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Abstract— We consider the quaternion-based attitude syn-
chronization problem of multiple spacecraft without velocity
measurements. First, we propose a leader-follower-type con-
trol scheme for the attitude synchronization of a spacecraft
formation to a desired constant attitude (available only to a
single spacecraft called the leader), while maintaining the same
attitude during formation maneuvers. Second, we consider the
consensus seeking problem, where, no reference attitude is
specified, and all spacecraft are required to align their attitudes
with the same (possibly time varying) final angular velocity.
The communication flow between spacecraft is assumed to be
bidirectional. Simulation results of a scenario of four spacecraft
are provided to show the effectiveness of the proposed control
scheme.

I. INTRODUCTION

Cooperative and formation control of autonomous vehicles

have received extensive interests in recent years leading

to significant results [1]-[3]. Closely related to formation

control problems, the consensus seeking problem of multi-

agent systems deals with the case where it is required that a

group of agents agrees on a common decision based on local

information exchange. In particular, the use of graph theory

produced many interesting results, [4]-[7]. In fact, through

an appropriate choice of the information states on which

consensus is reached, consensus algorithms can be applied

to formation control problems [8]. The above mentioned

papers, mainly deal with simple dynamic models such as

linear systems and single or double integrators, and hence

they are often limited when it comes to dealing with rigid

body dynamics.

Recently, several papers have investigated the problem of

controlling and maintaining the relative attitudes of formation

flying spacecraft, and several approaches are proposed, from

which some common fundamental aspects can be extracted,

[9]. Roughly, three approaches are found in the literature:

Leader-following, virtual structures, and the behavioral meth-

ods. The leader-following approach defines a leader in the

formation to be followed by the other members of the

formation [10]. In the virtual structure approach, the entire

formation is considered as a single virtual structure. In

[11]-[12], centralized implementation of a virtual structure

coordination strategy is presented, and in [13], the virtual

structure approach is applied in a decentralized scheme. The
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behavioral approach prescribes a set of desired behaviors

for each member in the team, and weights them such

that desirable group behavior emerges. Possible behaviors

include trajectory and neighbor tracking, collision and ob-

stacle avoidance, and formation keeping [14]. In [15], the

behavioral approach is used to maintain attitude alignment

among a group of spacecraft and uses a ring communication

topology. The results in [15] were extended to a more

general communication graph in [16]. More recently, the

passivity approach has been used to develop synchronization

algorithms in [17], and in [18] it has been extended to the

attitude synchronization problem of rigid bodies. The above

coordination control strategies are based on the assumption

that each spacecraft (vehicle) knows its own angular velocity,

and the angular velocity of its neighbors.

In this paper, we consider the attitude synchronization

problem of formation flying spacecraft and remove the re-

quirement for angular velocity and relative angular velocities

measurements. Based on the passivity based velocity-free

attitude regulation scheme proposed in [19], [15] present

a passivity based control law for multi-spacecraft attitude

alignment without velocity measurements, where a com-

munication ring topology is assumed, and local results are

obtained. The author of [20] considers the Modified Ro-

driguez Parameters for orientation representation to extend

the work of [15] and guarantee attitude synchronization

under undirected connected communication topology.

Recently, based on the unit quaternion representation,

a novel solution to the attitude tracking problem without

velocity measurements has been proposed in [21], and almost

global asymptotic stability is guaranteed. The latter has been

considered to solve the spacecraft attitude alignment problem

in [22], where a group of spacecraft are guaranteed to

converge to their desired time varying attitudes. The basic

idea in [22] is to introduce an auxiliary system for each

spacecraft and for each pair of spacecraft with a communi-

cation link. The vector parts of the unit quaternion describing

the discrepancy between the output of these auxiliary systems

and spacecraft attitude errors as well as the relative attitude

between spacecraft, are used in the control law to generate

the necessary damping that would have been generated by

the angular velocities and the relative angular velocities. The

main contribution of this paper is to extend further the results

obtained in [22], and design velocity-free decentralized atti-

tude control schemes to solve two different problems related

to the attitude synchronization problem of spacecraft within

a formation under a bidirectional communication topology.

