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Abstract— In this paper we study the problem of H∞ control

of linear parameter-varying (LPV) discrete-time systems with

delays. In an LPV system, the state-space matrices are a

function of time-varying parameters which are assumed to

be real-time measurable. We utilize a parameter-dependent

Lyapunov function to establish a delay-dependent H∞ per-

formance condition for the LPV system with unknown but

bounded delays. On the basis of the H∞ performance condition

established, we develop a linear matrix inequality (LMI) based

H∞ control strategy. We show that solving the related LMI

optimization problem paves the way for designing a H∞

controller for the LPV discrete-time system with delays. We

also use a numerical example to demonstrate the application

of the presented H∞ controller design method.

I. INTRODUCTION

There has been a growing research interest in the problems

of analysis and control design for systems subject to time

delays in the state and/or control input during the recent years

[7], [10], [17], [22]. The existing results on the issues are

often classified into two types according to their dependence

on the size of the delays, namely, delay-independent results

and delay-dependent results. Delay-dependent conditions on

stability and stabilization of delayed control systems are

usually less conservative than delay independent ones, espe-

cially when the size of the delay is small. Hence, in recent

years delay-dependent stability and stabilization with some

performances for time-delay systems has become an active

area of research, with many interesting results having been

obtained by various analysis and synthesis methods [3], [4],

[11], [12], [14], [15], [16], [18], [19], [23].

It is well known that many physical processes such as

power systems, aircraft systems, chemical processes and so

on belong to the type of parameter-varying systems [8],

[9]. For this reason, the analysis and control design of this

class of systems have been extensively studied in recent

years. Numerous results have been given for this class of

systems [2], [13], [20], [21], [24]. The control syntheses for

linear parameter-varying (LPV) systems have been studied

in [5], [6], [21]. Recently, the controller design problem was

investigated in [1] for time-varying discrete systems by using

parameter-independent Lyapunov functions. However, to the

best of the authors’ knowledge, no work on delay-dependent

H∞ controller design for parameter-varying discrete delayed

systems via parameter-dependent Lyapunov functions has

been reported.

This paper is concerned with the H∞ control problem

for a class of parameter-varying discrete systems with time

delays under some commonly adopted assumptions. One

assumption is that the state-space matrices of the systems are

dependent on a vector of time-varying real parameters, while

the other assumption is that these parameters are real-time

measurable so that they can be fed to the controller. With the

introduction of a parameter-dependent Lyapunov function,
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the delay-dependent method and auxiliary variable technique

are employed to establish new H∞ performance conditions

expressed by matrix inequalities. It is shown that by adopting

a gain-scheduled controller design strategy, solving a set of

linear matrix inequalities (LMIs) corresponding to delay-

dependent H∞ performance conditions provides H∞ con-

trollers for parameter-varying delayed systems.

Notation. Throughout this paper, a real symmetric matrix

P > 0(≥ 0) denotes P being a positive definite (or positive

semidefinite) matrix, and A > (≥)B means A−B > (≥)0. I

is used to denote an identity matrix with proper dimension.

Matrices, if their dimensions are not explicitly stated, are

assumed to have compatible dimensions for algebraic oper-

ations. The space of square summable vector sequences is

denoted by l2[0,∞). A sequence

v = {vk} ∈ l2[0,∞)

if

‖v‖
2

=

√

√

√

√

∞
∑

k=0

vτ
kvk < ∞.

II. PROBLEM FORMULATION

Consider the parameter-varying discrete-time systems with

time delays:

[

xk+1

zk

]

=

[

A(h (k)) Ad(h (k)) Aω(h (k))
B(h (k)) Bd(h (k)) Bω(h (k))

Au(h (k)) Aud(h (k))
Bu(h (k) Bud (h (k))

]













xk

xk−d

ωk

uk

uk−d













(1)

where xk ∈ R
n is the state, uk ∈ R

m is the control input,

zk ∈ R
q is the controlled output variable, ωk ∈ R

p is

the noise signal which is assumed to be an arbitrary signal

such that {ωk} ∈ l2[0,∞). The nonnegative integer d is the

unknown time delay of the system and satisfies

1 ≤ d ≤ d̄

where d̄ is a known positive integer. The time-varying

parameter vector

h (k) = (h1 (k) , . . . , hs (k))

is assumed to be measured online. h (k) is allowed to vary

in the unit simplex

Ξ :=

{

h(k) | hi(k) ≥ 0, i = 1, . . . , s,

s
∑

i=1

hi(k) = 1

}

(2)

In what follows, we will drop the argument k for some

k-dependent variables and matrices for illustration conve-

nience. The state-space data in (1) are assumed to be affine

in h, that is,
[

A(h) Ad(h) Aω(h) Au(h) Aud(h)
B(h) Bd(h) Bω(h) Bu(h) Bud(h)

]

=

s
∑

i=1

hi

[

Ai Aid Aiω Aiu Aiud

Bi Bid Biω Biu Biud

]

(3)

where all the sub-block matrices on the right hand side of

(3) are known constant matrices.

