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Abstract— This paper introduces the notion of input-to-state
stable (ISS) protocols in the context of scheduling and quanti-
zation within networked control systems (NCS) and examines
conditions under which a class of continuous-time control
systems designed ignoring the network achieves input-to-state
stability. Verifiable sufficient conditions for robust stability (ISS)
are given for a class of nonlinear systems under the constraint
of finite data-rate feedback.

I. INTRODUCTION

The premise of a networked control systems (NCS) is
that the feedback loop is “closed” over a communications
network, thus, freeing the components of the control system
from the constraint of physical co-location. The use of a
single channel for multiple communication devices implies
the use of scheduling protocols [1], [2], [3] to arbitrate
communication and, indeed, to remain faithful to the notion
of limited data rate control [4], [5], [6], [7], it is scheduling
with quantization that must be analyzed. Along those lines,
[8] presented an approach for a unified analysis of combined
scheduler-quantizers where known scheduling protocols and
quantizers are subtly redesigned when used in tandem. This
paper introduces an an alternative emulation-based design
and analysis framework based on the concept of input-to-
state stable protocols – a concept that shall shortly be intro-
duced. ISS protocols are pedagogically useful in their own
right, facilitating the modeling of scheduling, quantization
and combined scheduling-quantization protocols. ISS proto-
cols reduce to the previously introduced class of Lyapunov
uniformly globally exponentially stable (UGES) protocols
[1] when the ISS “gain” is reduced to zero.

Our results are such that NCS data rate bounds can be
explicitly calculated and related to the derived ISS gain –
they apply to ISS protocols and the closed-loop stability
properties for systems employing these protocols are phrased
in terms of ISS and ISS-like notions.1

II. INPUT-TO-STATE STABILITY AND RELATED NOTIONS

A. Preliminaries
R, R≥0 and N denote, respectively, the sets of real,

nonnegative real and natural numbers. Let K denote the
†This work was supported by the Australian Research Council under

the Australian Professional Fellowship & Discovery Grants Scheme.
1This is distinct from [9] where the stability properties are indeed ISS

but apply to scheduling protocols that are UGAS/UGES, not ISS.

class of continuous functions f : R≥0 → R≥0 that satisfy
f(0) = 0 and f(t1) < f(t2) for any 0 ≤ t1 < t2. We say
that f ∈ K is of class K∞ if it is unbounded. A function
β : R≥0 ×R≥0 → R≥0 is of class KL if for each s ≥ 0 the
function β(s, ·) is decreasing to zero in the second argument
and for each fixed t ≥ 0, the function β(·, t) is of class K.
The function β is of class exp-KL whenever β(s, t) can be
written in the form β(s, t) = Ks exp(−λt) for λ, K > 0.
We make use of the so-called Kronecker delta defined by

δa,b =
{

1 a = b
0 a 6= b .

Given t ∈ R and a piecewise continuous function f : R →
Rn, we use the notation f(t+) = lims→t,s>t f(s). All vector
(Euclidean) norms are denoted by |·|, as is the induced matrix
2-norm. Let f : R≥0 → A ⊂ Rn be a (Lebesgue) measurable
function and define ‖f [a, b]‖∞ = ess. supt∈[a,b] |f(t)|. For
brevity, we often write (x, y) in place of (xT yT )T .

B. Input-to-State Stability & Detectability Notions

We first review the concepts of input-to-output stability
(IOS) and input-output-to-state stability (IOSS)2 for systems
of the form

ẋ(t) = f(t, x, w) t ∈ [ti−1, ti] (1)

x(t+i ) = hi(x(ti), w(ti)) (2)
y = H(x,w) (3)

where ε ≤ ti − ti−1 ≤ τ < ∞, where ε > 0 for all i ∈ N.
Definition 2.1: Let γ ∈ K and β ∈ KL be given. The

system (1)-(3) is IOpS (input-to-output practically stable)
from w to y if for all t0 ≥ 0, x(t0) ∈ Rnx , w ∈ L∞ and
each corresponding solution x(·), we have that for all t ∈
[t0, t0 + T )

|y(t)| ≤ β(|x(t0)|, t− t0) + γ(‖w‖∞) + d , (4)

where [t0, t0 + T ) is the maximum interval of definition of
x(·) and d ≥ 0. If y = x, then we say that (1)-(3) is ISpS
(input-to-state practically stable). If the respective properties
hold with d = 0 then the “practical” qualifier may be omitted
and (1)-(3) is IOS (resp., ISS). Moreover, if γ(·) is a linear

