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Abstract— Telescope resolution is theoretically limited by the
diffraction effect, and hence it is inversely proportional to the
lens diameter. However, the real resolution of images acquired
by large ground telescopes is reduced by the atmospheric
turbulence effect. For this reason, telescopes are provided with
an adaptive optics (AO) system which aims at compensating the
turbulence effect. In this paper we consider a control algorithm
for the AO system based on a turbulence prediction method. We
propose two linear models, both based on a Principal Compo-
nent Analysis (PCA) spatial representation, to fit the turbulence
temporal dynamic and provide its temporal prediction. We
assume that some information about the turbulence has already
been estimated, and we exploit it in the computation of the
model parameters. The first proposed model yields the best
performance but at a quite high computational cost, whereas
the second model is best suited in the case of high sampling
rates. Furthermore, our simulations show that the PCA spatial
representation is robust to errors in the parameter estimation.

I. INTRODUCTION

The real resolution of large ground telescopes is practically

limited by the atmospheric turbulence effect. Indeed, the

atmospheric refraction index changes quite fast both spatially

and temporally, mostly due to temperature oscillations and

to the presence of wind. As a consequence, different beams

coming from a star are affected by different phase delays,

since they follow different optical paths. Hence the wavefront

surface arriving on the telescope is far from being flat.

Hereafter, we call turbulent phase the set of phase delays

of the beams arriving on the telescope pupil.

Adaptive Optics (AO) are used in large telescopes to

overcome the resolution limitation caused by atmospheric

turbulence, by computing a proper control input to make a set

of deformable mirrors adapt their shape so as to compensate

for the current value of the turbulent phase.

An AO system is typically composed by one (or more)

wavefront sensor, a control unit, and a set of deformable mir-

rors. In this paper we consider the case of a single conjugated

adaptive optics (SCAO) system, i.e.: The system is provided

only of a single wavefront sensor and the deformable mirrors

are all placed on a single layer.

AO systems work in real time at high sampling rates, e.g.

typically 100 Hz or higher. This obviously makes the control

input computation quite challenging. Actually, in order to
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make the computation feasible, dimensional reduction step

is performed, i.e. the turbulent phase is projected on a set of

spatial bases. Furthermore, it is commonly assumed that the

control computation requires approximatively two sampling

periods [8][7][9], hence we consider a 2-step delay in the

AO system feedback loop. For this reason a turbulent phase

prediction step is often included in the AO control algorithm.

In this paper we assume to be in Very Large Telescope

(VLT) operating conditions, and we consider an AO control

system based on a temporal model of the turbulence, which,

through the use of a Kalman filter, provides predictions of the

turbulent phase temporal evolution. In particular, we propose

and compare two temporal models of the turbulence based

on a Principal Component Analysis (PCA) representation

(which has been proved to be effective for this purpose in

[2]). While the first model typically fits better the turbulent

phase dynamic, the main advantage of the second model is its

low computational complexity, which makes it particularly

interesting especially for high frequency applications and for

extensions to the Extremely Large Telescopes (ELT) case.

In the computation of the temporal models we assume

that some information about the turbulence spatial statistics

and its structure is available. The latter can be estimated,

by using for instance the algorithm recently proposed in

[3]. Actually, the models proposed here can be thought as

extensions of those considered in [1] to the case when the

turbulence structure is known to the algorithm estimating the

turbulent phase temporal model.

The paper is organized as follows: First, Sections II

introduce the turbulence statistical model and the adaptive

optics principles. Then, in Section III we present the main

results, focusing on the control computation and on the

temporal models of the turbulent phase. We conclude in

Section IV with discussing some simulations.

II. ADAPTIVE OPTICS SYSTEM

The aim of the AO system is that of compensating the

turbulence effect on the telescope measurements by properly

commanding a set of deformable mirrors.

