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Abstract— This paper illustrates the capabilities of model
predictive control for the control of automotive powertrains. We
consider the minimization of the fuel consumption of a gasoline
engine through dynamic optimization. The minimization uses
a mean value model of the powertrain and vehicle. This model
has two state variables: the pressure in the engine manifold
and the engine speed. The control input is the throttle valve
angle. The model is identified on a universal dynamometer.
Optimal state and control trajectories are calculated using
Bock’s direct multiple shooting method implemented in the
software MUSCOD-II. The developed approach is illustrated
both in simulation and experimentally for a test case where
a vehicle accelerates from 1100 rpm to 3700 rpm in 30 s.
The optimized trajectories yield minimal fuel consumption.
The experiments show that the optimal engine speed trajectory
yields a reduction of the fuel consumption of 12% when
compared to a linear trajectory. Thus, it is shown that, even
with a simple model, a significant amount of fuel can be saved
without loss of the fun-to-drive.

I. INTRODUCTION

Triggered by rising fuel prices, stringent legal norms

and increasing environmental awareness of the customer,

car manufacturers are producing vehicles with high fuel

efficiency and low emissions. This is possible due to new

components and technologies that are introduced in automo-

tive powertrains (e.g. turbo charging, exhaust gas recircu-

lation, continuous variable transmission, hybrid powertrain,

electronic throttle control). Unfortunately, it seems that the

control software of powertrains remains backward with re-

spect to their complexity. While mostly strategies that are

based on heuristics and look-up tables are implemented,

it was shown that model predictive control has a large

potential for control of automotive powertrains [1]-[4]. This

is supported by the fast proliferation of powerful embedded

components that allow complex real-time control.

Speed transients (accelerations and decelerations) fre-

quently occur in city traffic and significantly increase the fuel

consumption. Smoothing these transients by a look-ahead

capability can improve the fuel economy [5]. Unfortunately,

constrained by the surrounding traffic, this method is not
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Fig. 1. Universal dynamometer with a Toyota 1.6l 3ZZ-FE gasoline engine
of K.U. Leuven, on which the experiments in Section IV-B were conducted.
Significant fuel savings were possible using optimization based control.

always applicable and jeopardizes the driveability and fun-

to-drive. A better strategy optimizes the speed trajectory

to minimize fuel consumption [6], resulting in fuel-optimal

trajectories as often used in aerospace applications.

The purpose of this paper is to present the first results of a

research project on powertrain control with nonlinear model

predictive control. These results concern optimal throttle

valve control in speed transients and show the capability of

this control method for fuel consumption minimization. In

contrast to most published papers on predictive powertrain

control, this paper optimizes trajectories instead of tracking

given setpoints. Thus, the control method can be referred to

as optimizing model predictive control.

Section II gives a short introduction to model predictive

control. Section III describes the dynamic model of the

powertrain and vehicle. Section IV gives results for a specific

optimization problem, both in numerical simulation and

in experiments on a dynamometer, see Fig. 1. Section V

concludes this paper and takes a look at future work.

II. MODEL PREDICTIVE CONTROL

In model predictive control (MPC) [7], a cost function is

minimized at each sampling time to obtain optimal control

inputs for a system. This allows for an open-loop control

approach to generate a feedback control. The open-loop

control is calculated with dynamic optimization, which uses

dynamic system models to minimize an objective function

with multiple constraints taken into account.
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A. Dynamic optimization

Dynamic optimization [8] can solve an optimal control

problem of the following simplified form:

min
x(.),u(.)

E(x(T ))+
∫ T

0
L(x(t),u(t))dt, (1a)

subject to

ẋ(t)− f (x(t),u(t)) = 0, t ∈ [0,T ], (1b)

h(x(t),u(t)) ≥ 0, t ∈ [0,T ], (1c)

rs(x(0)) = 0, (1d)

re(x(T )) = 0. (1e)

The optimization determines the optimal control input u(t)
and corresponding state variables x(t) for the interval [0,T ]
that minimize the objective function (1a). The model dif-

ferential equations are denoted by equation (1b). Equation

(1c) is a general nonlinear inequality constraint and equations

(1d), (1e) describe start and end point constraints. There are

several approaches to solve an optimal control problem of

the form (1) [9]. Bock’s direct multiple shooting method [10]

is used in this paper, because it is typically easy to use in

practical applications and because of its favorable treatment

of terminal constraints. The software MUSCOD-II [11] is

used.