2The presentation of the definitions of ISS, IOS and IOSS closely
follows that of [1, Section II-B].
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function, β is an exp-KL function and (1)-(3) is IOS (ISS),
then we say that (1)-(3) is IOS (ISS) with a linear gain and
an exp-KL function. ISS of system (1)-(3) implies UGAS
when w ≡ 0 and ISS with a linear gain and an exp-KL
function implies UGES. /

Definition 2.2: Let α0 ∈ K and D0 ≥ 0 be given. The
system (1)-(3) has the unboundedness observability (UO)
property from (w, y) to x if for all t0 ≥ 0, x(t0) ∈ Rnx , w ∈
L∞ and each corresponding solution x(·), we have that for
all t ∈ [t0, t0 + T ) (the maximum interval of definition of
x(·))

|x(t)| ≤ α0(|x(t0)|+‖y[t0, t]‖∞+‖w[t0, t]‖∞)+D0 . (5)

Definition 2.3: Let γ ∈ K and β ∈ KL be given. The
system (1)-(3) is IOSS from (w, y) to x if for all t0 ≥ 0,
x(t0) ∈ Rnx , w ∈ L∞ and each corresponding solution x(·),
we have that

|x(t)| ≤ β(|x(t0)|, t− t0) + γ(‖y[t0, t]‖∞)
+ γ(‖w[t0, t]‖∞) ∀ t ∈ [t0, t0 + T ) , (6)

where [t0, t0 + T ) is the maximum interval of definition of
x(·). Moreover, if γ(·) is a linear function, β is an exp-KL
function and (1)-(3) is IOSS, then we say that (1)-(3) is IOSS
with a linear gain and an exp-KL function. /

III. HYBRID SYSTEMS MODEL AND INPUT-TO-STATE
STABLE PROTOCOLS

A. Hybrid System Model and ISS Protocol Definition

As outlined in the introduction, this paper examines
an emulation-based approach for the design of networked,
quantized and combined networked-quantized (NCS, QCS,
NQCS) systems. Explicitly, given a nominal plant ẋ =
f̃(t, x, u, w) where w denotes an exogenous perturbation,
one first designs a stabilizing controller u = k(t, x). In
sampled-data, networked and quantized control systems, con-
tinuously measured output and continuously applied control
must be replaced with an appropriate proxy subject to the
constraints of sampling, scheduling from the use of a network
protocol or quantization law, respectively. For example, when
control can be continuously applied but state-measurements
cannot be continuously measured, the controller u = k(t, x̂)
is one feedback strategy that is admissible, where x̂ is
an appropriate “estimate” originating from the use of a
generalized sampling scheme (NCS, QCS, NQCS).

To model systems (NCS, QCS, NQCS) arising from
the use of emulated control and observation strategies, we
consider the following class of hybrid systems

ẋ = f(t, x, z, w) t ∈ [ti, ti+1] (7)
ż = g(t, x, z, w) t ∈ [ti, ti+1] (8)

z(t+i ) = h(i, z(ti), x(ti), w(ti)) (9)
ε ≤ ti+1 − ti < τ < ∞ , (10)

where x ∈ Rnx , z ∈ Rnz , w ∈ Rnz and where ε > 0 and
the sequence of generalized sampling instants is defined by

{ti}∞i=0. The closed-loop plant (or combined plant, dynami-
cal controller dynamics) is given by (7) whereas z captures
emulation-induced error variables as well as auxiliary vari-
ables needed to implement the generalized sampling scheme.
In analogy with the analysis and design approach adopted in
[2], [1], the generalized sampling scheme is described by its
effects on the state z at sampling instants (9) that we refer to
as the protocol and several classes of NCS, QCS and NQCS
can be captured by (7)-(9).

