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Abstract—In this paper we consider a special class of
integral delay systems arising in several stability problems
of time-delay systems. For these integral systems we derive
stability and robust stability conditions in terms of Lyapunov-
Krasovskii functionals. More explicitly, after providing the
stability conditions we compute quadratic functionals and apply
them to derive exponential estimates for solutions, and robust
stability conditions for perturbed integral delay systems.
Keywords: integral delay systems, Lyapunov-Krasovskii
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I. INTRODUCTION

Recently, in [3] and [5] it has been shown that some

system transformations, commonly used to obtain delay-

dependent stability conditions for time-delay systems, intro-

duce additional dynamics. Additional dynamics are responsi-

ble for the lack of equivalence in the stability property of the

original and the transformed systems, i.e., the original system

may be stable while the transformed one is not. It has been

shown in [6] that the additional dynamics are described by a

special integral delay system. Stability of the integral system

is a necessary condition for the stability of the transformed

system [6].

Similar integral systems describe the internal dynamics

of the controllers used for finite spectrum assignment of

time-delay systems [7]. It has been demonstrated in [2], [8]

and [10] that the internal stability of such controllers is an

essential condition for their successful implementation.

Integral delay systems also appear in the stability analysis

of the difference operator of some neutral type functional

differential equations. Stability of the difference operator is a

necessary condition for stability of the neutral type functional

differential equation, see [4] for details.

These three different sources of stability problems associ-

ated with time-delay systems motivate us to look for stability

and robust stability conditions of a special class of integral

delay systems. To the best of our knowledge, no attempt

has been made to derive such conditions for integral delay

systems in terms of Lyapunov-Krasovskii functionals.

We present such stability conditions, and give a statement

guaranteeing the existence of Lyapunov-Krasovskii func-

tionals for the integral delay systems, which leads to a

procedure for finding the functionals. Finally, we show how

the functionals can be used to derive exponential estimates
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for solutions, and robust stability conditions for perturbed

systems.

The paper is organized as follows: In section II, we

shortly describe how the additional dynamics appear in time-

delay systems. We discuss the internal stability problem of

controllers used for finite spectrum assignment of time-delay

systems, and the stability problem of difference operators in

neutral functional differential equations. We also introduce

the class of integral delay systems that will be studied in

the paper. Section III presents some preliminary results. The

existence, uniqueness and stability of solutions are briefly

discussed. The Cauchy formula for solutions of integral

delay systems is also presented. In section IV, Lyapunov-

Krasovskii stability conditions for integral delay systems are

given. A converse result, providing a constructive procedure

for computing Lyapunov-Krasovskii functionals of a given

exponentially stable integral delay system, is presented in

section V. Functionals are used to derive exponential esti-

mates for the solutions in section VI. In section VII, we

show how functionals can be used for the robust stability

analysis of perturbed systems. Concluding remarks end the

paper.

II. MOTIVATION OF THE INTEGRAL SYSTEMS

We first briefly describe how additional dynamics appear

in the stability analysis of time-delay systems.

Let us consider a time-delay system of the form

ẋ(t) = A0x(t) +A1x(t− h) +
∫ 0
−h
G(θ)x(t+ θ)dθ, (1)

where A0, A1 are n×n real constant matrices, delay h > 0,
and G(θ) is a continuous matrix function defined for θ ∈
[−h, 0].
In order to obtain delay-dependent stability conditions for

(1) one usually applies a special transformation to the system,

see [9]. The aim of the transformation is to present the

system in a form more suitable for the stability analysis.

The transformation replaces in (1) the delay terms x(t− h)
and x(t+ θ) by the Newton-Leibnitz formula

x(t− h) = x(t)−
∫ 0
−h
ẋ(t+ ξ)dξ,

x(t+ θ) = x(t)−
∫ 0
θ
ẋ(t+ ξ)dξ,

and substitutes the derivative under the integral by the right-

hand side of (1). As a result, the transformed system can be

written in the form, see [6],
{
ẏ(t) = A0y(t)+A1y(t− h)+

∫ 0
−h
G(θ)y(t+ θ)dθ+z(t)

z(t) =
∫ 0
−h

(
A1+

∫ θ
−h
G(ξ)dξ

)
z(t+ θ)dθ.

