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Practical Stabilization via Relay Delayed Control

A. Polyakov

Abstract— Two problems of practical stabilization (local and
semiglobal) via relay delayed control are considered. Control
design algorithms for linear plants operating under uncertainty
conditions are proposed. The necessary and sufficient existence
conditions of stabilizing relay delayed controls are given. The
stabilization problem of an inverted pendulum controlled by
flywheel is considered as numerical example.

I. INTRODUCTION

Relay control systems occur in many industrial applica-
tions. They are simple in realization, cheap, very effective
and sometimes have better dynamic than traditional linear
systems [1]. Relay nature may be inherent in both sensors
and controllers. For example, the HEGO-sensor in the air-
to-fuel ratio control system of automobile engine is a relay
measurer [2], but the control systems of electric drives [3]
have on-off "switches" as relay control inputs. The preferable
control strategy essentially depends on the device (sensor
and/or controller) having the relay nature.

On the other hand, time delays that usually take a place in
feedback control systems can not be ignored, because they
lead to "unmodelled" oscillations (such as "chattering" [3])
and/or system insatiability [4]. This phenomenon is typical
for relay control systems [3], [5]. Presence of time delays
together with the system uncertainties (such as external dis-
turbances, errors in system parameters estimations, unknown
and variable time delay) make the problem of the control
design and the stability analysis of the relay control systems
essentially complex.

Time delay compensation (or prediction) and the adaptive
control of system oscillations are two modern approaches
to the problem of control design for time delay systems.
In [6], [7], [8] some implementations of prediction method
for sliding mode control design can be found. However, the
proposed technique does not allow to realize sliding mode
in the system state space [9]. It ensures the sliding motion
only in the predictor space [10] and leaves the system state
oscillations produced by uncertainties without consideration
and estimations.

Methods for relay control of the system oscillations can
be found in [11], [12], [13]. They are based on control gain
adaptation and need multi-step property of control inputs (i.e.
each relay control input may have some finite or discrete set
of values). This property does not hold for traditional on-
off switching systems. Moreover, all existed relay control
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algorithms of systems oscillations are presented only for the
very restricted class of the plants. In the same time, the
methods of the relay control of the system oscillations have
two very important practical advantages: they are robust with
respect to time delay variations and allow easily to achieve
the estimations of convergence time, control accuracy and
attraction domain in the explicit form. So, this study is caused
by necessity of extension of the relay oscillation control
methods to the general control systems with the on-off relay
control inputs.

In the next section the problem formulation, basic defi-
nitions and assumptions are presented. Then the necessary
existence conditions of the stabilizing control for considered
system are given and discussed. After then the control design
algorithms and the corresponding theorems of practical sta-
bilization are proposed. Finally, the stabilization problem of
an inverted pendulum controlled by flywheel is considered
and the simulation results of relay delayed control imple-
mentation are graphically illustrated.

II. PROBLEM FORMULATION AND BASIC ASSUMPTIONS

A. Main System

Let us consider the control system with time delay of the
form

#(t) = Ax(t) + Bu(z(t — h(t))) + f(t, z(t)) 1)

where © € R”™ is a state space vector, the system matrix
A € R™™ is admitted to be unstable, B € R"™ ™ is a
control gain matrix, u € R™ is a vector of control inputs, h(t)
is time delay and the unknown function f(t,x(t)) describes
system uncertainties.

We suggest that the full state space vector is available for
measurement with unknown but bounded time delay h(t)

0 < h(t) < ho (2)

where hg is known. The function h(t) is supposed to be
piece-wise continuous. The system (1) is considered under
initial conditions of the form

z(t) = ¢(t), for t € [—hy, 0]

where ¢(t) is an arbitrary function of time.
The control u(-) in the system (1) is relay

u(") = (—p1sign[S1 ()], ..., =pm sign[Sm ()T (3)

where the positive parameters p; > 0, (¢ = 1,2,...,m) and
the linear mappings S; : R — R, (i = 1,2,...,m) should
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be designed. The operator sign[] is defined by

1 if 2>0
sign[z] := -1 it 2<0 4)
e[-1,1] if z2=0

B. Basic Assumptions

We consider the system (1) under the following assump-
tions:

« the pair {4, B} is controllable
rank [B,AB,...,A"%B] =n &)
« the matching condition

[t x(t)) = By(t, =(t)) (6)

holds for the uncertain function f(¢,z(t)), where the
unknown function (¢, z(t)) is assumed to be bounded

|v;(t, x)| < k;, for V¢ >0 and Vo € R" 7

by known nonnegative constants k; > 0,2 = 1,2, ...,m;
o the matrix B is full rank matrix with the following
representation (after reordering the state space vector

components)
_( B

where By € R(=m)xm By € R™X™ det(By) # 0;
« the system has sufficiently slow uncontrolled rotational
dynamics, i.e.

ho Im(spec(A4)) < g )
where spec(A) is a spectrum of the matrix A.

C. Definitions of Practical Stability and Main Problem

All existed control algorithm for uncertain relay delayed
systems don’t guarantee system stability in traditional sense
[10], [7], [11], [12]. They give only practical stability such
as convergence to zone. So, below we introduce two special
definitions of practical stability for relay delayed control
systems.

Definition 1: The system (1) is called ¢ - stabilizable, if
for some fixed € > 0 there exist the control u(-) of the form
(3) and the number 6 > 0, such that any solution x(t) of
the system (1) with initial function ¢(t) : ||@(0)|| < 0 is
bounded

lz,(t)|| < e for Vt >0

In the other words, the system (1) is € - stable, if the
designed control holds any system solution inside the given
¢ - neighborhood of the origin. Such system motion is typical
for relay time delayed systems [5] and completely different
from Lyapunov stability, since the control u(-) and number
d > 0 may not exist for all € > 0.

Definition 2: The system (1) is called Re - stabilizable,
if for some fixed ¢ > 0 and fixed R > ¢ there exist the
control u(-) of the form (3) and time moment 7" > 0, such
that any solution z,(t) of the system (1) with initial function
©(t) : ||p(0)|| < R converges to zone ¢ in a finite time T

lz,(t)|| < e for V¢t >T
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This stability form is similar to semiglobal stability intro-
duced by Isidory [14] with only one difference: asymptotic
convergence to origin replaced by finite time convergence to
zone. Therefore, it can be also called as practical semiglobal
stability [12].

The main problem is to propose the relay delayed con-
trol design algorithms, which guarantee stabilization of the
system (1)-(3) in the sense of the given definitions and to
find the necessary and sufficient existence conditions of the
stabilizing relay delayed control.

D. Notations

Many real control application require a specification of the
attraction domain and the control error on each component of
the state vector separately. Moreover, usually only one part of
the system state vector describes the generalized coordinates.
Another part defines their speed, acceleration, etc (see as
example any mechanical or electromechanical system).

Therefore, it is preferable to introduce the generalized
vector norm of the form ||z|| := (|1], |z2], ..., |zn])T, where
x € R". The space R™ is semiordered in this case (see,
for example, [15]), ie. < y(x < y) if and only if
x; <yi(x; <y;) forall i =1,2,...,n. Then all inequalities
in the definitions 1,2 should be considered in the presented
way. The parameters R, e and § in this case are the positive
vectors from R" : R,e,6 € R} :={y € R" : y; > 0}.

The corresponding generalization for matrix norm is the
modulus of the matrix |A| := {|a;|},i = 1,2,...,n;5 =
1,2,...,m, where A = {a;;} € R™*. In the matrix case
the ordering signs <, <,> and > will be also considered
below in a component-wise sense.

III. NECESSARY EXISTENCE CONDITIONS OF THE
STABILIZING RELAY DELAYED CONTROL

In [5] it was given the necessary condition

Ahg < In(2) (10)

of the existence of nontrivial bounded solutions for a scalar
system

& = Az — psign[z(t — ho)], A, p,ho >0 (11)

Proposed below theorem presents the generalization of this

result to the clase of the relay delayed control systems (the

proofs of all propositions below are given in Appendix).
Theorem 1: The condition

ho Re(spec(A)) < In(2)

is necessary for the existence of the control (3) realizing the
€ - or Re - stabilization of the system (1) under assumptions
(5)-9).