We are interested in designing a gain-scheduled controller

uk = K(h)xk :=

s
∑

i=1

hiKixk (4)

In the sequel, for notional simplicity, we will also drop the

arguments of some h-dependent matrices in the case that no

notional confusion is caused. Then, the closed-loop system

Σc from system of (1) and (4) can be described by

[

xk+1

zk

]

=

[

A Ad Aω

B Bd Bω

]





xk

xk−d

ωk



 (5)

where

A = A + AuK, Ad = Ad + AudK,

B = B + BuK, Bd = Bd + BudK
(6)

The objective of this paper is to design a controller in the

form of (4) such that the following specifications are met for

the closed-loop system Σc of (5)–(6):

(S1): The closed-loop system Σc of (5)–(6) is globally

asymptotically stable for any h ∈ Ξ when ωk ≡ 0.

(S2): The l2-gain between the external disturbance ωk and

the controlled output zk is less than γ, that is, for
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any nonzero ω ∈ l2[0,∞) and zero initial condition

x0 = 0,

‖z‖
2

< γ ‖ω‖
2

(7)

In the following, we will refer systems satisfying (S1) and

(S2) to be as stable and with H∞ norm bound γ.

III. STABILITY ANALYSIS

This section discusses a new characterization involving

parameter-dependent Lyapunov function for the closed-loop

system Σc to be stable and with H∞ norm bound γ.

Theorem 1: The closed-loop system Σc is stable and with

H∞ norm bound γ, if there exist symmetric matrices H, Q

and Z , matrix V and h-dependent matrix P(h) satisfying

α1I ≤ P(h) ≤ α2I (8)

for any h ∈ Ξ and some scalars {αi > 0}
2

i=1
such that for

any h, h+ ∈ Ξ,

















d̄H + V + V T + Q − P−1(h) −V 0
∗ −Q 0
∗ ∗ −γ2I

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

AT d̄ (A− I)T
Z BT

AT
d d̄AT

d Z BT
d

AT
ω d̄AT

ωZ BT
ω

−P(h+) 0 0
∗ −d̄Z 0
∗ ∗ −I

















< 0 (9)

[

H V

V T Z

]

≥ 0 (10)

where

h+ := (h1(k + 1), h2(k + 1), . . . , hs(k + 1)) ∈ Ξ

and ∗’s denote the corresponding transposed block matrices

due to symmetry.

Remark 1: Theorem 1 provides a delay-dependent H∞

performance condition for the closed-loop system Σc. The

main idea behind the derivation of Theorem 1 is the in-

troduction of the combined parameter-dependent and delay-

dependent Lyapunov function Vk . The Lyapunov function Vk

consists of three parts. The third part is of delay-dependent

form by which a delay dependent result can be derived.

IV. CONTROLLER DESIGN

In this section, we present a sufficient condition for the

existence of H∞ controller in the form of (4) based on The-

orem 1. Note that the conditions in (8), (9) and (10), as such,

cannot be directly employed for controller design. One way

to facilitate Theorem 1 for the construction of a controller is

to convert (8), (9) and (10) into a finite set of linear matrix

inequality constraints. To this end, one must further restrict

the choice of the parameter-dependent Lyapunov functions.

The following theorem gives one possible way to do so.

Theorem 2: The closed-loop system Σc of (5)–(6) is sta-

ble and with H∞ norm bound γ, if there exist symmetric

matrices {Pi}
s

i=1
, H1 > 0, Q1, Z1, matrices {Ψj}

s

i=1
, V1

and Ω such that for all i, j, g ∈ {1, . . . , s} ,





















wi ∗
−V T

1 Q1 − (Ω + ΩT )
0 0

AiΩ + AiuΨj AidΩ + AiudΨj

d̄AiΩ + d̄AiuΨj − d̄Ω d̄AidΩ + d̄AiudΨj

BiΩ + BiuΨj BidΩ + BiudΨj

Ω 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

−γ2I ∗ ∗ ∗ ∗
Ajω −Pg ∗ ∗ ∗
d̄Ajω 0 −d̄Z1 ∗ ∗
Bjω 0 0 −I ∗
0 0 0 0 −Q1





















< 0 (11)