Since the deformable mirrors modify the signal on the

telescope aperture, they can be viewed as performing a

feedback control action. A scheme of the AO system working

procedure is reported in Fig. 1, where em(t) are the measure-

ments of the current turbulent phase from a wavefront sensor

device, y(t) is the reconstructed current value of the turbulent

phase, u(t) is the computed mirror control input, ϕd(t)
are the correction phases obtained through the deformable

mirrors.
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According with [7] [8], in Fig. 1 we have introduced a

2-step delay before the control unit. Let ϕ(t) be the value of

the turbulent phase at time t. To improve the AO system

performances, u(t) is commonly computed exploiting the

prediction of the current value of the turbulence ϕ(t), given

measurements up to time t − 2 only. Three models for

turbulence prediction are considered in Section III.

We define e(t) as the input signal of the wavefront sensor,

i.e. e(t) is the difference between ϕ(t) and the correction

phases ϕd(t) provided by the deformable mirrors.

In the following Subsections we give a description of the

turbulence characteristics and of the AO system.

Fig. 1. Scheme of the adaptive optics system.

A. Turbulence physical model

Let u and v be two unit vectors indicating two orthogonal

spatial directions, as in Fig. 2, and let φ(u, v, t) be the

value of the turbulent phase on the point (u, v) at time

t on the telescope aperture plane, where u and v are the

coordinates of the point along u and v. Without loss of

generality, we assume that the origin of the coordinate system

induced by u and v be in correspondence with the center

of the telescope. The turbulent phase is assumed to be

zero-mean stationary and spatially homogeneous, hence the

covariance between two values of the turbulence, φ(u, v, t)
and φ(u′, v′, t), depends only on the distance, r, between the

two points: Cφ(r) = E[φ(u, v, t)φ(u′, v′, t)],∀(u, v, u′, v′),
such that r =

√

(u − u′)2 + (v − v′)2.

(a) (b)

Fig. 2. (a) Coordinates on the telescope image domain. (b) Two points,
(u, v) and (u′, v′), separated by a distance r on the telescope aperture
plane.

According to the Von Karman theory, the spatial covari-

ance Cφ(r) is the following (see [5]):

Cφ(r) =

(

L0

r0

)5/3
c

2

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

, (1)

where K·(·) is the MacDonald function (modified Bessel

function of the third type), Γ is the Gamma function, L0

is the outer scale, r0 is a characteristic parameter called

the Fried parameter (see [10]), and the constant c is: c =
21/6Γ(11/6)

π8/3

[

24
5 Γ(6/5)

]5/6
.

In order to describe its temporal characteristics, the tur-

bulence is generally modeled as the superposition of a finite

number l of layers. The ith layer models the atmosphere

from an altitude of hi−1 to hi meters, where hl ≥ · · · ≥
hi ≥ hi−1 ≥ · · · ≥ h0 = 0. Let ψi(u, v, t) be the value of

the ith layer at point (u, v) at time t. Then the total turbulent

phase at (u, v) and at time t along the Zenith direction

is φ(u, v, t) =
∑l

i=1 γiψi(u, v, t) , where γi are suitable

coefficients associated to the layer energies. Without loss of

generality we assume that
∑l

i=1 γ
2
i = 1.

The layers are assumed to be stationary and characterized

by similar spatial statistics, i.e. the covariance between two

points at distance r of the i-th turbulence layer can be written

as follows:

Cψi(r) = γ2
i

(

L0

r0

)5/3
c

2

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

. (2)

Furthermore, the layers are assumed to be independent,

hence: E[ψi(u, v, t)ψj(u
′, v′, t′)] = 0 , i 6= j.

A commonly agreed assumption considers that each layer

translates in front of the telescope pupil with constant

velocity vi (Taylor approximation [10]), thus

ψi(u, v, t+ kT ) = ψi(u− vi,ukT, v − vi,vkT, t) , (3)

i = 1, . . . , l, where vi = vi,uu + vi,vv, and kT is a delay

multiple of the sampling period T .