B. Feedback control

Model predictive control solves in each discrete-time

step an optimal control problem of the form (1) over a

control horizon T . Only the first fraction of the optimal

control inputs u∗ is applied to the system, until in a new

iteration, new optimal control inputs are calculated. This

way, a feedback control is obtained by repeatedly solving an

open-loop optimal control problem. This feedback control

can handle unforeseen disturbances and deal with model-

plant-mismatch. If necessary, the optimal control problem

formulation can be adjusted in every iteration. This is an

advantage in automotive applications, where constraints or

the objective function can change while driving, due to a

changing traffic situation or behavior of the driver.

C. Optimal throttle valve control for a vehicle acceleration

Let’s take a look at a specific optimal control problem:

optimal throttle valve control during a vehicle acceleration.

The aim is to accelerate a vehicle in a given time using

the least possible amount of fuel. The speed trajectory is

optimized. For simplicity, the gear is fixed. We assume a

dynamic model with state variables x = (n, pm) (with n the

engine speed and pm the intake manifold pressure) and a

control input u, being the throttle. The following equations

TABLE I

SPECIFICATIONS OF THE TOYOTA 3ZZ-FE GASOLINE ENGINE

no. of cylinders and arrangement 4 in-line

valve mechanism 16-valve DOHC, chain drive

displacement 1598 cm3

bore x stroke 79.0 mm x 81.5 mm

compression ratio 10.5

max. power 81 kW @ 6000 rpm

max. torque 150 Nm @ 4800 rpm

give the optimization problem in the standard form (1):

min
x(.),u(.)

∫ T

0
ṁf (x(t))dt, (2a)

subject to

n(0)−ns = 0, (2b)

ṅ(0) = 0, (2c)

n(T )−ne = 0, (2d)

ṅ(T ) = 0, (2e)

n(t)−ns ≥ 0, t ∈ [0,T ], (2f)

1 ≥ u(t) ≥ 0, t ∈ [0,T ], (2g)

ẋ(t)− f (x(t),u(t)) = 0, t ∈ [0,T ]. (2h)

Equation (2a) formulates that the state variables x(t) and

the corresponding control input u(t) for t ∈ [0,T ] should be

chosen in order to minimize the integral of the fuel flow

rate ṁf. Equations (2b)-(2e) specify start and end constraints.

Equations (2f), (2g) bound the state variables and control

input. Equation (2h) represents the system model as given in

the next section.

III. POWERTRAIN AND VEHICLE MODEL

This section gives a brief overview of the dynamic model

of the powertrain and the vehicle of a Toyota Corolla Verso.

A complete description of the model is given in [12]. The

powertrain consists of a gasoline engine, transmission and

driveline. Since this paper focuses on the fuel consumption

during speed transients, there is no need to model dynamics

that are much faster than the longitudinal dynamics of the

vehicle.

A. Gasoline engine model

The engine model is a mean value phenomenological

model. The considered engine is a Toyota 1.6l 3ZZ-FE gaso-

line engine, which is mounted on a fully equipped universal

dynamometer. Possible measurements on the dynamometer

are engine speed, effective engine torque, intake air flow

mass, intake manifold pressure and temperature, engine

temperature, fuel consumption and ratio of equivalence. The

throttle valve of the engine can be controlled. Certain model

parameters are determined from a set of steady-state experi-

ments at various engine speeds and throttle valve positions.

Table I gives the specifications of the gasoline engine.

The engine model has three subsystems: the air intake,

the fuel delivery and the torque production. Since this paper

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC18.2

5693



focusses only on fuel consumption, the exhaust system is not

modeled.