[

H1 V1

V T
1 Ω + ΩT − Z1

]

≥ 0 (12)

where

wi = d̄H1 + V1 + V T
1 + Pi − (Ω + ΩT ) (13)

When linear matrix inequalities (11) are feasible, the gain of
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a desired state feedback controller in (4) is given by

Kj = ΨjΩ
−1, j ∈ {1, . . . , s} (14)

Remark 2: Theorem 2 provides a sufficient condition for

the solvability of H∞ control problem for the parameter-

varying delayed system. The desired state feedback controller

can be obtained by solving the linear matrix inequalities (11)

and (12).

V. NUMERICAL RESULTS

Consider the system Σ in (1), (2) and (3) with the

following data:

A1 =





1.1 0.8 0
0.6 0 0.32
0 −0.63 0.3





A2 =





0.9 1.2 0
0.6 0 0.29
0 −0.57 0.3





A1u =





1.2 −1.5
0.15 0.2
0.1 −1.7





A2u =





2.4 1.2
1.2 −0.135
3.6 −2.1





A1d =





0.06 0.04 0.02
0.08 0 0.04
0 0.03 −0.042





A1ω =





0.01
0.015
0.005





A2d =





−0.05 0 −0.02
0 0.04 0

−0.012 0.05 0.013





A2ω =





−0.012
−0.016

0





A1ud =





0.14 0.035
0.14 0.07
0.21 −0.28





A2ud =





0.09 0.03
−0.06 −0.03
0.012 0.15





B1 =
[

0.5 1 0
]

B2 =
[

0.1 0.5 1
]

B1u =
[

−0.5 −1
]

B2u =
[

2 0.05
]

B1ω = 0.01

B2ω = 0.6

B1d =
[

0.5 0.1 0.07
]

B2d =
[

−0.5 −0.1 −0.07
]

B1ud =
[

0.03 0.5
]

B2ud =
[

0.5 0
]

d̄ = 3

The target is to design a gain-scheduled controller such

that the closed-loop system is stable with a given H∞ norm

bound γ. The performance level is chosen as γ = 3.9.

Using Matlab LMI Control Toolbox to solve the linear matrix

inequalities (11), we have obtained the solutions as follows:

P1 =





0.0050 −0.0022 −0.0119
−0.0022 0.0013 0.0056
−0.0119 0.0056 0.0289





P2 =





0.0048 −0.0022 −0.0116
−0.0022 0.0013 0.0056
−0.0116 0.0056 0.0285





H1 = 10−3 ×





0.0461 −0.0139 −0.1015
−0.01390 0.0084 0.0328
−0.1015 0.0328 0.2252





V1 = 10−3 ×





−0.1856 0.0526 0.4091
0.0524 −0.0253 −0.1221
0.4061 −0.1205 −0.8994





Q1 =





0.0198 −0.0109 −0.0492
−0.0109 0.0080 0.0287
−0.0492 0.0287 0.1240





Z1 =





0.0207 −0.0115 −0.0516
−0.0115 0.0085 0.0305
−0.0516 0.0305 0.1305





Ψ1 =

[

−0.0004 −0.0001 0.0007
0.0023 −0.0012 −0.0055

]

Ψ2 =

[

−0.0004 −0.0001 0.0007
0.0022 −0.0012 −0.0055

]
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Ω =





0.0107 −0.0059 −0.0266
−0.0059 0.0043 0.0155
−0.0267 0.0155 0.0671



 .

By Theorem 2, we have a gain-scheduled controller as

u(k) =

{

h1 (k)

[

−0.0813 −0.2929 0.0454
0.1581 0.1067 −0.0442

]

+h2 (k)

[

−0.0830 −0.2921 0.0446
0.1571 0.1060 −0.0443

]}

x(k)

For simulation, the disturbance signal is chosen as

ωk =
−7 cos(k)

1 + k0.51

which belongs to l2[0,∞). We also choose

h1 =
1

1 + tan ( k
π
)

and

h2 = 1 − h1.

VI. CONCLUSION

In this paper we have applied the parameter-dependent

Lyapunov function approach to establish the new delay-

dependent H∞ performance conditions for a class of

parameter-varying systems with time delays. We have used

the delay-dependent conditions to develop delay-dependent

H∞ controllers for this class of systems. Finally, we have

illustrated the applicability of the proposed approach through

a numerical example.
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