First, we propose a velocity-free leader-follower based con-
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trol scheme that guarantees the convergence of multiple

spacecraft to some constant desired attitude, available only

to a single spacecraft acting as a leader, while maintaining

the same attitude during formation maneuvers. Second, we

consider the case where no leader and no external reference

are used to dictate the group’s behavior, and it is required

that spacecraft align their attitudes with the same (possibly

time varying) angular velocities. In both cases, almost global

asymptotic stability results are obtained.

II. BACKGROUND AND PRELIMINARIES

A. Graph Theory Preliminaries

The bidirectional information flow between spacecraft in

the formation is described by undirected graphs. A weighted

undirected graph G consists of (N ,E ,W ), with N being

the set of nodes or vertices, describing the set of spacecraft

in the formation, E the set of unordered pairs of nodes,

called edges. An edge ( j,k) in a weighted undirected graph

indicates that nodes j and k are adjacent, or neighbors, and an

undirected link exists between them. W is the set of weights

associated to the links in the graph. If an orientation is

assigned to the edges of the graph, we will obtain a weighted

directed graph, G̃ = (N , Ẽ ,W ), with Ẽ the set of ordered

edges of the graph.

If there is a path between any two distinct nodes of a

weighted undirected graph G , then G is said to be connected.

If there exists such a path on a weighted directed graph

ignoring the direction of the edge, then the graph is weakly

connected. A cycle is a connected graph with each node hav-

ing exactly two neighbors. An acyclic graph is a graph with

no cycles. A weighted undirected graph which is connected

and acyclic is called a tree, [23]. Having a weighted directed

graph, we can define the weighted incidence matrix of the

graph to be the matrix D with rows indexed by vertices and

columns indexed by edges with the (u, f ) entry equal to +k f

if vertex u is the source of the directed edge f , −k f if u is

the sink of f , and 0 if u is not in the edge f . The rank of

D is n−1 if the graph G̃ is weakly connected, and it is full

column rank if this graph is weakly connected and acyclic.

B. Spacecraft Dynamics

Consider a group formation of n spacecraft modeled as

rigid bodies. The equations of motion of the jth spacecraft

are

I f j
ω̇ j = τ j −ω j × I f j

ω j, (1)

Q̇ j =
1

2
Q j ⊙ ω̄ j (2)

where ω̄ j = (ωT
j , 0)T , and ω j denotes the angular velocity

of the jth spacecraft expressed in the body-fixed frame F j.

I f j
∈ R

3×3 is the symmetric positive definite constant inertia

matrix of the jth spacecraft with respect to F j. The vector τ j

is the external torque applied to the jth spacecraft expressed

in F j. The unit quaternion Q j = (qT
j ,q j,4)

T , composed of a

vector component q j ∈ R
3 and a scalar component q j,4 ∈ R,

represents the orientation of the jth spacecraft frame, F j,

with respect to the inertial frame, Fi, which are subject to

the constraint

qT
j q j +q2

j,4 = 1 (3)

The rotation matrix that brings Fi onto F j, denoted by

R(Q j) ∈ R
3×3, is defined as follows

R(Q j) = (q2
j,4 −qT

j q j)I3 +2q jq
T
j −2q j,4q j× (4)

where ‘×’ is the vector cross product and I3 is the 3× 3

identity matrix. The quaternion multiplication between two

unit quaternions, Q j and Qk, is defined by the following non-

commutative operation

Q j ⊙Qk =
(

(q j,4qk +qk,4q j +q j ×qk)
T ,q j,4qk,4 −qT

j qk

)T

(5)

The inverse or conjugate of a unit quaternion is defined by,

Q −1
j = (−qT

j ,q j,4)
T , with the quaternion identity given by

(0,0,0,1)T , [24]. The relative attitude between the jth and

the kth spacecraft, represented by the unit quaternion Q jk, is

defined as

Q jk = Q−1
k ⊙Q j, (6)

Q̇ jk =

(

q̇ jk

q̇ jk,4

)

=
1

2

(

q jk,4 I3 +q jk×
− qT

jk

)

ω jk (7)

ω jk = ω j −R(Q jk)ωk (8)

The vector ω jk is the relative angular velocity of F j with

respect to Fk expressed in F j, Q jk represents the rotation

from Fk to F j and R(Q jk) is the rotation matrix related

to Q jk defined in (4). The following equations relating the

relative states of the jth and kth spacecraft can be derived

easily

R(Qk j)
T = R(Q jk) (9)

qk j = −q jk = −R(Qk j) q jk (10)

From the above equations, our main objective is to guar-

antee that all spacecraft align their attitudes, i,e. q j → qk, or,

q jk = (0,0,0)T for j,k = 1, ...,n, without velocity measure-

ments.