IV. NCS AND SAMPLED-DATA

Consider a continuous-time dynamical feedback system
with plant state xP , controller state xC , controls u and output
y:

ẋP = fP (t, xP , u, w) (11)
ẋC = fC(t, xC , y, w) (12)

u = gC(t, xC) y = gP (t, xP ) . (13)

We regard the system as consisting of ` nodes that are
either sensors or controllers that compete for access to
the network at transmission instants. That is, at any given
transmission instant ti, only a subset of the components of
(u, y) is transmitted, the precise subset being determined
by the scheduling protocol. Apart from this subset that is
determined at each transmission instant, the NCS makes
use of appropriate “networked”-version of (u(ti), y(ti)) de-
noted by û and ŷ. Define the error induced by these “esti-
mates” as: e(t) :=

(
ŷ(t)−y(t)
û(t)−u(t)

)
. The error is governed by

continuous-time dynamics dynamics between transmission
instants ė =

(
dŷ/dt−dy/dt
dû/dt−du/dt

)
, where a zero-order hold policy

would correspond to dŷ/dt = 0 and dû/dt = 0. At
transmission instants, the error is instantly reset according
to a jump-map which serves as the initial condition for
the subsequent continuous-time evolution interval: e(t+i ) =
F (e(ti), xC(ti), xP (ti), w(ti)) .

Let ε > 0 and define the sequence of transmission instants
by {ti}∞i=0 where ε ≤ ti+1− ti < τ < ∞. As in the analysis
and design approach adopted in [2], [1], the scheduling
protocol is described by its effects on the induced error at
sampling instants i.e., e(t+i ) = h(i, e(ti)) .

In [1], protocols of the following form were consid-
ered h(i, e) = (I − Ψ(s))e, where s = s(i, e) : N ×
Rne → {1, . . . , `} is a scheduling function, Ψ(s) =
diag{δ1,sIn1 , . . . , δ`,sIn`

} , δa,b is the Kronecker delta and
Inj are identity matrices of dimension nj with

∑`
j=1 nj =

ne. That is, s picks which of the {1, . . . , `} nodes is
transmitted corresponding to component(s) of (u(ti), y(ti))
to be transmitted. It is assumed that the transmission results
in the respective components of induced error being instan-
taneously reset to zero, and this is reflected in Ψ(s) and its
block-diagonal structure.

Remark 1: The case Ψ(s) = Ine , without s-dependence
corresponds to transmitting all of (u, y) at “transmission”
instants and demonstrates that sampled-data systems can be
viewed as a particular case of NCS. /
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With the addition of a scheduling protocol and a defined
sequence of transmission instants, emulation-based NCS
version of (11)-(13) is given by (see [1] for details)

ẋ = f(t, x, e, w) (14)
ė = g(t, x, e, w) (15)

e(t+i ) = h(i, e(ti)) , (16)

where x = (xP , xC). By setting z = e, this class of NCS
can be written in the same form as (7)-(9) and setting z =
e = 0, ż = ė = 0 recovers the nominal network-free system.

V. QCS

This section presents a model of quantized control systems
analogous to that of [10] and the preceding section. We re-
strict our attention to plants and static state-feedbacks of the
same form described in the preceding section. The motivation
for considering quantized feedback is that the feedback path,
thought of here as a communications channel, constraints the
flow of information to a finite data rate, achievable through
the use of sampling together with quantization.

Definition 5.1 (Quantizer): Let | · |P denote a fixed norm
on Rnx . Let ∆ ∈ (0,∞) and suppose |ζ|P ≤ M . A static
map q : Rnx → Rnx is a quantizer if it satisfies the following
properties:

1) q(0) = 0
2) |q(ζ)− ζ|P ≤ ∆ .
Definition 5.2 (Box quantizer): In the case of a quantizer

qs defined on the R, a vector quantizer can be realized by
defining q(ζ) := (qs(ζ1), . . . , qs(ζnx)) and, hence, satisfies
the properties:

1) q(0) = 0
2) |ζ|∞ ≤ M ⇒ |q(ζ)− ζ|∞ ≤ ∆ .

This renders q a quantizer when using the | · |∞ norm.
Geometrically, the quantization regions are the Cartesian
products of [−M,M ] intervals, hence they are often referred
to as “box” quantizer. Box quantizers have a closed-form
expression for the number of bits required to encode the
quantization region that the state x lies in:

number of regions per dimension =
M

∆

⇒ no. bits to encode [−M,M ]nx = nx log2

(
M

∆

)
bits.