(2)
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The second equation of the above system

z(t) =
∫ 0
−h

(
A1 +

∫ θ
−h
G(ξ)dξ

)
z(t+ θ)dθ (3)

describes the additional dynamics introduced by the trans-

formation. Stability of the dynamics is a necessary condition

for stability of (2).

We now address the problem of finite spectrum assignment

for time-delay systems. Consider the linear system with

delayed input

ẋ(t) = Ax(t) +Bu(t− h), (4)

where h > 0, x(t) ∈ Rn and u(t) ∈ Rm represent the state

and control vectors, and A,B are real constant matrices of

appropriate dimensions. The control law

u(t) = C
[
eAhx(t) +

∫ 0
−h
e−AθBu(t+ θ)dθ

]
(5)

assigns a finite spectrum to the closed-loop system (4)-(5)

which coincides with the spectrum of the matrix (A+BC),
see [7]. Recently, in [2], [8] and [10] it has been shown that

if the integral at the right-hand side of (5) is approximated

by a finite sum, then the closed-loop system may become

unstable if the controller (5) is not internally stable. So, the

practical implementation of the control law (5) demands its

internal stability. The internal dynamics of (5) are described

by the integral system

z(t) =
∫ 0
−h
Ce−AθBz(t+ θ)dθ. (6)

Now consider a neutral functional differential equation of the

form
d

dt
[Dxt] = Lxt, (7)

where

Dxt = x(t)−
∫ 0
−h
M(θ)x(t+ θ)dθ, and

Lxt = A0x(t) +A1x(t− h) +
∫ 0
−h
N(θ)x(t+ θ)dθ.

Here M(θ) and N(θ) are continuous real matrix functions
defined for θ ∈ [−h, 0]. Stability of the difference operator
Dxt is a necessary condition for stability of (7), see [4].

Operator Dxt is stable if and only if the integral system

x(t) =
∫ 0
−h
M(θ)x(t+ θ)dθ (8)

is stable. Comparing systems (3), (6) and (8) one can

conclude that all of them are of the form

z(t) =
∫ 0
−h
F (θ)z(t+ θ)dθ, t ≥ 0, (9)

where F (θ) = A1+
∫ θ
−h
G(ξ)dξ for the case of (3), F (θ) =

Ce−AθB for the case of (6), while for (8) F (θ) =M(θ).
Therefore, the stability and robust stability of (9) turns

out to be an interesting issue arising in several problems

associated with time-delay systems.

We will assume that in (9), h is a positive constant and

F (θ) is a continuously differentiable real matrix function
on [−h, 0], where a right-hand side continuous derivative
at −h and a left-hand side continuous derivative at 0 are
assumed to exist. This differentiability assumption holds for

the cases of additional dynamics and internal dynamics of

control laws with distributed delay, while for the case of

difference operator Dxt, it imposes certain restrictions on

matrix M(θ).
Throughout this paper we will use the Euclidean norm

for vectors and the induced norm for matrices, both denoted

by ‖·‖. We denote by AT the transpose of A, I stands

for the identity matrix, λmin(A) and λmax(A) denote the
smallest and largest eigenvalues of a symmetric matrix A,

respectively.

III. PRELIMINARIES

A. Solutions

In order to define a particular solution of (9) an initial

vector function ϕ(θ), θ ∈ [−h, 0) should be given. We

assume that ϕ belongs to the space of piecewise continuous

vector functions C0([−h, 0),Rn), equipped with the uniform
norm ‖ϕ‖h = supθ∈[−h,0) ‖ϕ(θ)‖.

For a given initial function ϕ ∈ C
0([−h, 0),Rn), let

z(t, ϕ), t ≥ 0, be a solution of (9) satisfying z(t, ϕ) =
ϕ(t), t ∈ [−h, 0) . This solution is continuously differen-
tiable for t ∈ [0,∞), at t = 0 the right-hand side derivative
is assumed, and it suffers a jump discontinuity

∆z(0, ϕ) = z(0, ϕ)−z(−0, ϕ) =
∫ 0
−h
F (θ)ϕ(θ)dθ−ϕ(−0).