B. Wavefront sensor and reconstruction procedure

In this Subsection we introduce a statistical model for

the measurement and reconstruction procedure. In real ap-

plications only a finite number of sensors is available. These

are usually distributed on a grid, thus the turbulent phase is

considered only on a discrete domain L (Fig. 3(a)).

(a) (b)

Fig. 3. (a) Discrete domain L. (b) Points used by the Shack-Hartmann sen-
sor, according to the Fried geometry, to take the phase slope measurements
on the point (u, v).

Here we assume that the AO is provided with only one

wavefront sensor, which takes measurements on the Zenith

direction. Moreover we assume that the wavefront sensor is

a Shack-Hartmann (SH) device. The SH sensor measures at

each point the phase slope in both the spatial directions u

and v. Let d be the telescope diameter and ns the number

of nodes per each side of the grid, then, assuming the nodes

uniformly spaced, the distance between two neighbors on the
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grid is ps = d/ns meter. By numbering the node coordinates

on each axis from 1 to ns, we can write

L = {(u, v) | u ∈ Z, v ∈ Z, 1 ≤ u ≤ ns,

1 ≤ v ≤ ns,

∥

∥

∥

∥

u− (ns + 1)/2
v − (ns + 1)/2

∥

∥

∥

∥

2

< d/2} .

According with the Fried geometry for the SH device [6],

the sensor measurements at point (u, v) ∈ L (with 1 ≤ u ≤
ns − 1 and 1 ≤ v ≤ ns − 1) can be written as

em,u(u, v, t) =
1

2

(

e(u+ 1, v, t) − e(u, v, t)
)

+
1

2

(

e(u+ 1, v + 1, t) − e(u, v + 1, t)
)

, (4)

em,v(u, v, t) =
1

2

(

e(u, v + 1, t) − e(u, v, t)
)

+
1

2

(

e(u+ 1, v + 1, t) − e(u+ 1, v, t)
)

, (5)

where em,u(u, v, t) and em,v(u, v, t) corresponds to esti-

mates of the slopes along the u and v direction in the

considered point. Moreover, e(u, v, t) is the value of the

residual phase (i.e. the remaining turbulent phase after the

subtraction of ϕd(t)) on the point (u, v) ∈ L at time t.
With an abuse of notation, let us denote with ϕ(t) and

e(t) the vectors containing the values respectively of the

turbulence, and of the residual phases after the deformable

mirror correction, on the grid L at time t. Notice that, from an

optical point of view, the phase translations over the entire

telescope aperture can be neglected, hence the AO system

does not take into account the projection of turbulent phase

on the vector u0 = [ 1 1 . . . 1 ]T . Thus, we consider ϕ(t)
as the vector containing the values of the turbulent phase at

time t neglecting its projection on u0.

Furthermore, let us denote with em(t) the vector contain-

ing all the SH measurements at time t. Since (4) and (5) are

linear, then em(t) can be written as follows:

em(t) = He(t) + wm(t) , (6)

where H is a matrix properly defined to express the relation

between e(t) and em(t) as in (4) and (5). wm is a zero-

mean white noise, due to the measurement process. Let us

call Qm the covariance of wm. For simplicity of notation, in

the following we will assume that Qm = σ2
mI , where σ2

m is

the measurement noise variance.

We define the Signal to Noise Ratio (SNR) as follows:

SNR = trace (HΣϕH
T )/trace (Qw) , where Σϕ =

E[ϕ(t)ϕ(t)T ], and it can be computed from (1). This defi-

nition of SNR corresponds to the signal to noise ratio when

the system works in open-loop, i.e. when e(t) = ϕ(t) in (6).

Let now m be the number of actuators, |L| the number

of nodes in L and p the number of measurements, where

commonly p ≈ 2|L|. Since |L| can be quite large (in our

simulations |L| ≈ 103), then to reduce the computational

load, the turbulent phase is projected on a set of spatial bases.