Although the quantizers above are written as maps from
Rnx to Rnx , the image of the quantizer is finite – there
are only finitely many quantization regions and the image
typically consists of the centroids of these regions – and,
hence, it is enough to transmit a finite-length string that
identifies the particular region the state lies in. The key
requirement for these quantizers is that they do not saturate,
that is, the state to be encoded ζ should lie in the compact
region |ζ| ≤ M . /

We now consider a linear-time invariant plant with additive
disturbance w ∈ L∞: ẋ = Ax + Bu + w and assume that
a static state-feedback control has been designed u = Kx
such that (A + BK) is stable. For QCS, the first departure

from continuous-time feedback is sampling at the sequence
of sampling times {ti}i∈N that satisfy ε ≤ ti+1 − ti ≤ τ <
∞, for ε > 0. The second is quantization of the state x at
these sampling instants to yield the “estimated” state x̂ that is
available to the feedback law. In view of these modifications,
the emulated system takes the form:

ẋ = Ax + BKx̂ + w t ∈ [ti, ti+1] (17)
˙̂x = fE(x̂) t ∈ [ti, ti+1] (18)

x̂(t+i ) = quantized(x(ti)) , (19)

where (18) denotes arbitrary x̂ dynamics3 between sampling
instants maintained by the receiving end of the communi-
cation channel, restricted to depend on only x̂; and (19)
refers to an as yet unknown quantization scheme. As in
[8], use of the class of quantizers defined earlier will be
facilitated through the appropriate scaling of x to ensure
that |scaled(x(t))| ≤ M for all t ≥ t0 . Although it is not
necessary, the choice of fE is fixed to “match” the plant
dynamics and the scaling variable µ is introduced to yield
the QCS

ẋ = Ax + BKx̂ + w t ∈ [ti, ti+1] (20)
˙̂x = (A + BK)x̂ t ∈ [ti, ti+1] (21)
µ̇ = g(µ, x̂) t ∈ [ti, ti+1] (22)

x̂(t+i ) = µ(ti)q
(

x(ti)
µ(ti)

)
(23)

µ(t+i ) = h(i, µ(ti), x̂(ti)) , (24)

where the quantization protocol is defined through (24) and
(23) and, in particular, µ dynamics and jump-map are chosen
in such a way so that the quantizer q is never saturated. We
can now make this assumption precise:

Assumption 1: Consider (20)-(24) initialized at
(t0, x(t0), x̂(t0), µ(t0)) using a quantizer defined earlier.
We assume that

∣∣∣ x(t)
µ(t)

∣∣∣
P
≤ M for all t ≥ t0 . /

The assumption can be made true by appropriate definitions
of the rhs (22), (24) and assuming that ‖w‖∞ is a known
quantity. As for NCS, we define an emulation-induced error
e = x̂− x and the QCS can be rewritten:

ẋ = (A + BK)x + BKe + w t ∈ [ti, ti+1] (25)
ė = Ae− w t ∈ [ti, ti+1] (26)
µ̇ = g(µ, x + e) t ∈ [ti, ti+1] (27)

e(t+i ) = µ(ti)
[
q

(
x(ti)
µ(ti)

)
− x(ti)

µ(ti)

]
(28)

µ(t+i ) = h(i, µ(ti), x(ti) + e(ti)) . (29)

Defining a protocol for this class of QCS becomes a matter
of specifying h in (29), since (28) is holds by definition of
induced error.

Naturally, scheduling (NCS) can be combined with quan-
tization (QCS) to yield networked quantized control systems
(NQCS), as discussed in [8] but extended here to include

3Nonzero choices of dŷ/dt, dû/dt may lead to improved performance
in an appropriate sense. See [8], for instance.
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disturbances and consideration of nonzero µ continuous-time
dynamics:

ẋ = (A + BK)x + BKe + w t ∈ [ti, ti+1] (30)
ė = Ae− w t ∈ [ti, ti+1] (31)
µ̇ = g(µ, x + e) t ∈ [ti, ti+1] (32)

e(t+i ) = [I −Ψ(i, e(ti))]e(ti)+ (33)
µ(ti)Ψ(i, e(ti))×[

q

(
Ψ(i, e(ti))x(ti)

µ(ti)

)
− Ψ(i, e(ti))x(ti)

µ(ti)

]
µ(t+i ) = hµ(i, µ(ti), x(ti) + e(ti)) , (34)

A. ISS Protocols

We now introduce the class of ISS scheduling protocols,
where, as indicated earlier, a protocol is (a representation of)
the jump-map (9). This definition formalizes the interpreta-
tion in [11, Section 6] and allows the modeling of protocols
in the presence of exogenous disturbances.