III. AUXILIARY SYSTEMS DESIGN

Consider the following auxiliary systems

Ṗj =
1

2
Pj ⊙ β̄ j, j = 1, ...,n (11)

with β̄ j = (β T
j , 0)T and β j ∈ R

3 to be defined later.

The mismatch between the auxiliary system output and the

attitude of the jth spacecraft is defined by

δPj = (Pj)
−1 ⊙Q j, (12)

˙δP j =

(

˙δ p j
˙δ p j,4

)

=
1

2

(

δ p j,4 I3 +δ p j×
− δ pT

j

)

Ω j (13)

Ω j = ω j −R(δPj)β j (14)

where R(δPj) is the rotation matrix related to δPj. We also

define the following set of auxiliary systems between each

spacecraft j and its neighbor k as

Ṗjk =
1

2
Pjk ⊙ β̄ jk (15)
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with β̄ jk = (β T
jk , 0)T and β jk ∈ R

3 to be defined later, and

δPjk = (Pjk)
−1 ⊙Q jk, (16)

˙δP jk =

(

˙δ p jk
˙δ p jk,4

)

=
1

2

(

δ p jk,4 I3 +δ p jk×
− δ pT

jk

)

Ω jk (17)

Ω jk = ω jk −R(δPjk)β jk (18)

It is important to note that the purpose of the dynamical

systems (11) and (15) is to use the error quaternion (12) and

(16) in a decentralized control law to generate the necessary

damping that would have been generated by the angular

velocities and the relative angular velocities of spacecraft.

IV. LEADER-FOLLOWER CASE

We consider the case where multiple spacecraft are re-

quired to converge to a final desired attitude with zero final

angular velocity, while maintaining the same attitudes during

formation maneuvers. We assume that the desired attitude,

represented by Qd = (qd T ,qd
4)

T , is available only to one

spacecraft, the leader. The unit quaternion representing the

attitude error for the leader is defined as

δQl = (Qd)−1 ⊙ Ql

˙δQl =

(

δ̇ql

δ̇ql,4

)

=
1

2

(

δql,4 I3 +δql×
− δqT

l

)

ωl , (19)

where subscript “l” stands for leader.

Consider the following control law for the jth spacecraft

τ j = −σ jα1 jδq j −α2 jδ p j −
n

∑
k=1

k
p
jk q jk

−
n

∑
k=1

kd
jk

(

δ p jk −R(Q jk)δ pk j

)

(20)

for j = 1, ...n, where n is the number of spacecraft in the

formation, α1l > 0, α2 j > 0, and

k
p
jk = k

p
k j ≥ 0, kd

jk = kd
k j ≥ 0, k

p
j j = kd

j j = 0 (21)

for j and k = 1, ...n, and

σ j =

{

1, if spacecraft j is the leader

0, if spacecraft j is a follower

The gains k
p
jk and kd

jk are assumed to be strictly positive

if spacecraft j and k are connected (have a communication

link), for j,k = 1, ...n, otherwise they are equal to zero.

Therefore, the choice of these gains determines the coor-

dination architecture considered. Also, by restriction (21),

we are assuming that the communication flow between

spacecraft is bidirectional. We describe the information flow

between spacecraft by the weighted undirected graphs G1 =
(N ,E ,Kp) and G2 = (N ,E ,Kd). Note that G1 and G2 have

the same set of nodes and set of edges, and they differ only

by the sets of weights Kp,d . Hence, G1 and G2 will have

the same properties, and both describe the information flow

graph between spacecraft in the formation.

To this point, we can state our first result in the following

theorem.

