 minimizer. Therefore, arg minc∈h(α) ‖c‖0 and
arg minc∈h(α) ‖c‖1 have the same zero/non-zero pattern for
all α. Also note that both minimizers belong to the same
homology class h(α). As a result, the two must be equal.
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