Astronomers commonly choose the set of Zernike polyno-

mials as spatial bases, however, to exploit the knowledge

about the second order statistical properties of the signal, in

Section III we consider also models based on the set of bases

provided by PCA. We refer the reader to [2] for a comparison

between these representations from a static point of view. The

dimensionality reduction step is obtained by considering the

projections on the first n spatial bases (neglecting u0) of the

considered basis U =
[

u1 . . . un
]

, which are assumed

to be those containing most of the signal energy. Hence

ϕ(t) = Ux(t) + er(t) , (7)

where er(t) = ϕ(t) − Ux(t) is the representation error. Let

U † be the pseudo-inverse of U , then x(t) = U †ϕ(t). In the

following we call x(t) the state vector at time t and we

model the dynamic behavior of x(t) instead of that of ϕ(t):
Since usually n ≪ |L|, this remarkably reduces the time to

compute turbulence predictions and control actions.

We assume that the reconstruction procedure is performed

by premultiplying a proper matrix F to the measurement

vector em(t) (thus this is a vector-matrix-multiply (VMM)

reconstructor). To reconstruct the residual phase e(t), we

should multiply the measurement vector em(t) by H†.

However, since we are interested in the projection of the

phases on the basis U , the overall reconstructor matrix F is:

F = (HU)† . Then, the measurement of the reconstructed

phases projected on U is y(t) = Fem(t). Let ϕd(t) =
Uxd(t) + ed(t), where xd(t) = U †ϕd(t), then

y(t) = Fem(t) = FH(ϕ(t) − ϕd(t)) + Fwm(t)

= FHU(x(t)− xd(t)) +FH(er(t)− ed(t)) +Fwm(t) .

Since (er(t) − ed(t)) are small and orthogonal to the space

generated by the columns of U , then FH(er(t)−ed(t)) ≈ 0.

Furthermore FHU ≈ I (the equality stands when (HU) is

full column-rank). Then,

y(t) =
(

x(t) − xd(t)
)

+ w(t) , (8)

where w(t) is zero-mean and its covariance is R ≈ FFTσ2
m.

If not differently specified, hereafter we assume

R = FFTσ2
m . (9)

C. Control unit and deformable mirrors

The aim of the control unit is that of computing a proper

input for the deformable mirrors. Computation of the proper

correction is a challenging task, mainly because the system

usually works at high frequencies. Therefore, the control

action has to be sufficiently simple to allow for fast computa-

tion, although the presence of the 2-step delay in the system

and of the nonlinearities in the behavior of the deformable

mirrors has to be carefully taken into account. Further details

on the control computation are given in Section III.

It is a common assumption ([10][8]) to take the deformable

mirrors transfer function D(u(t)) as linear and static, i.e.

ϕd(t) = D(u(t)) = Du(t) . In literature, deformable mirrors

are usually characterized by the so called interaction matrix

D̄, which, using our notation, can be written as D̄ = HD.

Since in the control loop the phases are projected on U
and both D and D̄ are constant, the two approaches are

equivalent. In our simulations we assume that D = U .

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC18.2

1841



D. Performances evaluation: Strehl ratio

In this Subsection we first introduce the concept of coher-

ent energy and then we show how to use it to compute the

Strehl ratio (SR), which is commonly used by astronomers

as a criterion to evaluate the real telescope resolution.

Let us define the coherent energy at time t, CE(t),
as the sample variance of the residual phase, i.e.

CE = 1
|L|

∑

(u,v)∈L

(

e(u, v, t) −
∑

(u,v)∈L

e(u,v,t)
|L|

)2

,where

e(u, v, t) = φ(u, v, t) − φd(u, v, t), and φd(u, v, t) is the

phase correction provided by the deformable mirrors at time

t on the point (u, v). Then, the Strehl ratio at time t, SR, is

well approximated by the following

SR(t) ≈ exp(−CE(t)) (10)

when SR(t) > 0.2. In our simulations we use the SR as a

criterion for AO performances evaluation (a large value of

the SR indicates good image quality and viceversa), and we

always approximate it as in (10).