Theorem 1: Consider the formation given in (1)-(2) under

the control law (20) , with restrictions (21), and let the inputs

of the auxiliary systems (11) and (15) be respectively

β j = Γ jδ p j , β jk = Γ jkδ p jk (22)

with Γ j = ΓT
j > 0 and Γ jk = ΓT

jk > 0. If the information flow

graph is a tree, then all the signals are globally bounded and

q j → qk → qd and ω j → ωk → 0 asymptotically, for j,k =
1, ...,n.

Proof: Consider the following positive definite Lya-

punov function candidate

V =
n

∑
j=1

(

1

2
ωT

j I f j
ω j +2σ jα1 j(1−δq j,4)+2α2 j(1−δ p j,4)

)

+
n

∑
j=1

n

∑
k=1

(

k
p
jk(1−q jk,4)+2kd

jk(1−δ p jk,4)
)

(23)

The time derivative of V evaluated along the dynamics

(1)-(2) is given by

V̇ =
n

∑
j=1

(

ωT
j (τ j)+σ jα1 jδqT

j ω j +α2 jΩ
T
j δ p j

)

+
1

2

n

∑
j=1

n

∑
k=1

k
p
jkqT

jkω jk +
n

∑
j=1

n

∑
k=1

kd
jkδ pT

jkΩ jk (24)

Using equations (14) and (20) in (24), yields

V̇ =−
n

∑
j=1

α2 jδ pT
j R(δPj)β j

+
n

∑
j=1

n

∑
k=1

(

1

2
k

p
jkqT

jkω jk + kd
jkΩT

jkδ p jk

)

−
n

∑
j=1

n

∑
k=1

ωT
j

(

k
p
jk q jk + kd

jk

(

δ p jk −R(Q jk)δ pk j

)

)

(25)

Using equations (8), (10) and (21), we can show that

1

2

n

∑
j=1

n

∑
k=1

k
p
jkqT

jkω jk =
n

∑
j=1

n

∑
k=1

k
p
jkωT

j q jk (26)

also, if we consider (21) and (18), we can write

n

∑
j=1

n

∑
k=1

kd
jkΩT

jkδ p jk =
n

∑
j=1

n

∑
k=1

kd
jkωT

j

(

δ p jk −R(Q jk)δ pk j

)

−
n

∑
j=1

n

∑
k=1

kd
jkβ T

jkR(δPjk)
T δ p jk (27)

From equations (22), (25)-(27) and using the fact that

qT R(Q) = qT for any unit quaternion Q, the time derivative

of V is given by

V̇ = −
n

∑
j=1

α2 jδ pT
j Γ jδ p j −

n

∑
j=1

n

∑
k=1

kd
jkδ pT

jkΓ jkδ p jk (28)

which is negative semi definite, which implies that V (t) ≤
V (0), and δQl , δPj, ω j, Q jk and δPjk are globally bounded.

Invoking LaSalle’s invariance theorem, one can show the

following: δ p j → 0 and δ p jk → 0, as t → ∞, which implies

that δ p j,4 →±1, δ p jk,4 →±1, β j → 0, β jk → 0, R(δPj)→ I3

and R(δPjk) → I3. Consequently, Ω j → ω j, and Ω jk → ω jk.
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Since δ p j → 0 and δ p jk → 0, it is clear that ˙δP j → 0

and ˙δP jk → 0, and hence, Ω j → 0 and Ω jk → 0, and

consequently, ω j → 0 and ω jk → 0.

Using the above concluding results, we have τ j → 0, for

j = 1, ...n, and hence

σ jα1 jδq j +
n

∑
k=1

k
p
jk q jk = 0, j = 1, ...n (29)

For further analysis of (29), we assign a direction to the

undirected links of the communication graph G1, by consid-

ering one of the nodes of each edge to be the positive end

of the link, to obtain the directed graph G̃1 = (N , Ẽ ,Kp),
with Ẽ being the set of ordered edges of the graph. The

positive end of a link can be chosen arbitrarily, since we are

assuming a bidirectional communication topology between

spacecraft. Let m = |Ẽ | be the total number of edges in

the graph G̃1, which is also equal to the total number of

undirected links in G1. With the above direction assignment,

and the assumption that the communication graph G1 is a

tree, the obtained directed graph G̃1 is weakly connected and

acyclic, and m = n−1.