The stabilizing sliding mode controller for the system (1)
also has the form (3) in relay case. Therefore, Theorem
1 also presents the restrictions for sliding mode control
implementation to time delay systems.
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IV. RELAY DELAYED CONTROL DESIGN

Using transformation (71, 72)? = G

(1 —-BB;!
G_(O By )

the initial system (1) can be reduced to the regular form

{ xl(t) = Allzl(t) + Algxg(t)
$2(t) = Alel(t) + Aggxg(t) —+ up + ’Y(t, ZL'(t))

where Ay, € R(n—m)x(n—m)7 Ap € R(n—m)xm7 Ay €
Rm*(n=m) " Ayy € R™*™ are the blocks of the system
matrix and uj, = u(x(t — h(t))) has the form (3).

The controllability of the pair {A4,B} implies that
{A11,A12} is also controllable [3]. So, we may always
choose the matrix C' € R™*("=™) such that Re(spec(A;; —
A20)) < 0.

Let us introduce the number > 0 and the matrix with
positive elements H, such that

(12)

et(Au—Alzc) < e M H for all t >0

(13)

Since A3 — A12C' is Hurwitz, ¢ > 0 and H > 0 can be
always found. Denote

D = diag{dy, da, ..., dp }

where dZ = max{(), (AH - Algc)”},l = ].7 2, ey T
Theorem 2: Consider the system (1)-(3) under assump-
tions (5)-(9). For a given € € R} let the positive vector €3

be
( EH|1:412| )82 <e

is defined as 1 = Fy|A12]ea,

—1
where By = p! [I— %H} H and M\pax(H) is

"maximal" eigenvalue' of the matrix H. Then the conditions
1) diho < ln(2),i =1,2,....,m;
2) k+ |Q1|€1 + |Q2|€2 < (I — 0.56h0D)E51€2;
are sufficient for the ¢ - stability of the system (1) with the
control

up, = — diag(py, ..., pm) sign [(C T) Gz(t — h(t))]
for any 0 € R} :

I ~BB;*!
C (I-CB)B;y!

(14)

I-B,C B

EQERT:‘ B,C By

n—m

and the vector 1 € R}

(15)

p) U'?H)gl
5 < < . 5o g, ) (16)
where the vector k = (ki,...,kn)T is given by (7), Q1 =
Agg — ApC + CA — CAC, Q2 = Agy + CArp — D,
Ep = (e"P — YD~ and the vector p = (p1, ..., pm)  has
the form p =k + |Q1|e1 + (|Q2| + D)ea.

Formally the matrix Ep = diag {(e%"0 —1)/d;}."  is
undefined if some d; = 0, j € {1,2,...,m}. The correspond-
ing term of the matrix Ep in this case can be obtained as
dlimo(ed-7h0 — 1)/d, = hyg.

-

'From the Perron’s theorem, the matrix with positive elemets has, so-
called, "maximal" eigenvalue, which is real, simple, positive and greater
then the modulus of all remaining eigenvalues.
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It is easy to see that for Ay — 0O all constraints in the last
theorem disappear and we became well-known relay sliding
mode controller [3]. The presented theorem does not describe
the system motion in the ¢ - neighborhood. So, in practice
it may be periodic, asymptotic or even chaotic one.

The semiglobal case requires more strict stabilization
conditions.

Theorem 3: Consider the system (1)-(3) under assump-
tions (5)-(9). For a given i € R’} let the positive vectors
R; and R5 be

Ry eRY™™ ( Ry ) _’ I —B,B;*!

Ry €RT Ry ) | C (I-CB))B;! i

For a given € € RY} : ¢ < R let the positive vector e2 be

En|A
(Pl ) o<

and the vector e; € R’}™™ has the form &1 = Ep|Aiz|en.
Then the conditions

1) diho < 0.5In(2),i =1,2,...,m;

2) fmax 4 DefoP Ry < (I —0.5¢MP)EL e,
are sufficient for the Re - stability of the system (1) with the
control (15) and the following convergence time estimation
holds

I-B,C B

EQGRT:‘ B,C B,

T<T +T, (17)

Ty = ho+ max [RE™/(pi — diRE™ — f7"))

.....