The air intake is controlled with the throttle valve. The

ideal gas law and conservation of mass yield the evolution

equation of the pressure pm [Pa] inside the intake manifold:

ṗm =
rTm

Vm

pa√
rTa

A(α)Cd fn

(
pm

pa

)

−
ηvVtot

2Vm
npm, (3)

where r [J/(kgK)] is the specific gas constant of air, Tm

[K] and Vm [m3] the temperature inside and the volume of

the manifold, pa [Pa] and Ta [K] the ambient pressure and

temperature, A(α) [m2] the frontal flow area of the throttle

body, α [rad] the throttle valve angle, Cd [-] the throttle body

discharge coefficient and fn [-] a function that takes into

account possible sonic choking of the air flow through the

throttle body. ηv [-] is the volumetric efficiency, Vtot [m3]

the total cylinder volume and n [rad/s] the engine speed. Cd

and ηv are determined experimentally on the dynamometer,

Cd as a function of α and pm, and ηv as a function of n and

pm.

The amount of injected fuel is normalized by the ratio of

equivalence φ [-]:

φ =
AFR

AFRst
, (4)

where AFR is the real air-fuel ratio and AFRst the stoichio-

metric air-fuel ratio. φ is determined by the engine control

unit (ECU). φ and the fuel mass flow rate ṁf [kg/s] into the

cylinder are determined experimentally as a function of pm

and n. The fast fuel dynamics are neglected in the model.

The combustion and torque production are modeled with

the effective efficiency ηe [-]:

Te = ηe
ṁfQv

2πn
, (5)

where Te [Nm] is the effective engine torque (the torque

measured on the engine shaft), Qv [J/kg] the heating value

of gasoline and ηe is determined with experimental tests as

a function of pm and n.

B. Transmission and driveline model

The transmission and driveline convert the force Fv [N]

on the wheels of the vehicle into a load torque Tl [Nm]

on the engine shaft. This is modeled by means of algebraic

relations:

Fvvv = 2πnTlηm, (6)

where vv [m/s] is the vehicle velocity and ηm [-] the

power transmission efficiency which is considered constant.

Further:

vv = Rw
2πn

iDiG
, (7)

where Rw [m] is the radius of the wheels, iD [-] the reduction

ratio of the differential and iG [-] the reduction ratio of the

gearbox.

TABLE II

PARAMETERS OF THE POWERTRAIN AND VEHICLE MODEL

A(α) = 0.00158−0.001595cos(α) m2 r = 287 J
kgK

AFRst = 14.7 SCx = 1 m2

fr0 = 0.015 Ta = 293 K

g = 9.81 m
s2 Vm = 2.04.10−3 m3

iD = 4.31 Vtot = 1.598.10−3 m3

iG = 3.32/2.00/1.36/1.01/0.82 Qv = 43700 kJ
kg

Im = 1.0256 kgm2 Rw = 0.316 m

k = 0.002 s2

m2 ηm = 1

Mv = 1365 kg κ = 1.4

pa = 101325 Pa ρa = 1.2 kg

m3

pr,crit = 0.528 θ = 0 rad

C. Vehicle model

The vehicle model represents the longitudinal dynamics

of the vehicle:

Fv = Mv
dvv

dt
︸ ︷︷ ︸

inertia

+ SCx
ρav2

v

2
︸ ︷︷ ︸

wind resistance

+ frMvgcosθ
︸ ︷︷ ︸

rolling resistance

+ Mvgsinθ
︸ ︷︷ ︸

road slope

,

(8)

where Mv [kg] is the mass of the vehicle, S [m2] the frontal

surface of the vehicle, Cx [-] the drag coefficient of the

vehicle, ρa [kg/m3] the density of air, fr = fr0

(
1+ kv2

v

)
[-]

the friction coefficient and θ [rad] the slope of the road.

Model parameters for the drivetrain and vehicle model

are based on a Toyota Corolla Verso [13]. Values for these

parameters are shown in Table II.

D. Linking of the models

The link between the engine model and the models of the

transmission, driveline and vehicle is given by:

Im
dn

dt
= Te −Tl, (9)

where Im [kgm2] is the moment of inertia of the powertrain.

To summarize, equations (3)-(9) represent the system as

a nonlinear state space model (2h). The normalized throttle

valve angle u is the control input, with u a linear scaling

of the throttle valve angle α: u = 2α
π

, thus 0 ≤ u ≤ 1 for

0 ≤ α ≤ π
2

. The state variables are the manifold pressure pm

and the engine speed n. All state variables are measurable.