In addition, we consider that the desired attitude is trans-

mitted to the leader by a fictitious spacecraft, described by an

additional (n+1)th node in the communication graph G̃1, via

a directed communication link constituting a new nth edge in

G̃1, with weight α1l that we assume equal to kl,n+1 = kn+1,l .

With these assumptions, we obtain a new directed graph

G̃ ′
1 = (N ′, Ẽ ′,K ′

p), with (n + 1)-nodes and n-edges. The

weighted incidence matrix of G̃ ′
1 is D ∈R

(n+1)×n defined as

d
jl(u,v) =

{

+k
p
uv if node j is node u

−k
p
uv if node j is node v

0 otherwise
(30)

where l(u,v) : Ẽ ′ → {1, ...,n} is a function that associates a

single number from the set {1, ...,n} to each edge (u,v)∈ Ẽ ′.

We can easily verify that the obtained directed graph, G̃ ′
1,

is also weakly connected and acyclic, and hence the matrix

D is full column rank.

Let Qu ∈R3n be the column vector containing the vectors

q jk, ∀( j,k)∈ Ẽ , and the vector δql . Using the fact that q jk =
−qk j, equation (29) is equivalent to

(D′⊗ I3)Qu = 0 (31)

We can see that the n × n matrix D′ is constructed by

deleting the last row of the above (n+1)×n incidence matrix

D, and is full rank (corollary 4.2.6 in [25]). Hence, the only

solution to (31) is the trivial solution Qu = 0, that is q jk = 0,

∀( j,k) ∈ Ẽ , and δql = 0, or ql → qd . Since the graph is

connected, each spacecraft is communicating with at least

one other spacecraft, we have q jk = 0, ∀ j,k ∈ {1, ...n}, and

R(Q jk) → I3. Finally, one can conclude that q j → qk → qd ,

and ω j → ωk → 0, ∀ j,k ∈ {1, ...n}.

Remark 1: The control law (20) is a pure quaternion feed-

back, and consequently a natural saturation is achieved for

the control effort as follows ‖τ j‖≤ σ jα1 j +α2 j +∑n
k=1(k

p
jk +

2kd
jk).

V. CONSENSUS SEEKING WITHOUT REFERENCE

TRAJECTORY

In this section, we consider the case where no desired

attitude is assigned, and spacecraft are required to converge

to the same (not necessarily constant) angular velocity while

maintaining the same attitudes during formation maneuvers,

i.e., q j → qk and ω j → ωk. Again, we assume that the

communication between spacecraft is bidirectional and the

spacecraft angular velocities are not available.

We assume that spacecraft communicate the output of their

individual auxiliary systems δPj, defined in (12), and con-

sider the new unit quaternion that describes the discrepancy

between the output of the jth and kth auxiliary systems as

δ P̃jk = (δPk)
−1 ⊙δPj (32)

˙δ P̃jk =

(

˙δ p̃ jk
˙δ p̃ jk,4

)

=
1

2

(

δ p̃ jk,4I +δ p̃ jk×
−δ p̃T

jk

)

Ω̃ jk (33)

Ω̃ jk = Ω j −R(δ P̃jk)Ωk (34)

The following properties can easily be shown

R(δ P̃k j)
T = R(δ P̃jk) (35)

δ p̃k j = −δ p̃ jk = −R(δ P̃k j)δ p̃ jk (36)

We propose the following control law for the jth spacecraft

τ j =−
n

∑
k=1

k
p
jkq jk−

n

∑
k=1

kd
jk

(

δ p jk −R(Q jk)δ pk j +δ p̃ jk

)

(37)

with the gains k
p
jk and kd

jk are defined as in (21), and state

the following result

Theorem 2: Consider the formation given in (1)-(2) under

the control law (37) , with restrictions (21), and let the inputs

of the auxiliary systems (11) and (15) be respectively

β j = R(δPj)
T Γ j

(

n

∑
k=1

kd
jkδ p̃ jk

)

, β jk = Γ jkδ p jk (38)

with Γ j = ΓT
j > 0 and Γ jk = ΓT

jk > 0. If the information flow

graph is a tree, then all the signals are globally bounded and

q j → qk and ω j → ωk asymptotically, for all j,k = 1, ...,n.