Definition 5.3: Consider the discrete-time system

z+ = h(i, z, x, w) . (35)

We say that (35) is an input-to-state stable (ISS) protocol if
there exists a function W : N×Rnz → R≥0 such that there
exist constants a1 > 0, a2 > 0, ρ ∈ [0, 1) and γp ≥ 0 such
that, for all z ∈ Rnz , i ∈ N, x ∈ Rnx and w ∈ Rnw

a1|z| ≤ W (i, z) ≤ a2|z| (36)
W (i + 1, h(i, z, x, w)) ≤ ρW (i, z) + γp|ỹ| , (37)

where ỹ : Rnx × Rnw → R is a continuous function of
(x,w). /
The ISS protocol definition captures properties of several
important protocol classes that arise in the study of hybrid
systems and particularly networked and quantized control
systems.

Example 5.4 (UGES Protocols): Recall that a protocol

e+ = p(i, e) (38)

is Lyapunov UGES (uniformly globally exponentially stable)
if there exists a function W : Rne × N → R≥0 such that

a1|e| ≤ W (i, e) ≤ a2|e| (39)
W (i + 1, p(i, e)) ≤ ρW (i, e) , (40)

where ρ ∈ [0, 1). These protocols – scheduling proto-
cols, were defined in [1] to analyze stability properties of
networked control system. When we define z = e and
h(i, z, x, w) = p(i, z), these protocols are ISS with γp = 0,
one example of producing ISS protocols. /

Example 5.5: The e-protocol (33) in NQCS has a partic-
ular form where it is essentially an NCS protocol with an
additive disturbance:

e+ = h(i, e) + v , (41)

where in the case of NQCS, the additive disturbance v is
due to the use of quantization. In the case of TOD [13] and

conceivably many other UGES protocols, the same Lyapunov
function that demonstrates Lyapunov UGES can be used to
show that the protocol with additive disturbance is ISS. For
example, TOD is Lyapunov UGES with Lyapunov function
V (e) = |e|, hence, for (41),

V (e+) ≤
√

`− 1
`

V (e) + |v| ,

where ` denotes the number of nodes.
Before introducing examples for specific quantization

schemes, the following propositions establish that it is
enough to consider definitions of the quantization protocol
(29) in systems of the form (25)-(29) and not the (e, µ)
system as a whole. ISS of the (e, µ) subsystems follows if
Assumption 1 holds.

Proposition 5.6: Consider the QCS (25)-(29) and suppose
that:

1) the system satisfies Assumption 1;
2) the quantization protocol (29) is ISS from (x + e) to

µ with ISS-Lyapunov function Vµ satisfying a1|µ| ≤
Vµ(µ) ≤ a2|µ|; and

3) ∆,M and ρ, γp come from the quantization protocol
and ISS-Lyapunov function of the protocol, respectively
and satisfy

γp

k1

∆
a1

< 1 , (42)

where k1 > 0, k2 > 0 are constants such that k1|e| ≤
|e|P ≤ k2|e|.

Then the (e, µ) (discrete-time) subsystem is ISS from x
to (e, µ), thus the discrete-time system induced by the
(e, µ) is an ISS protocol in the usual sense. The proof is
a straightforward application of a discrete-time small-gain
argument e.g., see [12].
Similarly, many scheduling protocols (Example 5.4) com-
bined with ISS quantization scheme yield ISS protocols for
(e, µ) in NQCS.

Example 5.7 (Zoom-Quantization Scaling): The follow-
ing protocol is an example of the quantization scaling factor
evolution typical in QCS and is an example of a protocol
that can be used in (29) and (34):

µ+ =
{

αµ , |x + e| ≤ Cµ
µ , |x + e| > Cµ

, (43)

where α ∈ (0, 1). Let Vµ(µ) = |µ|, hence

Vµ(µ+) ≤ αVµ(µ) + C−1(|x + e|) ,

and the protocol is ISS from (x+e) to µ with ISS-Lyapunov
function Vµ. This protocol can only “zoom-in”, that is, the
scaling factor can only decrease in discrete-time. We later
show that an appropriate choice of continuous-time dynamics
for µ, the key difference between the zoom protocol of this
paper and that of [11], eliminates the need for discrete-time
zoom-outs. /
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VI. MAIN RESULTS

A. Input-to-State Stability Properties of Error Subsystem
with ISS Protocols

In this section we show that ISS protocols with ISS-
Lyapunov function W lead to ISS/IOS for the error (e)
dynamics in (7)-(9) under relatively mild assumptions on
regularity of W and assumptions on the error dynamics.