The engine speed n and the fuel mass flow rate ṁf are the

outputs of the system.

IV. TRACKING OF OPTIMIZED TRAJECTORIES

Several methods exist to make the model predictive control

scheme work in practice and to allow a fast online opti-

mization, see e.g. [14]-[17]. For assessing the potential of

optimization based control for fuel savings in automotive

powertrain control, a much simpler approach will be fol-

lowed in this paper. The optimal control problem is solved off

line on the whole time interval. Then, a basic PI-controller

will track the optimal speed trajectory n∗(t) online.

Consider the computed optimal control problem (2), with

ns = 1100 rpm, ne = 3700 rpm and T = 30 s. Figure 2
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Fig. 2. Solution of the optimal control problem: engine speed, manifold
pressure and normalized throttle valve angle

shows the solution of the optimization problem as solved by

MUSCOD-II. Optimally, the vehicle will start to accelerate

after 5 s. At low speeds, the engine consumes less fuel.

If the vehicle waits too long to accelerate, the engine

has to generate more power to overcome the inertia. An

interpretation of the shape of the optimal trajectories is given

in Fig. 3. This figure shows the solution in the specific fuel

consumption (SFC) map, also called performance map. This

map is determined with measurements on the dynamometer.

At the beginning of the acceleration, the optimal trajectory

is almost perpendicular to the SFC isocurves. At the end of

the acceleration, the optimal trajectory avoids rich burning

and the corresponding low efficiency.

To validate the solution of this optimal control problem, a

sensitivity analysis is performed. Both in simulation and in

experiments on the dynamometer (Fig. 1), the shape and the

start time of the optimal engine speed trajectory is altered to

see the effect on the fuel consumption.

A. Simulation

Using the same model for the optimization and the simu-

lation, the optimal control input u∗(t) can be used open loop

to track the optimal speed trajectory n∗(t).
Figure 4 shows the optimal engine speed trajectory, two
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Fig. 3. Solution of the optimal control problem in the SFC plot
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Fig. 4. Optimal engine speed trajectory and trajectories with altered shape
in simulation

trajectories with a slightly different shape and a linear

trajectory. A simulation determines the fuel consumption

required by these trajectories in the interval between the

dashed lines. The fuel consumptions are given in Table

III. The optimal trajectory leads to a fuel consumption of

46.38 g, alternative 1 and 2 respectively to 48.08 g (103.7%)

and 48.80 g (105.2%). A linear, more intuitive trajectory,

leads to a fuel consumption of 48.67 g (104.9%). Since

the optimal engine speed trajectory realizes the same ac-

celeration as the linear trajectory, there is no loss of fun-to-

drive. A shape change factor is defined. A negative shape

change stretches the trajectory to higher engine speeds (e.g.

alternative 1). A positive shape change stretches to lower

engine speeds (e.g. alternative 2). Figure 5 shows the relative

fuel consumption in function of this shape change.

Figure 6 shows the optimal engine speed trajectory, two

trajectories with a slightly different start time and a wide

open throttle trajectory. The fuel consumptions are given in

Table IV. The optimal trajectory leads to a fuel consumption

of 48.09 g, alternative 3 and 4 respectively to 48.64 g

(101.1%) and 51.07 g (106.2%). A wide open throttle
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TABLE III

FUEL CONSUMPTION IN SIMULATIONS DURING ACCELERATION WITH

THE OPTIMAL ENGINE SPEED TRAJECTORY AND TRAJECTORIES WITH

DIFFERENT SHAPE

speed trajectory fuel consumption [g] relative consumption [%]

optimal 46.38 100.0

alternative 1 48.08 103.7

alternative 2 48.8 105.2

linear 48.67 104.9
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Fig. 5. Influence of the shape and the start time of the engine speed
trajectory on the fuel consumption

trajectory leads to a fuel consumption of 51.74 g (107.6%).

Figure 5 shows the relative fuel consumption when the start

time is altered as in alternative 3 and 4.

B. Experiments on the dynamometer

Due to the model-plant-mismatch, a simple feedforward

control will not be sufficient for experiments on the dy-

namometer. To track the optimal engine speed trajectory, the

control scheme of Fig. 7 is used. It consists of a feedforward

of the calculated optimal normalized throttle valve angle

u∗(t) and a feedback of the difference between the calculated

optimal engine speed n∗ and the actual engine speed n. The

feedback controller is a PI controller, experimentally tuned.