Let us consider the time-delay system

ẏ(t) = F (0)y(t)−F (−h)y(t−h)−
∫ 0
−h
Ḟ (θ)y(t+θ)dθ, t ≥ 0.

(10)

For a given initial function ϕ ∈ C0([−h, 0),Rn), define the
function

ϕ̃(θ) =

{
ϕ(θ), θ ∈ [−h, 0)∫ 0
−h
F (ξ)ϕ(ξ)dξ, θ = 0

.

Denote by y(t, ϕ̃), t ≥ 0, the solution of (10) with initial
function ϕ̃. Existence and uniqueness of z(t, ϕ), as well as
some other properties of the solution, can be easily derived

from the following statement.

Lemma 1: y(t, ϕ̃) = z(t, ϕ).
Proof: Function y(t, ϕ̃) satisfies

ẏ(t, ϕ̃) = F (0)y(t, ϕ̃)− F (−h)y(t− h, ϕ̃)

−
∫ 0
−h
Ḟ (θ)y(t+ θ, ϕ̃)dθ, t ≥ 0.

Then, integrating the equality from 0 to t we obtain

y(t, ϕ̃)− ϕ̃(0)

= F (0)
∫ t
0
y(ξ, ϕ̃)dξ − F (−h)

∫ t−h
−h

y(ξ, ϕ̃)dξ

−
∫ 0
−h
Ḟ (θ)

(∫ t+θ
θ

y(ξ, ϕ̃)dξ
)
dθ

= F (0)
∫ t
0
y(ξ, ϕ̃)dξ − F (−h)

∫ t−h
−h

y(ξ, ϕ̃)dξ

−F (0)
∫ t
0
y(ξ, ϕ̃)dξ + F (−h)

∫ t−h
−h

y(ξ, ϕ̃)dξ

+
∫ 0
−h
F (θ) [y(t+ θ, ϕ̃)− y(θ, ϕ̃)] dθ

=
∫ 0
−h
F (θ)y(t+ θ, ϕ̃)dθ −

∫ 0
−h
F (θ)ϕ̃(θ)dθ,
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which means that y(t, ϕ̃) satisfies (9). Assume now that

z(t, ϕ), t ≥ 0, satisfies (9). Observe first that for t ≥ 0

z(t, ϕ) =
∫ 0
−h
F (θ)z(t+ θ, ϕ)dθ =

∫ t
t−h
F (ξ − t)z(ξ, ϕ)dξ.

It follows that

ż(t, ϕ) = F (0)z(t, ϕ)− F (−h)z(t− h, ϕ)

−
∫ t
t−h
Ḟ (ξ−t)z(ξ, ϕ)dξ

= F (0)z(t, ϕ)− F (−h)z(t− h, ϕ)

−
∫ 0
−h
Ḟ (θ)z(t+ θ, ϕ)dθ,

which implies that z(t, ϕ) satisfies (10). By definition func-
tion ϕ̃(θ) coincides with ϕ(θ) for θ ∈ [−h, 0), and

z(0, ϕ) = y(0, ϕ̃) = ϕ̃(0) =
∫ 0
−h
F (ξ)ϕ(ξ)dξ.

Definition 1: System (9) is said to be exponentially stable

if there exist α > 0 and µ > 0 such that every solution of
(9) satisfies the inequality

‖z(t, ϕ)‖ ≤ µ ‖ϕ‖h e
−αt, t ≥ 0. (11)

Remark 1: System (10) is not exponentially stable. In-

deed, any constant vector is a solution of (10).