Proposition 6.1: Consider the system

ż = g(t, z, x, w) t ∈ [ti+1, ti] (44)

z(t+i ) = h(i, z(ti), x(ti)) (45)

and suppose that
1) the (discrete-time map induced by) protocol h is ISS

with ISS-Lyapunov function W in the sense of Defini-
tion 5.2;

2) ISS-Lyapunov function W is locally Lipschitz, uni-
formly in i and satisfies for almost all z ∈ Rnz〈

∂W (i, z)
∂z

, g(t, z, x, w)
〉
≤ LW (i, z) + |ỹ| , (46)

where ỹ comes from (37);
3) there exists ε > 0 such that the monotonically increasing

sequence of time instants {ti}∞i=0 satisfies ε ≤ ti+1 −
ti < τ ;

4) τ satisfies τ < 1
L ln

(
1
ρ

)
, where ρ is from (37) .

Then, with respect to (44)-(45), there exists β(·, ·) ∈ KL
such that

W (t) ≤ β(W0, t− t0) + γw‖ỹ[t0, t]‖∞ , (47)

where
γw =

(1 + γp) exp(Lτ)− 1
L(1− ρ exp(Lτ))

, (48)

where γp is from (37). That is, (44)-(45) is IOS from ỹ to W
with linear gain. The proof follows from similar arguments
to those found in [1]. /

B. Input-to-State Stability Properties of Hybrid Systems with
ISS Protocols

This section considers hybrid systems of the form (7)-(9)
and establishes conditions on the x, e subsystems as well as
the protocols under which the system is IOS with respect
to certain inputs and outputs and, further conditions under
which this property specializes to ISS and UGES/UGAS.

Theorem 6.2: Consider system (7)-(9) and suppose that
1) the (discrete-time map induced by) protocol h in (9)

is ISS with ISS-Lyapunov function W in the sense of
Definition 5.2;

2) the x-subsystem in (7) is IOS from (W,w) to ỹ with
gain γx satisfying γxγp < L(1−ρ), where ρ, γp comes
from (37); the x-subsystem of (7) regarded as having
state x, input (W,w) and output ỹ has the UO property
with couple (αx, 0), for some αx ≥ 0;

3) ISS-Lyapunov function W is locally Lipschitz, uni-
formly in i and satisfies for almost all z ∈ Rnz〈

∂W (i, z)
∂z

, g(t, z, x, w)
〉
≤ LW (i, z) + |ỹ| , (49)

where ỹ comes from (37);
4) the z-subsystem of (7) regarded as having state z, input

ỹ and output W has the UO property with couple
(αz, 0), for some αx ≥ 0;

5) (ρ as in (37)) τ satisfies

τ <
1
L

ln
(

L + γx

Lρ + γx(1 + γp)

)
(50)

Then (7)-(9) is IOS from w to (W,x) with linear gain.
Theorem 6.2 follows from a small-gain argument, using a
small-gain theorem for hybrid systems such as [1, Theorem
2]: From Proposition 6.1, conditions 1) and 3)-5) render the
e-subsystem of (7) IOS from ỹ to e with linear gain γw(τ)
in (48) and γxγw < 1 is satisfied for τ defined in (50). /

VII. QUANTIZATION, SCHEDULING & ROBUSTNESS

Common to all ISS protocols and the view of the emulated
system as a particular class of hybrid systems is the notion
of the system as a generalized sampled-data system with an
associated maximum sampling interval τ , as in Theorem 6.2.
Once the protocol is selected, the primary mechanism for
recovering the qualitative behavior of the nominal system
is sufficient reduction of τ . For NCS, our results reduce to
those found in [1] for UGES protocol.

A. Quantized Control Systems

This section considers the class of QCS introduced in
Section V. The following proposition developed for the class
of quantizers considered in this paper demonstrates that a
particular choice of µ continuous-time dynamics in (27) and
additional constraints on the generalized sampling rate allow
Assumption 1 to be proved rather than assumed.