Proof: Consider the Lyapunov function candidate

V =
1

2

n

∑
j=1

ωT
j I f j

ω j +
n

∑
j=1

n

∑
k=1

k
p
jk(1−q jk,4)

+
n

∑
j=1

n

∑
k=1

kd
jk

(

2(1−δ p jk,4)+(1−δ p̃ jk,4)
)

(39)

Using equations (34)-(36) and (14), we can show that

1

2

n

∑
j=1

n

∑
k=1

kd
jkδ p̃T

jkΩ̃ jk =
n

∑
j=1

n

∑
k=1

kd
jkδ p̃T

jkΩ j

=
n

∑
j=1

n

∑
k=1

kd
jkδ p̃T

jkω j −
n

∑
j=1

n

∑
k=1

kd
jkδ p̃T

jkR(δPj)β j

Following a similar analysis as in the proof of theorem 1,

the time derivative of V in (39) evaluated along the system

dynamics (1)-(2), with (37) and (38), is obtained as
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TABLE I

SIMULATION PARAMETERS

Q1(0) = (0,0,1,0) , Q2(0) = (1,0,0,0) , Q3(0) = (0,1,0,0),
Q4(0) = (0,0,sin(−π/4),cos(−π/4)), ω1(0) = (−0.5,0.5,−0.45),
ω2(0) = (0.5,−0.3,0.1), ω3(0) = (0.1,0.6,−0.1),
ω4(0) = (0.4,0.4,−0.5), Γ j = Γ jk = diag(6,6,6),
Pj(0) = Pjk(0) = P̃jk(0) = (1,0,0,0),
α1l = 70, α2 j = 90, k

p
jk = 50, kd

jk = 25, f or j,k ∈ E .

V̇ = −
n

∑
j=1

n

∑
k=1

kd
jkδ pT

jkΓ jkδ p jk

−
n

∑
j=1

(

n

∑
k=1

kd
jkδ p̃ jk

)T

Γ j

(

n

∑
k=1

kd
jkδ p̃ jk

)

from which we can conclude that V̇ is negative semi definite,

and hence, Q jk, δPjk, δ P̃jk and ω j are globally bounded.

Invoking LaSalle’s invariance theorem, one can show the

following (through standard signal chasing): δ p jk → 0 and

n

∑
k=1

kd
jkδ p̃ jk → 0, j = 1, ...n (40)

which implies that β j → 0 and β jk → 0, allowing to conclude

that Ω jk → ω jk and Ω j → ω j. In order to determine the

solutions of (40), we consider the same direction assignment

to the communication graph, as in the proof of Theorem 1,

to obtain the directed graph G̃2, which is weakly connected

and acyclic, since G2 is assumed to be a tree. From (36), we

can see that (40) can be rewritten as

(M⊗ I3)Pu = 0 (41)

with Pu ∈ R3(n−1) being the column vector containing all

δ p̃ jk, ∀( j,k) ∈ Ẽ , and M ∈ R
n×(n−1) is the weighted inci-

dence matrix of G̃2, defined as in (30), with the superscript

”p” in the weights replaced by ”d”. The matrix M is full

column rank, from which one can conclude that the only

solution to (41) is Pu = 0, that is δ p̃ jk → 0, ∀( j,k) ∈ Ẽ .

Since the communication graph is connected, we conclude

that δ p̃ jk → 0, and R(δ P̃jk)→ I3, for all j,k = 1, ...n. Further-

more, since δ p jk → 0 and δ p̃ jk → 0, we have ˙δ p jk → 0 and
˙δ p̃ jk → 0, and hence Ω jk → 0 and Ω̃ jk → 0. Since Ω jk →ω jk

and from (34), it is straightforward to write
{

ω jk → 0,
Ω j −R(δ P̃jk)Ωk → 0 ⇒ Ω j → Ωk

Hence, from (8) and since Ω j → ω j, we have
{

ω j → R(Q jk)ωk,
ω j → ωk

which leads us to conclude that R(Q jk)→ I3, that is q j → qk

and ω j → ωk, for all j,k = 1, ...n.