1 . max {IH(Q)\,naX(H)Ru/é‘M)}

i=1,....n—m

T2:M7

where X =k 4 |QuRP + Qo RP, Ry
€MD Ry+e9, R = H(Ry+p~ Y A2 RP), the matrices
Q1, Q2, Fy, Ep are defined as in Theorem 2 and the control
gain vector p = (p1,...,pm)  is taken from the interval

DRY™ + [ < p < Epley — f™ (18)

As in ¢ - stabilization case, the conditions of the last
theorem vanish for hg — 0 and semiglobal stabilization is
possible for any R > ¢ > 0 with convergence time formed
of two intervals 77 and 75 corresponded to finite reaching
time [3] and finite time convergence to zone e, respectively.

The constraint d;hy < 0.51n(2) of Theorem 3 means that
time delay, in the case of semiglobal stabilization, should
be half the local one. In simplest scalar case (11), this
restriction is needed to guarantee the inclusion of steady
motion domain (e - neighborhood) into an attraction domain
(R - neighborhood).

Theorems 2 and 3 can be easily extended to the class of the
saturated linear delayed feedback controls. Unfortunately,
they do not allow to guarantee the asymptotic convergence
of the system (1) to the equilibrium point. To show this an
additional research will be needed.
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flywheel

Fig. 1. Inverted pendulum with flywheel

V. NUMERICAL EXAMPLE

Consider the stabilization problem of an inverted pendu-
lum controlled by flywheel (see, Fig.1). The flywheel is fixed
on the rotor of DC motor and located on the end of pendulum
link. The corresponding linearized dynamitic system has the
form [16]

{ T+ (J + Jp)io = (Md + ml)gip
(Jr+Jp) (b +w) =cru—cow+7y

where v is a pendulum inclination angle, w is a flywheel
angular speed, J = J, + ml® + J, + Jg¢, J, = 1.2 x 1073
[kg m?] - inertia of the pendulum, J, = 1.2 x 1076 [kg
m?] - inertia of the rotor, J; = 7.65 x 107° [kg m?] -
inertia of the flywheel, M = 0.04 [kg] - pendulum mass,
m = 0.13 [kg] is sum of the flywheel and DC motor masses,
!l = 0.3 [m] - pendulum length, d = 0.15 [m] - distance
from fixing point to the center mass of the pendulum, ¢; =
6.9x 1073 [Nm/V]and c; = 1.0 x 10~* [N m sec] are the
parameters of DC motor rotating the flywheel and v = +19
V is control voltage, g = 9.8 [m / sec?]. Here it is used the
simplified model of the DC motor [16] and ~ : |y| < 0.01
[N m] describes the system unsertainties produced by this
simplification.

The initial system (19) can be rewritten in the form (1)
with z = (21,22, 23)7 = (¢, 1, w)” and

(19)

0 1 0 0
A= 34.1860 0 0.0078 ,B=1[ —0.5349
—34.1860 0 —1.3098 90.3786

Since, the eigenvalues of the matrix A are A\; = 5.8437, Ao =
—5.8519, A3 = —1.3017, from Theorem 1 it follows that the
system (19) is € - or Re - stabilizable only in the case hy <
0.118 [sec]. As it was remarked above the Re - stabilization
of the considered system requires at least twice less time
delay: hg < 0.059. Select C' = (—13.374,—2.2886) and
define the relay delayed feedback control in the form

w(z(t—h(t))) = 19sign[(13.374, 2.2886, 0.0025)z(t—h(t))]

Fig. 2-4 show the converging process and Fig.5 illustrates
the control function for the case R = (0.15,0.4,80),e =

ThC07.5
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Fig. 2. Pendulum inclination angle v (t)
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Fig. 3. Pendulum angular speed t(t)

(0.01,0.23,45)7, h(t) = 0.015+0.005sin(0.1¢) and ~(t) =
0.01 cos(10¢).

VI. CONCLUSION

In this paper the stabilization problem via the relay delayed
control is considered. The necessary control existence con-
dition is presented. This condition also gives the restrictions
for sliding mode control realization for time delayed systems.
Two control design algorithms guaranteeing the practical
stabilization of the linear uncertain plants are proposed. The
robustness conditions of considered controls with respect to
time delay and small external disturbances are given. The
estimation of the time delay permitting the stabilization of
the inverted pendulum controlled by flywheel is obtained for
the first time. The pendulum stabilization process via relay
delayed control is graphically illustrated.