B. Cauchy formula

In this subsection, we present the Cauchy formula for solu-

tions of (9). This formula will play an important role in the

construction of quadratic Lyapunov-Krasovskii functionals

for (9). Let K1(t) be the fundamental matrix of (10). Matrix
K1(t) is the solution of the matrix equation

K̇1(t) = K1(t)F (0)−K1(t− h)F (−h)

−
∫ 0
−h
K1(t+ θ)Ḟ (θ)dθ, t ≥ 0,

with initial conditionK1(t) = 0, t ∈ [−h, 0) andK1(0) = I,
see [1]. Then, the solution y(t, ϕ̃) of (10) can be written as

y(t, ϕ̃) = K1(t)ϕ̃(0)−
∫ 0
−h
K1(t− h− θ)F (−h) ϕ̃(θ)dθ

−
∫ 0
−h

(∫ θ
−h
K1 (t+ ξ − θ) Ḟ (ξ) dξ

)
ϕ̃(θ)dθ, t ≥ 0. (12)

The spectrum of (9) consists of all roots of the characteristic

equation det
(
I −

∫ 0
−h
F (θ)esθdθ

)
= 0.

Lemma 2: Suppose that the spectrum of (9) does not

contain the point s = 0, then matrix K1(t) can be written as

K1(t) = K(t) +K0, (13)

whereK0 =
(
I −

∫ 0
−h
F (θ) dθ

)−1
, andK(t) is the solution

of the matrix equation

K(t) =
∫ 0
−h
K (t+ θ)F (θ) dθ, t ≥ 0, (14)

with initial condition K(t) = −K0, t ∈ [−h, 0).
Proof: Note first that if s = 0 does not belong to the

spectrum of (9) then matrix I−
∫ 0
−h
F (θ) dθ is non-singular,

so matrixK0 is well defined. Observe now that matrixK1(t)
satisfies the equality

K1(t) =
∫ 0
−h
K1 (t+ θ)F (θ) dθ + I, t ≥ 0.

Introducing (13) into the above we obtain (14). The initial

condition for matrix K(t) follows directly from (13).

From (14) it follows that in spite of the fact that matrix

K1(t) does not admit a strictly decreasing exponential upper
bound, matrix K(t) may do it.
Lemma 3: If s = 0 does not belong to the spectrum of

(9), then z(t, ϕ), t ≥ 0, can be written as follows

z(t, ϕ) = K(t)
∫ 0
−h
F (θ)ϕ(θ)dθ (15)

−
∫ 0
−h
K(t− h− θ)F (−h)ϕ(θ)dθ

−
∫ 0
−h

(∫ θ
−h
K (t+ ξ − θ) Ḟ (ξ) dξ

)
ϕ(θ)dθ.

Proof: From (12) and (13) we get, for t ≥ 0,

z(t, ϕ) = K(t)
∫ 0
−h
F (θ)ϕ(θ)dθ

−
∫ 0
−h
K(t− h− θ)F (−h)ϕ(θ)dθ

−
∫ 0
−h

(∫ θ
−h
K (t+ ξ − θ) Ḟ (ξ) dξ

)
ϕ(θ)dθ

+K0
∫ 0
−h

[
F (θ)− F (−h)−

∫ θ
−h
Ḟ (ξ) dξ

]
ϕ(θ)dθ.

Since the expression in the square brackets above is equal

to zero, it follows that the Cauchy formula (15) holds.

Matrix K(t) is known as the fundamental matrix of (9).

IV. A LYAPUNOV TYPE THEOREM

In this section we give exponential stability conditions for

system (9).

For any t ≥ 0 we denote the restriction of the so-

lution z(t, ϕ) on the interval [t − h, t) by zt(ϕ) =
{z(t+ θ, ϕ), θ ∈ [−h, 0)}. When the initial function ϕ is

irrelevant we simply write z(t) and zt instead of z(t, ϕ) and
zt(ϕ). A simple inspection shows that for t ∈ [0, h), zt(ϕ)
belongs to C0([−h, 0),Rn), and for t ≥ h, zt(ϕ) belongs to
the space of continuous vector functions C([−h, 0),Rn).
Theorem 4: System (9) is exponentially stable if there

exists a functional v : C0([−h, 0),Rn) → R such that the

following conditions hold:

1) α1
∫ 0
−h
‖ϕ(θ)‖

2
dθ ≤ v(ϕ) ≤ α2

∫ 0
−h
‖ϕ(θ)‖

2
dθ, for

some 0 < α1 ≤ α2;
2) d

dt
v(zt(ϕ)) ≤ −β

∫ 0
−h
‖z(t+ θ, ϕ)‖2 dθ, t ≥ 0, for

some β > 0.
Proof: Given any ϕ ∈ C

0([−h, 0),Rn) it follows
from the theorem conditions that for 2α = βα−12 > 0 the
following inequality holds:

d

dt
v(zt(ϕ)) + 2αv(zt(ϕ)) ≤ 0, t ≥ 0.