The sufficient condition used in Theorem 2 (i.e., the commu-

nication graph is a tree), can be relaxed to remove the acyclic

requirement, under certain conditions on the scalar parts of

δPj, j ∈ {1, ...n}, as stated in the following corollary.

Corollary 1: If there exists T > 0 such that δ p j,4(t) > 0

(or δ p j,4(t) < 0), for all t ≥ T and for all j ∈ {1, ...n}, then

the result of Theorem 2 holds if the communication graph is

connected.

Proof: From equation (40), using (3) and (5), we can

write

∑n
j=1 δ pT

j ∑n
k=1 kd

jkδ p̃ jk

= ∑n
j=1 ∑n

k=1 kd
jk

(

δ pk,4δ pT
j δ p j −δ p j,4δ pT

j δ pk

)

= ∑n
j=1 ∑n

k=1 kd
jk

(

δ pk,4(1−δ p2
j,4)−δ p j,4δ pT

j δ pk

)

= ∑n
j=1 ∑n

k=1 kd
jk

(

δ p j,4 −δ p j,4(δ pk,4δ p j,4 +δ pT
j δ pk)

)

= ∑n
j=1 ∑n

k=1 kd
jkδ p j,4

(

1−δ p̃ jk,4

)

= 0

(42)

Note that (42) holds when t tends to infinity. Hence, it is

clear that if there exists T > 0 such that δ p j,4(t) > 0 (or

δ p j,4(t) < 0), for all t ≥ T and for all j ∈ {1, ...n}, then the

only solution to (42) is δ p̃ jk,4 = 1, that is δ p j → δ pk, for all

j,k ∈ E , and if the graph is connected, this is verified for all

j,k ∈ {1, ...n}. The rest of the proof is similar to the proof

of Theorem 2.

Remark 2: It is worth noticing that the control law (37)

is a pure quaternion feedback, and consequently a natural

saturation is achieved for the control effort as follows ‖τ j‖≤

∑n
k=1(k

p
jk +3kd

jk).

VI. SIMULATION RESULTS

Using SIMULINK, we consider a scenario where four

spacecraft are required to align their attitudes under a bidirec-

tional communication flow graph satisfying the conditions in

Theorems 1 and 2. The spacecraft are modeled as rigid bod-

ies whose inertia matrices are taken as I f j
= diag(20,20,30).

The simulation parameters are illustrated in table I.

The obtained results are illustrated in Figures 1-4. Figure 1

shows the components of the unit quaternion, Qi
j, i = 1, ...4,

representing the attitude of the four spacecraft in the forma-

tion (we use the superscript (i) to denote the ith component

of a vector), in the leader-follower case, where we consider

that the desired attitude is available only to spacecraft one,

and is qd(0) = (0,0,0,1)T . Note that all spacecraft converge

to the same desired attitude. In Figure 2 we illustrate the

elements of spacecraft angular velocity vectors, from which

the convergence to zero is clear. Figures 3 and 4 illustrate

the obtained results in the consensus seeking case without

leader and without reference trajectory, where we can see

that spacecraft reach an agreement and converge to the same

final time varying attitude and angular velocity.

VII. CONCLUSION

We addressed the problem of quaternion-based attitude

synchronization of spacecraft flying formation without veloc-

ity measurements. First, we proposed a velocity-free leader-

follower control strategy that guarantees attitude synchro-

nization with zero angular velocities, under a connected

acyclic undirected communication graph. We showed that

a modification of the proposed scheme solves the agreement

seeking problem, where the attitude alignment of the group

within a formation is ensured with (not necessarily constant)
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Fig. 1. Spacecraft attitudes in the leader-follower control scheme
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Fig. 2. The three elements of the
spacecraft angular velocities in the
leader-follower scheme
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Fig. 3. The three elements of the
spacecraft angular velocity vectors
in consensus seeking case

final attitudes and angular velocities. Almost global asymp-

totic stability results are obtained [26]. It is important to

mention that although we consider the velocity-free attitude

synchronization problem in the context of spacecraft within a

formation, our results are applicable to the attitude synchro-

nization problem among rigid bodies satisfying the rotational

dynamics. Simulation results have shown the effectiveness of

the proposed control schemes.
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