Proposition 7.1: Consider QCS (25)-(29) and suppose
that

1) the µ-subsystem of the quantization protocol (29) is ISS
from x+e to µ with ISS-Lyapunov function satisfying:

V +
µ ≤ ρµVµ + γp|x + e| (51)

V +
µ ≥ ρ̃µVµ + γ̃p|x + e| (52)

where 0 < ρ̃µ ≤ ρµ and 0 < γ̃p ≤ γp;
2) the QCS is sampled at a sequence of time instants
{ti}i∈N satisfying

0 < ε ≤ ti+1 − ti ≤ τ < ∞ ; (53)

3) the quantizer q is such that

|x(ti)| ≤ MVµ(µ(ti)) ⇒
∣∣∣∣q (

x(ti)
µ(ti)

)
− x(ti)

µ(ti)

∣∣∣∣ ≤ ∆

(54)
4) µ dynamics (27) are chosen such that for each i ∈ N

dVµ(t)
dt

= λ̃xVµ(t) +
θ

M
(x̂ + ‖w‖∞) , (55)
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where

λx = sup
(
σ+(A)

)
(56)

λ̃ ≥ 1
ε

ln
(

1
ρ̃µ

)
+ λx (57)

θ ≥ max
{

exp((λ̃x − λx)τ),
1
ρ̃µ

}
, (58)

and A,B, K are from (25); and
5) the quantizer is initially not saturated:

Vµ(µ(t0)) ≥
1
M
|x(t0)| . (59)

Then the quantizer never saturates at sampling/quantization
instants:

Vµ(µ(ti)) ≥
1
M
|x(ti)| ∀ i ∈ N . (60)

The proof follows by definition of the constants and an
induction argument.

Remark 2: Knowledge of the magnitude of w is analogous
to knowledge of the statistics (various moments) of stochastic
perturbations – a standard assumption in the analysis stochas-
tic systems and an assumption made in [6]. /

The use of Theorem 6.2 together with Proposition 7.1 for
QCS (25)-(29) is illustrated with the following result for a
particular quantization protocol.

Proposition 7.2: Consider QCS (25)-(29) and suppose
that

1) (29) is given by Example 5.6;
2) the quantizer q is a box quantizer, as described in

Definition 5.1;
3) all conditions of Proposition 7.1 are satisfied with

Vµ(µ) = |µ|;
4) and (25) is ISS from (µ, e, w) to x with gain γx.
5) in addition to the constraints imposed on τ by Proposi-

tion 7.1, τ satisfies

τ <
1
L

ln
(

L + γ̃x

Lρ + γ̃x(1 + γp)

)
,

where

γ̃x =
n

1/2
x θ

M
γx (61)

λ =
C−1√nx∆ + 1

2C−1
√

nx
(62)

L = 2max

{
|A|n1/2

x +
θn

1/2
x

M
,λλ̃x

}
(63)

ρ = max

{
C−1∆ + n

−1/2
x

2n
−1/2
x

,
2C−1∆

C−1∆ + n
−1/2
x

, α

}
(64)

and

γp =
C−1∆ + n

−1/2
x

2n
−1/2
x

, (65)

and α is from (43).
Then (25)-(29) is ISS with linear gain and a finite data rate
given by nx

τ log2

(
M
∆

)
bps.

Proof: (Sketch) First note that by application of Propo-
sition 5.5 and a particular choice of ISS-Lyapunov functions
for the e and µ subsystems we have

Ve(e) = |e|∞ ⇒ |e| 1
√

nx
≤ Ve(e) ≤ |e| (66)

Vµ(µ) = |µ| . (67)

The proof follows from using the ISS-Lyapunov function
V (e, µ) = max{Ve(e), λVµ(µ)} with λ given in (62) and,
hence, V + ≤ ρV +γp|x| , where ρ, γp are given by (64) and
(65), respectively.

VIII. CONCLUSION

ISS protocols provide new insights into the analysis and
design of networked and quantized control system as well as
combinations thereof. In particular, with appropriate modi-
fications of “zoom” protocols the analysis framework pre-
sented quantitatively characterizes the relationship between
data rates and robustness in a straightforward manner.
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