Thus, on one hand it follows that

v(zt(ϕ)) ≤ e
−2αtv(ϕ)

≤ α2e
−2αt

∫ 0
−h
‖ϕ(θ)‖

2
dθ

≤ hα2e
−2αt ‖ϕ‖

2
h , t ≥ 0.

On the other hand, one gets

‖z(t, ϕ)‖
2
≤

(
m
∫ 0
−h
‖z(t+ θ, ϕ)‖ dθ

)2

≤ m2h
∫ 0
−h
‖z(t+ θ, ϕ)‖

2
dθ, t ≥ 0,
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where

m = max
θ∈[−h,0]

‖F (θ)‖ .

We therefore have the following exponential upper bound:

‖z(t, ϕ)‖ ≤ µ ‖ϕ‖h e
−αt, t ≥ 0,

where

µ = mh

√
α2

α1
.

V. A CONVERSE THEOREM

In this section we present a converse statement to theorem

4. More precisely, for an exponentially stable system (9) we

construct a quadratic functional satisfying the conditions of

the theorem.

Given positive definite matrices W0 and W1, let us define

on C0([−h, 0),Rn) the following functional:

w(ϕ) = ϕT (−h)W0ϕ(−h) +
∫ 0
−h
ϕT (θ)W1ϕ(θ)dθ.

Remark 2: For β = λmin(W1) functional w(ϕ) admits
the following lower bound:

β
∫ 0
−h
‖ϕ(θ)‖2 dθ ≤ w(ϕ). (16)

Let system (9) be exponentially stable. We aim at con-

structing a functional v : C0([−h, 0),Rn) → R, such that

along the solutions of (9) the following equality holds:

d

dt
v(zt) = −w(zt), t ≥ 0. (17)

To this end, for a positive definite matrix W, we first define

a functional v0(ϕ,W ) that satisfies

d

dt
v0(zt,W ) = −zT (t)Wz(t), t ≥ 0.

The functional is of the form

v0(ϕ,W ) =
∫∞
0
zT (t, ϕ)Wz(t, ϕ)dt. (18)

Observe that inequality (11) guarantees the existence of the

improper integral at the right-hand side of (18).

Lemma 5: Let system (9) be exponentially stable. Then

the functional v(ϕ) satisfying (17) can be written as

v(ϕ) = v0 (ϕ,W0 + hW1) (19)

+
∫ 0
−h
ϕT (ξ) [W0 + (ξ + h)W1]ϕ (ξ) dξ.

Proof: Let z(t), t ≥ 0, be a solution of (9), then

v(zt) = v0 (zt,W0 + hW1)

+
∫ 0
−h
zT (t+ ξ) [W0 + (ξ + h)W1] z (t+ ξ) dξ.

We then have

d

dt
v(zt) =

d

dt
v0 (zt,W0 + hW1)

+
d

dt

∫ 0
−h
zT (t+ ξ) [W0 + (ξ + h)W1] z (t+ ξ) dξ

= −zT (t) (W0 + hW1) z(t) + z
T (t) (W0 + hW1) z(t)

−zT (t− h)W0z(t− h)

−
∫ 0
−h
zT (t+ ξ)W1z (t+ ξ) dξ

= −w(zt).