III. CONTROL AND TURBULENCE MODELS

In this Section we describe a method to compute the

control for the deformable mirrors based on a turbulence

prediction model. The approach is similar to those described

in [8],[7],[9]. However, in Subsections III-B, III-C we pro-

pose two innovative turbulence temporal models, which, in

the simulations of Section IV, improve the results obtained

using the model described in [9]. The Petit model, [9], is also

summarized in Subsection III-A. Models of Subsections III-

B and III-C exploit a PCA representation, which has already

been proved in [2] to be a well suited spatial representation

for the turbulent phase. Furthermore, they can be considered

as extensions of the models presented in [1] whenever the

turbulence layer characteristics (the number of layers, their

velocities and their strengths) can be assumed to be known.

This information can be provided by external sensors or

estimated from turbulent phase data, e.g. as described in [3].

First, assume to know the current value of the atmosphere

ϕ(t). Then, the ideal control input u(t), using the state

representation, can be written as u(t) = D†Ux(t) , where

x(t) = U †ϕ(t). However, since x(t) is unknown, we cannot

directly apply the above equation to compute the control

input u(t), but, we can still use it after substituting x(t)
with its estimate x̂(t|t − 2) obtained by using the available

measurements up to time t− 2:

u(t) = D†Ux̂(t|t− 2) . (11)

In Subsections III-A, III-C, III-B we describe three linear

dynamic models for turbulence representation and prediction:

These models are associated to the same strategy for the

control of the deformable mirror, i.e. they use a Kalman

filter on a properly defined linear dynamic model to estimate

x̂(t|t − 2) and then apply the control law (11). Hence the

AO system performance largely depends on the ability of

the proposed models to describe and predict the temporal

evolution of the turbulent phase. In particular we assume

that the turbulence temporal models can be described by the

following linear dynamic system














x̄(t+ 1) = Āx̄(t) +





0
u(t+ 2)

0



 +





v(t)
0
0





y(t) =
[

I 0 −U †D
]

x̄(t) + w(t)

(12)

where x̄(t) has the following block structure

x̄(t) =





x(t)
u(t+ 1)
u(t)



 , Ā =





A 0 0
0 0 0
0 I 0



 ,

and A is a suitable n × n matrix. Furthermore, y(t) is the

measurement vector (as defined in (8)), x̄(t) is the overall

state of the dynamic system, v(t) and w(t) are assumed to

be zero-mean white noise with covariances Q and R.

Then, (11) becomes u(t) = D†UAx̂(t − 1|t − 2), where

x̂(t − 1|t − 2) is the estimate of x(t − 1) provided by the

Kalman filter given the measurements up to time t− 2.

Notice that, to reduce the computational complexity of

the algorithm, the time-invariant, asymptotic Kalman filter

is used, i.e. the Kalman gain K̄ (computed solving the

Algebraic Riccati Equation (ARE)) is constant. Moreover,

it is simple to prove that K̄ =
[

KT 0 0
]T

, where

K = AP (P +R)−1 , (13)

and P is the solution of the following ARE: P = A(P −
P (P + R)−1PAT + Q. Since the last two blocks of the

state vector can be trivially updated, the only non elementary

computation in the Kalman predictor is

x̂(t+1|t) = Ax̂(t|t−1)+K
(

y(t)− x̂(t|t−1)+U †Du(t)
)

.
(14)

For this reason, we still call x(t) the state vector.

Since the models are based on the same control strategy,

their performances depends on the particular choices of the

parameters {A,U,Q,R} in the dynamical system (12).

A. Petit model

The model described by Petit in [9] (a similar model

was introduced in [7], [8]) is based on the use of Zernike

polynomials as spatial basis U (see [10], [2]). The turbulence

is assumed to be characterized by Kolmogorov statistics (see

[10], [7]). The Von Karman model of the turbulence can be

reduced to the Kolmogorov one by making L0 go to infinity.