VII. APPENDIX
A. Proof of Theorem 1

Suppose a contradiction( i.e. there exists an eigenvalue
Ao : hoRe(Xo) > In(2)) and show that in this case for any
d > 0, any finite p; > 0 and any linear mappings S;(-), (i =

a
3
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Fig. 4. Rotor(Flywheel) angular speed w(t)
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Fig. 5. Control law u(t)

1,2, ...,m) there exists an initial function (%) : ||¢(0)] < 9,
such that the corresponding solution x,(t)of the system (1) is
unbounded on the interval [0, +-00) even in the non-perturbed
case: f(t,z(t)) =0 and h(t) = ho.

Then, using a real Jordan transformation x = Gy, the
system (1) can be rewritten in the form

§(t) = Jy(t) + Bu(z(t — ho)) (20)

where J = G~ AG is the Jordan matrix and B = G~!B.
Consider two possible cases.
I. Let the eigenvalue ) is real. The corresponding equa-
tion from the system (20) has the form

o = Xoyo + bou(z(t — ho)) @1

where yg € R is component of the vector y with number
i, which corresponds to the considered eigenvalue )\, bo is
the corresponding row of the matrix B. Since pair {4, B}
is controllable, by # 0. Moreover, due to linearity of S;(-)
and the relay form of the control we have

bou(ax) = sign[a]bou(z) for Vo € R™ and Yo € R

Hence, obviously, for any finite p; > 0 and any linear
mappings S;(-), (¢ = 1,2, ...,m) it can be found the number
po > 0 and the vector x,.« € R™, such that

—po = E()u(_xmax) < Eou(fﬂ) < Bou(fﬂmax) =po
for Vo € R".

Now, let us define the vector zg = G(0, ..., 0, g,O ,0)T
and select the initial function o(t) as
if te [*ho, 0)

Tmax

Then the equation (21) on the interval [0, ko) has the form

J

Yo = XoYo + Po,Yo(0) = 3

Hence, 3o (ho) = (%Jr%)e)‘“ho — &2 and from Aoho > In(2)

we have
go(ho) = (M3 + po)ero® — po + bou(a(t — ho))
> Ao deroho 4 py(eroho — 2) > Ngderoho > 0
for Vpg > 0 and V6 > 0

Since bou(z(t — ho)) > —po, the last inequality also holds
for all ¢t > ho and yo(t) is unbounded increasing function.

ThC07.5

II. In the case of the complex eigenvalue \y = a + i3
with ahg > In(2) we come to the system

{ (1) = ay(t) — Bya(t) + bru(x(t — ho)) 22)
92(t) = By (t) + aya(t) + bau(z(t — ho))
Let the vector &,y and the number v, . be defined from

max 9, x) = 9(Vmax, Tmax)

Vipe[0,27] Vo€ R™

where g(¢, ) = cos()byu(z) +sin(1))bou(z). It is easy to
see that

Vl[)E[O,rQI}rl]r,leER" 9(1/)7 LE) = 7g(wmaxa xmax) = g(qpmax? 7xmax)
Let us show that for the initial function
if te [*ho,O)

xmax
the corresponding solution of the subsystem (22) is un-

bounded. The solution on the interval ¢ € [0, ho] has the
form

(o) = (o )

where p; = Elu(xmax) and py = Bgu(zmax). Hence,

t=20

pi+ 13 ( o20ho
a? + B

On the over hand, we may rewrite the system (22) in polar

coordinates using the following transformations: y(t) =

p(t) cos(t(t)) and ya(t) = p(t) sin(t(t))
{ p(t) = ap(t) + cos(¢(t ))b1U+Sln( (£))bau

yi(ho) + 5 (ho) = — €M cos(Bhg) + 1)

B(t) = B+ (sin(w(t)bru — cos((8))bau) /p(t)
Since,
(k) = y3(ho) + y3(ho) > PP
then

p(h()) > ap(ho)_g(’(/]mamxmax) > Oép(ho)— \/ p% +p% >0

and the solution of the subsystem is unbounded on the
interval [0, +00).
B. Proof of Theorem 2

First of all, remark that the matrix I — 5 (H)H is
invertible and from the Banach inverse mapping theorem

st -2 () >

I. Rewrite the system (12) in variables z; and y = Cz1 +
€2

{ 1 = (A1 — A12C)z1 + Ay 23)

Y= Dy+uc+7+ Qa1 + Qay
and show that ||z1(¢)]| < €1 and |ly(t)]| < e2.