We now construct the functional v0(ϕ,W ). Substituting
(15) into (18) we obtain

v0(ϕ,W ) = ϕ̃T (0)U(0)ϕ̃(0)

−2ϕ̃T (0)
∫ 0
−h
U(−h− θ)F (−h)ϕ(θ)dθ

−2ϕ̃T (0)
∫ 0
−h

∫ θ
−h
U(ξ − θ)Ḟ (ξ)ϕ(θ)dξdθ

+
0∫

−h

0∫
−h

ϕT (θ1)F
T (−h)U(θ1 − θ2)F (−h)ϕ(θ2)dθ2dθ1

−
∫ 0
−h

∫ 0
−h
ϕT (θ1)F

T (−h)KT
0 W

(
θ1−θ2∫
−h−θ2

K(ξ)dξ

)
×

×F (−h)ϕ(θ2)dθ2dθ1 + 2
0∫

−h

0∫
−h

θ2∫
−h

ϕT (θ1)F
T (−h)×

×U(h+ θ1 + ξ − θ2)Ḟ (ξ)ϕ(θ2)dξdθ2dθ1

−2
∫ 0
−h

∫ 0
−h

∫ θ2
−h
ϕT (θ1)F

T (−h)KT
0 W ×

×
(∫ h+θ1+ξ−θ2

ξ−θ2
K(η)dη

)
Ḟ (ξ)ϕ(θ2)dξdθ2dθ1

+
∫ 0
−h

∫ θ1
−h

∫ 0
−h

∫ θ2
−h
ϕT (θ1)Ḟ

T (ξ1)×

×U(θ1 − ξ1 + ξ2 − θ2)Ḟ (ξ2)ϕ(θ2)dξ2dθ2dξ1dθ1

−
∫ 0
−h

∫ θ1
−h

∫ 0
−h

∫ θ2
−h
ϕT (θ1)Ḟ

T (ξ1)K
T
0 W ×

×
(∫ θ1−ξ1+ξ2−θ2

ξ
2
−θ2

K(η)dη
)
Ḟ (ξ2)ϕ(θ2)dξ2dθ2dξ1dθ1.

Here ϕ̃(0) =
∫ 0
−h
F (θ)ϕ(θ)dθ, and matrix function

U(τ) =
∫∞
0
KT (t)WK(t+ τ)dt, τ ∈ [−h, h]. (20)

The exponential stability of (9) guarantees the existence of

the improper integral in (20).

Lemma 6: Let system (9) be exponentially stable. Then

there exist constants 0 < α1 ≤ α2, such that functional (19)
satisfies the inequalities

α1
∫ 0
−h
‖ϕ(θ)‖2 dθ ≤ v(ϕ) ≤ α2

∫ 0
−h
‖ϕ(θ)‖2 dθ. (21)

For the sake of brevity, we omit here the detailed proof of

this lemma, and only give the explicit bounds for constants

α1 and α2.

Thus, inequalities (21) hold for 0 < α1 ≤ λmin(W0) and

α2 ≥ hu0

(
(m+ ‖F (−h)‖)

2
+r2+2rm+2 ‖F (−h)‖ r

)

+λmax(W0 + hW1) +
(
1 +mhemh

)
h2 ‖K0‖ ×

×
(∥∥FT (−h)KT

0 W
∥∥ ‖F (−h)‖

+2
∥∥FT (−h)KT

0 W
∥∥ r +

∥∥KT
0 W

∥∥ r2
)
,

where u0 = maxτ∈[−h,h] ‖U(τ)‖ and r =
∫ 0
−h

∥∥∥Ḟ (θ)
∥∥∥ dθ.

We thus obtain the following converse Lyapunov-

Krasovskii theorem for (9).

Theorem 7: Let system (9) be exponentially stable. Then

for any given positive definite matrices W0 and W1 there

exist positive constants α1, α2 and β such functional (19)

satisfies the conditions of theorem 4.

Proof: Given any positive definite matrices W0 and

W1, the exponential stability of (9) implies that functional
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v(ϕ) is defined by (19) and (20). Then, the proof follows
from lemma 6 and remark 2.

In order to compute v0(ϕ,W ) one has to know matrix

U(τ) for τ ∈ [−h, h] . Expression (20) defines U(τ) as an
improper integral. This is not convenient from a practical

point of view. Hence we derive some important properties

of U(τ) that will provide an alternative way to compute it.
Lemma 8: Matrix U(τ) satisfies

U(τ) =
∫ 0
−h
U(τ + θ)F (θ)dθ, τ ∈ [0, h]. (22)

Proof: Substituting (14) into (20) we obtain (22).