The matrix A is assumed to be diagonal, and the i-th
element of its diagonal is associated to the i-th Zernike

polynomial. A radial order is associated to each Zernike

polynomial, in particular we denote with n(i) the radial order

associated to the i-th polynomial. Then, assuming l = 1, the

i-th element of the diagonal, aii, can be computed as follows:

aii = exp
(

− 0.3(n(i) + 1)|v1|T/d
)

.
Q is computed as follows: Q = Σkolx −AΣkolx AT , where

Σkolx is the state covariance according to the Kolmogorov

statistics [11], [12]. R is the covariance matrix associated to

the measurement noise w and it is computed as follows:

First project w on the first n Zernike polynomials, then
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compute the covariance matrix of the projected signal [7],

[9]. Finally, K is computed from (13). The model can be

easily generalized to the multi-layer case [9], [7], [8].

B. PCA based full-matrices model

In this model we propose a PCA based spatial representa-

tion, where U is composed by the first n bases provided

by the PCA [2]. Define the state covariance as Σx =
U †Σϕ(U †)T , then the matrix A is computed as follows

A =
l

∑

i=1

γ2
i U

†
E

[

ψi(t+ 1)ψi(t)
T
]

(U †)TΣ−1
x , (15)

where E[ψi(t + 1)ψi(t)
T ], i = 1, . . . , l are computed

according to the theoretical spatial covariances (2) and to the

Taylor assumption (3). Then Q is Q = Σx −AΣxA
T , and

R is defined as in (9). K is computed from (13).

C. PCA based diagonal-matrices model

The computational load is a stringent design parameter for

the choice of the control law, therefore we propose a model

particularly convenient from the computational point of view.

Since the only nontrivial computation in the asymptotic

Kalman filter is that of (14), we choose both A and K
to be diagonal, to dramatically reduce the computational

complexity of the algorithm.

Let U be the set of the first n bases provided by PCA.

Then A is computed taking only the principal diagonal from

the A computed as in (15). Moreover Q = Σx − AΣxA
T

and R is defined as in (9).

Finally, we compute K from (13), but we set all its

elements out of the principal diagonal to 0.

Notice that with this choice of the parameters some

numerical problems can occur while solving the ARE to

compute P and K . Even when this does not happen, we have

experimentally observed that the diagonal elements in the

computed K are sometimes too small to make the prediction

effective. This is due to the fact that the Kalman gain is

computed for system (12) assuming A diagonal, however,

since this is not the real case, the computed K typically

takes to poor performance.

To reduce both of these problems, we propose to artifi-

cially enhance the system dynamics by rescaling the matrix

A by a constant factor (1−ǫ), i.e. A = (1−ǫ)A, where in our

simulations we set ǫ = 10−4. As a consequence, although

the model is only marginally modified, a larger Kalman gain

is obtained.

IV. SIMULATIONS AND DISCUSSION

In this Section we assume to be in VLT-like conditions,

e.g. d = 8 meter and ns = 40, and we compare the models

of Subsections III-A, III-B, III-C in two simulations. In both

the simulations we set the field of view to 58 arcsec and

we investigate the case of a quite high sampling rate: fs =
1/T = 1 KHz.

The turbulence has been simulated, at higher resolution

than that of the grid L, using the method described in [4],

and the number of temporal samples used to estimate the SR

has been set to 5000 in all our examples.

A. Simulation 1: Singular layer

Since most of the turbulent phase energy is concentrated

on the ground layer, often the AO system models this layer

only. Hence in this example the atmosphere has been consid-

ered formed by a unique layer translating over the telescope

pupil at 10m/s. Moreover, since the atmosphere parameters

are usually known only up to some approximations, we also

try to evaluate the robustness of the turbulence models of

Subsections III-B and III-C to errors in turbulence parameter

estimation. We set the values of the parameters for turbulence

simulation to: r0 = 0.4m, L0 = 22m; and σ2
m = 0.4rad2.