5310



47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008

Using the Cauchy formula we obtain the inequality
lz1(8)] < [efAr =42 Jlay (0)]| +
t
f |e(t*7')(A11*A12C)| . |A12‘ . Hy(T)” dr
0

which implies ||z1(¢)|| < €1 in the case |[y(t)]| < e2,V¢ > 0.
Really, from

x0T ~BB;*! .
y )\ C (I-CBy)By!

and the inequalities (13),(16) it follows

lz1 ()] < e H [|lz1(0)]| + p~H (L — e ™# ) H|Arzlez < &1

24

So, it is enough to show that |ly(¢)|| < e2 for all ¢ > 0
under assumption ||z1(¢)|| < €1. Suppose a contradiction, i.
e. there exists the first time moment 7. > 0 and the natural
number j € {1,2,...,n — m}, such that y;(7T.) = €2; and
ly(t)|| < e for all ¢t € [0, T;](the case y;(T;) = —e2; can
be proven analogously). Then, from (24) and (16) it follows

y](O) < 6Jy = &9 + 2pj(€_djh0 — 1)/dj < €2; (25)

and there exists the time moment 75 > 0, such that yj(Tg) =
5? and (5;’ < y;(Ts) < eqj for t € [T5,T.]. Consider the
corresponding equation from the system (23) on the interval
[TtS ) TE]

y; = djy; — pjsignly;(t — h(t))] + g

where g = (g1,..,9m) = 7+ Q171 + Qay and [|g]| <
k + |Q1]e1 + |Q2]e2. Using the upper estimation of the
function y;(¢) on the considered interval y; < d;y; + p; +
|94,y (T5) = 8% we obtain

y(T2) = e2; < (55, L Pt |ng> odi(T.—T5) _ Pi 11941
d; d;
Hence, from the conditions 1),2) of the theorem we have
T. —Ts > ho, signly;(t — h(t))] =1 for t € (T5 + ho, T%]
and
y;(t) < e5d; —pj +1g;1 <0

Consequently, the function y;(t) is decreasing on the interval
(Ts5 + ho, T:] and could not achieve the bound ;.

II. Finally, remark that the inequalities ||z1(t)|] < &1 and
ly(@)ll < 2 imply [l2(2)]] < e

I— BlC Bl T
("o 5 ) ()=
C. Proof of Theorem 3

I. By analogy with the proof of Theorem 2 it can be easily
shown that ||z1(¢)|| < RY™* and ||y(t)|| < Ry** for all
t>0.

II. Prove that for any ¢ € {I,..,m} there exist time
moment ¢{ € [0,71] : |y(t?)| = 0. Suppose a contradiction,
ie. 35 € {1,...,m} : y;(¢t) > 0 for all [0,77] (the case
y;(t) < 0 can be proven analogously).

Since y;(t) > 0 for all [0,7}] then sign[y;(t — h(t))] =1
for all t € [ho,Th]. Hence, y;(t) < d;R5™ — p + f**
and from y;(t) < R5* we obtain the inequality y;(t) <

lal =\
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max — ¢(p; — d; RS — fM2*), which contradicts with our
supposition.

IIl. Now, show that |y;(t)| < eg; for all ¢t > tY. Really,
using the upper estimation of y;(t)

Ui(t) < diyi(t) + pi + [,y (t)) = 0

we have y;(t) 4+ ho) < Ep(p; + f™®*) < £9; and for ¢ >
t? + ho

Ui(t) < digas — pi + [ < diRy™ —pi + fi7* <0

i.e. the function y;(¢) is decreasing. So, ||y(t)|| < ez for all
t>1T.

IV. From ||z, (t)|| < e #(=T) HR™>* )= H | Aj5| egwe
have

lzi (@) < Hey+p "H|App|eo = €

o )\max(H)

for all ¢t > Ty + Ts.
V. The inequalities ||z1(t)|]| < &1 and ||y(¢)|| < &2 for
t>T) + Ty imply ||z(¢)|| < e.
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