Lemma 9: Let WT = W , then matrix U(τ) satisfies the
symmetry property

U(τ) = KT
0 W

∫ τ
0
K(ξ)dξ + UT (−τ), τ ∈ [0, h]. (23)

Proof: The statement can be easily verified by direct

calculations.

Corollary 10: Matrix U(0) is symmetric, UT (0) = U(0).
Lemma 11: Matrix U(τ) satisfies

∫ 0
−h
U̇(θ)F (θ)dθ+

[∫ 0
−h
U̇(θ)F (θ)dθ

]T
= −KT (0)WK(0).

(24)

Proof: Let us compute

d

dt

[
KT (t)WK(t)

]
=
(∫ 0

−h
K̇(t+ θ)F (θ)dθ

)T
WK(t)

+KT (t)W
(∫ 0

−h
K̇(t+ θ)F (θ)dθ

)
.

Integrating this equality with respect to t from 0 to ∞ we

obtain (24).

Lemma 8 defines U(τ) as a solution of (22). In order
to compute such a solution one needs to know the corre-

sponding initial condition. The initial condition is not given

explicitly. On the other hand, the symmetry property (23)

along with (24) serve as a replacement of the unknown initial

condition. Indeed, a piecewise linear approximation of matrix

U(τ) for τ ∈ [−h, h] can be computed from equations (22)-

(24).

Despite the fact that there are still no efficient algorithms

to check the positivity of functionals of the form (19), and

that functionals cannot be directly used for the stability

analysis of (9), they can be directly applied to derive expo-

nential estimates for solutions and robust stability conditions

for perturbed systems. Such applications will be presented

in the next two sections.

VI. EXPONENTIAL ESTIMATES FOR THE SOLUTIONS

In this section, we show how functionals (19) can be used

to obtain exponential estimates for the solutions of a given

exponentially stable integral delay system (9).

Given positive definite matrices W0 and W1, based on

lemma 6 and remark 2 we compute positive constants α1, α2
and β. Then the functional v(ϕ) defined by (19) and (20)
satisfies conditions 1 and 2 of theorem 4. From this theorem

‖z(t, ϕ)‖ ≤ hm

√
α2

α1
‖ϕ‖h e

−αt, t ≥ 0,

where α = β
2α2
, for all solutions z(t, ϕ), ϕ ∈

C0([−h, 0),Rn), of (9).

Now we illustrate the result by an example. Let us consider

the following integral delay system:

z(t) = G
∫ 0
−h
z(t+ θ)dθ. (25)

System (25) is a particular case of (9), where F (θ) = G.
Let h = 1 and

G =

(
−1 1
2 −4

)
.

As all eigenvalues of G lie in the open domain Γ whose

boundary in the complex plane is described by

∂Γ =

{
ω sin(ω)

2 [1− cos(ω)]
+ i
ω

2

∣∣∣∣ ω ∈ (−2π, 2π)

}
,

system (25) is exponentially stable, see [5].

In this case functional (19) looks as

v(ϕ) =
(
G
∫ 0
−h
ϕ(θ)dθ

)T
U(0)

(
G
∫ 0
−h
ϕ(θ)dθ

)
(26)

−2
(
G
∫ 0
−h
ϕ(θ)dθ

)T ∫ 0
−h
U(−h− τ)Gϕ(τ)dτ

+
∫ 0
−h

∫ 0
−h
ϕT (θ1)G

TU(θ1 − θ2)Gϕ(θ2)dθ1dθ2

+
∫ 0
−h
ϕT (θ) [W0 + (θ + h)W1]ϕ (θ) dθ

−
∫ 0
−h

∫ 0
−h
ϕT (θ1)G

TKT
0 W×

×
(∫ θ1−θ2

−h−θ2
K(θ)dθ

)
Gϕ(θ2)dθ1dθ2.