In Fig. 4 we show the Strehl ratios, obtained using

the three models of Section III, where the values of the

parameters used to compute models of Subsections III-B and

III-C are: (a) the real values, i.e. r̂0 = 0.4m, L̂0 = 22m,

σ̂2
m = 0.4rad2; (b) r̂0 = 0.2m, L̂0 = 100m, σ̂2

m = 0.2rad2.
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Fig. 4. Strehl ratios obtained using different turbulence models: PCA
and (A, K) full (solid line), PCA and (A, K) diagonal (dashed line),
Petit model (dashed-dotted line). Different values for the parameters used
to compute the models of Subsections III-B and III-C are explored: (a)

r̂0 = 0.4m, L̂0 = 22m, σ̂2
m

= 0.4; (b) r̂0 = 0.2m, L̂0 = 100m,
σ̂2

m
= 0.2. Sampling ratio, fs, is set to 1KHz.

B. Simulation 2: A case study

Even if often most of the turbulence energy is concentrated

on one layer, the atmosphere is actually formed by several

layers. However, in practice only a finite, and usually small,

number of layers can be modeled in the adaptive optics

system: These usually are those which are assumed to have

the largest energies. In order to simulate these operating

conditions, in this simulation we consider the atmosphere as

formed by three layers, where only the first one is modeled

in the models of Section III. Then, the real turbulence

parameters are: r0 = 0.2m, L0 = 22m, v1 = −10u m/s,

γ2
1 = 0.80, h1 = 0.5Km, |v2| = 15m/s, γ2

2 = 0.15,

h2 = 6Km, v3 = 30v m/s, γ2
3 = 0.05, h3 = 8Km. The

real measurement noise variance is σ2
m = 0.6rad2 and the

sampling rate is fs = 1KHz. To compute the models we

assume to have (rough) estimations of r0, L0 and σ2
m, that

is: r̂0 = 0.4m, L̂0 = 100m, σ̂2
m = 0.2rad2.

Notice that in this simulation the energy of the unmodeled

part of the turbulence is quite large, i.e. it corresponds to

the 20 percent of the total signal energy. In this particular

condition the model of Subsection III-B is not sufficiently

flexible to grant satisfactory performance, i.e. it fits too much

the ground layer dynamic, without taking into account the
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unmodeled part of the turbulence. To make it more flexible

we proceed similarly to Subsection III-C: We scale by (1−ǫ)
the A matrix computed as in (15), where we set ǫ = 10−4.

In Table I we report the Strehl ratio obtained at Zenith

direction, in the above conditions, for the following 4 models:

1) the Petit model described in Subsection III-A, 2) the model

of Subsection III-B adapted to the Zernike basis case, with

(1− ǫ) premultiplied to A, 3) the model of Subsection III-C,

4) the model of Subsection III-B, with (1− ǫ) premultiplied

to A. Where for each model we have used n = 405 spatial

bases to represent the turbulence. We also distinguish two

possible cases for the direction of the velocity v2: Case (A)

v2 = −|v2|u, case (B) v2 = |v2|v.

TABLE I

STREHL RATIOS MODELING ONE OF THREE LAYERS

Petit Zer;A, Kfull PCA;A, Kdiag PCA;A, Kfull

case (A) 18.24 39.92 36.84 45.47
case (B) 18.22 34.92 36.85 39.72

C. Discussion

In Subsection IV-A we tested, in the ideal case of a

single layer turbulence, the performance of the algorithms

described in Section III. The results show that, although the

use of rough estimates of the turbulence parameters r0, L0,

influences the computation of the PCA bases, the use of

such representation in the prediction algorithms makes them

robust to errors in the estimates of r̂0, L̂0.

Simulation 2 (Subsection IV-B) shows that the full-

matrices model, since it relies on a priori information on

the turbulent layers characteristics (which can be estimated

as described in [3]), is sometimes sensitive to errors in the

parameter estimation. In order to make it effective when

some unmodeled dynamics are present, we introduced the

(1 − ǫ) scaling of the A matrix. With this modification the

performance is greatly increased, even when there are two

unmodeled layers containing the 20 percent of the signal

energy moving in an orthogonal direction with respect to

that used to compute the model (case (B)).