Figure 8 shows several speed trajectories realized on

the dynamometer: the optimal engine speed trajectory and

trajectories with an altered shape. The fuel consumptions

are given in Table V. The optimal trajectory leads to a fuel

TABLE IV

FUEL CONSUMPTION IN SIMULATIONS DURING ACCELERATION WITH

THE OPTIMAL ENGINE SPEED TRAJECTORY AND TRAJECTORIES WITH

DIFFERENT START TIME

speed trajectory fuel consumption [g] relative consumption [%]

optimal 48.01 100.0

alternative 3 48.64 101.1

alternative 4 51.07 106.2

open throttle 51.74 107.6
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Fig. 6. Optimal engine speed trajectory and trajectories with altered start
time in simulation
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Fig. 7. Control scheme of the experiments

consumption of 44.80 g, alternative 1 and 2 respectively to

46.03 g (102.7%) and 48.31 g (107.8%). A linear, more

intuitive trajectory, leads to a fuel consumption of 50.72 g

(113.2%).

Figure 9 shows the optimal engine speed trajectory, two

trajectories with a slightly different start time and a wide

open throttle trajectory. The fuel consumptions are given in

Table VI. The optimal trajectory leads to a fuel consumption

of 45.12 g, alternative 1 and 2 respectively to 46.59 g

(101.0%) and 45.73 g (101.3%). A wide open throttle

trajectory leads to a fuel consumption of 59.01 g (130.8%).
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Fig. 8. Optimal engine speed trajectory and trajectories with altered shape
in experiment
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TABLE V

FUEL CONSUMPTION IN EXPERIMENTS DURING ACCELERATION WITH

THE OPTIMAL ENGINE SPEED TRAJECTORY AND TRAJECTORIES WITH

DIFFERENT SHAPE

speed trajectory fuel consumption [g] relative consumption [%]

optimal 44.80 100.0

alternative 1 46.03 102.7

alternative 2 48.31 107.8

linear 50.72 113.2
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Fig. 9. Optimal engine speed trajectory and trajectories with altered start
time in experiment

V. CONCLUSIONS AND FUTURE WORK

Using optimizing model predictive control, significant fuel

consumption savings can be obtained for accelerating a

vehicle. This paper presents a simple model that consists

of two state variables: the intake manifold pressure and

the engine speed. The control input is the throttle valve

angle. The model is identified on a universal dynamometer.

Bock’s direct multiple shooting method is used to determine

optimal trajectories for engine speed and throttle valve angle.

Experimental tests on a dynamometer show that the two

state model is appropriate for optimization and that MPC

has significant potential for reducing fuel consumption.

Future work will focus on several issues. First, the model

should be adapted to include a clutch for gear shifting and

an exhaust system to model emissions. Furthermore, the

properties and complexity of the model should be examined

TABLE VI

FUEL CONSUMPTION IN EXPERIMENTS DURING ACCELERATION WITH

THE OPTIMAL ENGINE SPEED TRAJECTORY AND TRAJECTORIES WITH

DIFFERENT START TIME

speed trajectory fuel consumption [g] relative consumption [%]

optimal 45.12 100.0

alternative 3 45.59 101.0

alternative 4 45.73 101.3

open throttle 59.01 130.8

with a view towards fast online calculations. Then, the imple-

mentation in a real driving situation should be investigated.

How can the driver’s request coming from the throttle pedal

and information from telematics and a navigation system

be integrated in the control scheme, without loosing fun-to-

drive, driveability and driver’s acceptance? Last, a real-time

MPC control scheme will be implemented. The final result

of the research project should be a real-time controller to

control the powertrain in real life traffic situations in order

to lower fuel consumption and emissions.
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efficient multiple shooting based reduced SQP strategy for large-
scale dynamic process optimization. Part II: Software aspects and
application,” Computers and Chemical Engineering, vol. 27, pp. 157–
166, 2003.

[11] M. Diehl, D. B. Leineweber, and A. A. S. Schäfer, MUSCOD-II Users’
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