Let us assume that W0 = W1 = I . A piecewise linear

approximation of matrix U(τ) is given on Fig. 1. From the

computed values of U(τ) on [−1, 1] we get u0 = 0.1752.
From remark 2 we have that for β = 1, inequality (16)

holds. Simple calculations derived from lemma 6 show that

for α2 = 2.7611× 103 and α1 = 1, inequalities (21) hold.
So, solutions of (25) satisfy the following exponential

estimate:

‖z(t, ϕ)‖ ≤ µ ‖ϕ‖1 e
−αt, t ≥ 0, (27)

where

µ ≈ 245.43 and α ≈ 1.8× 10−4.

VII. ROBUST STABILITY CONDITIONS

In this section we show how functionals (19) can be used

to obtain robust stability conditions for perturbed integral

systems by investigating the robust stability of the exponen-

tially stable integral delay system (25) introduced in section

VI. Thus, let us assume that the nominal system (25) is

exponentially stable and consider the perturbed system

y(t) =
∫ 0
−h

[G+∆] y(t+ θ)dθ, (28)

where ∆ is an unknown matrix satisfying

‖∆‖ ≤ ρ. (29)

Our goal is to find an upper bound on ρ such that the

perturbed system (28) remains exponentially stable for all

perturbations ∆ satisfying (29).

To derive such upper bound we will use functional (26)

computed for the nominal system (25).
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The time derivative of (26) along solutions of (28) is

d

dt
v(yt) = −w(yt) + η

T (yt)Wη(yt) (30)

+2ηT (yt)
∫ 0
−h

[
GT

(
UT (τ)− U(−τ − h) +KT

0 WK0τ
)

+U(−h)G− U(0)G+KT
0 W

]
Gy(t+ θ)dθ,

where

η(yt) = ∆
∫ 0
−h
y(t+ θ)dθ.

The following inequalities can be easily derived:

2ηT (yt)
∫ 0
−h

[
GT

(
UT (τ)− U(−τ − h) +KT

0 WK0τ
)

+U(−h)G− U(0)G+KT
0 W

]
Gy(t+ θ)dθ

≤ 2h
[
2 ‖G‖2 u0 +

∥∥GTKT
0 WK0G

∥∥h+

+
∥∥[U(−h)G− U(0)G+KT

0 W
]
G
∥∥] ρ

∫ 0
−h
‖y(t+ θ)‖

2
dθ,

ηT (yt)Wη(yt) ≤ hρ
2 ‖W‖

∫ 0
−h
‖y(t+ θ)‖

2
dθ.

As a consequence, we get the following upper bound:

dv(yt)

dt
≤ −w(yt) +

(
aρ2 + bρ

) ∫ 0
−h
‖y(t+ τ)‖

2
dτ,

where a = h ‖W‖ and

b = 2h
[
2 ‖G‖

2
u0 +

∥∥GTKT
0 WK0G

∥∥h

+
∥∥[U(−h)G− U(0)G+KT

0 W
]
G
∥∥] .

Then the perturbed system (28) remains exponentially stable

for all perturbations ∆ satisfying (29) if ρ is such that the

following inequality holds:

λmin (W1)−
(
aρ2 + bρ

)
> 0. (31)

As in section VI, let us take W0 = W1 = I. From the

computed values of U(τ), see Fig. 1, we get

U(−1) =

(
−0.1451 −0.0653
−0.0590 0.0026

)
,

U(0) =

(
0.0752 −0.0513

−0.0524 0.1412

)

and u0 = 0.1752. Direct calculations from (31) show that

the perturbed system (28) remains exponentially stable for

all perturbations ∆ satisfying (29) if

ρ < 0.0362.

VIII. CONCLUSIONS

In this paper, we studied the exponential stability of

integral delay systems which appear in several stability

problems of time-delay systems. Lyapunov type necessary

and sufficient conditions for the exponential stability are

given. A constructive procedure for computing quadratic

Lyapunov-Krasovskii functionals for a given exponentially

stable system is provided. It is shown that the functionals

depend on matrix function U(τ) which satisfies a matrix inte-
gral delay equation. Some important properties of this matrix

function that allow its computation are explicitly given. The
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u
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Fig. 1. Components of a piecewise linear approximation of matrix U(τ)

proposed functionals are used to obtain exponential estimates

of the system solutions as well as robust stability conditions

for perturbed systems.
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