When the sampling ratio is high, the computational load

required by the full-matrices model may be excessive. How-

ever, in this case the prediction step is quite simple since the

turbulence introduces less variations between two time steps.

Hence even simpler models can give good results. As shown

in Table I the model of Subsection III-C, exploiting the PCA

representation, outperforms the Petit model in both the cases

(A) and (B). Moreover, it gives results similar to those of the

full-matrices model in case (B), furthermore, since it makes

no assumption on the moving direction of the layers, it is

not sensitive to errors in the estimation of this parameter.

To conclude, our results suggest that the use of a full-

matrices system (Subsection III-B) to model the temporal

evolution of the turbulence gives better results than the other

considered models. However, when the sampling frequency

is high (or the information about the turbulence layers

characteristics is not reliable) it is worth to consider simpler

models: In particular the model described in Subsection III-C

results to be effective and computationally cheap.

V. CONCLUSIONS

In this paper we have considered an algorithm for com-

puting the control in an AO system based on turbulence

temporal prediction. We have proposed two turbulent phase

temporal models and we have compared their closed loop

performances in an AO system.

The considered models, which exploit a PCA spatial

representation of the turbulent phase, are computed from

some information about the turbulence layers characteristics,

that has to be previously estimated. The proposed models

have been successfully compared also to the Petit model [9].

Our simulations suggest that the PCA representation out-

performs the Zernike one even when the PCA bases are

computed starting from very rough estimations of the real

turbulence parameters.

The use of a full matrices system may take to better

results than the other considered models, however, when the

sampling ratio is sufficiently high or the available turbulence

layers characteristics are not reliable, it is worth to consider

the proposed diagonal model, which is interesting both for

its performances and its low computational complexity.

VI. ACKNOWLEDGMENTS

We are pleased to acknowledge the colleagues of the ELT

Project, in particular Dr. Michel Tallon at CRAL-Lyon, and

Dr. Enrico Fedrigo at ESO-Munich, for their precious help

in supporting us with the astronomical view of the problem.

REFERENCES

[1] A. Beghi, A. Cenedese, and A. Masiero. Atmospheric turbulence
prediction: a pca approach. In Proc. of the 46th IEEE C. on Dec. and
Contr., CDC 2007, pages 572–577, New Orleans, USA, Dec. 2007.

[2] A. Beghi, A. Cenedese, and A. Masiero. A comparison between
zernike and pca representation of atmospheric turbulence. In Proc.
of the 46th IEEE Conference on Decision and Control, CDC 2007,
pages 561–566, New Orleans, USA, December 2007.

[3] A. Beghi, A. Cenedese, and A. Masiero. On the estimation of
atmospheric turbulence layers. In Proc. of the 2008 IFAC World
Congress, pages 8984–8989, Seoul, Korea, July 2008.

[4] A. Beghi, A. Cenedese, and A. Masiero. Stochastic realization appoach
to the efficient simulation of phase screens. Journal of the Optical
Society of America A, 25(2):515–525, February 2008.

[5] R. Conan. Modelisation des effets de l’echelle externe de coherence

spatiale du front d’onde pour l’observation a haute resolution angu-

laire en astronomie. PhD thesis, Univ. Nice Sophia Antipolis, 2000.
[6] D.L. Fried. Least-square fitting a wave-front distortion estimate to

an array of phase-difference measurements. Journal of the Optical

Society of America, 67:370–375, 1977.
[7] B. Le Roux. Commande optimale en optique adaptative classique et

multiconjuguee. PhD thesis, Univ. de Nice Sophia Antipolis, 2003.
[8] B. Le Roux, J.M. Conan, C. Kulcsar, and et al. Optimal control law

for classical and multiconjugate adaptive optics. Journal of the Optical
Society of America A, 21(7):1261–1276, 2004.

[9] C. Petit. Étude de la commande optimale en OA et OAMC, validation

numérique et expérimentale. PhD thesis, Université Paris 13, 2006.
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