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Abstract— This paper introduces stochastic port-Hamiltonian
systems and clarifies some of their properties. Stochastic port-
Hamiltonian systems are extension of port-Hamiltonian systems
which are used to express various deterministic passive systems.
Some properties such as passivity of port-Hamiltonian systems
do not generally hold for the stochastic port-Hamiltonian
systems. Firstly, we show a necessary and sufficient condition
to preserve the stochastic Hamiltonian structure of the original
system under time-invariant coordinate transformations. Sec-
ondly, we derive a condition to maintain stochastic passivity
of the system. Finally, we introduce stochastic generalized
canonical transformations and propose a stabilization method
based on stochastic passivity.

I. INTRODUCTION

Physical systems are practically important and they have

good properties for the control design such as passivity

and energy conservation law. Many control approaches for

these systems based on their intrinsic features are proposed.

As one of the representation of the physical systems, port-

Hamiltonian systems are introduced [1], [2]. It includes not

only the conventional Hamiltonian systems [3] but also pas-

sive electro-mechanical systems, mechanical systems with

nonholonomic constraints [4] and so on.

Meanwhile, theories and techniques for the determinis-

tic dynamical systems described by ordinary differential

equations are applied to the stochastic ones described by

stochastic differential equations [5]. In the literatures [6], [7],

[8], the notions of conserved quantities and symmetry are

formulated for the stochastic systems described by stochas-

tic differential equations written in the sense of Itô and

Stratonovich. Lyapunov function approach to the stochastic

stability of stochastic systems are introduced in [9], [10].

In this theory, nonnegative supermartingales are used as

stochastic Lyapunov functions and asymptotic convergence

of sample trajectories, or flows of the stochastic differential

equations is proven by the martingale convergence theorem.

The notion of the stochastic passivity for the stochastic

systems is introduced in [11]. One can utilize the well-known

results of the stabilization method by the output feedback for

the passive systems [12], [13], [14] to achieve the asymptotic

stability for the stochastic nonlinear systems in probability.

The aim of this paper is to introduce stochastic

port-Hamiltonian systems which are extension of port-

Hamiltonian systems, and clarify some of their properties.
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Some properties such as invariance under a class of trans-

formations and passivity of port-Hamiltonian systems do not

generally hold for the stochastic port-Hamiltonian systems.

Firstly, we show a necessary and sufficient condition to

preserve the stochastic Hamiltonian structure of the original

system under time-invariant coordinate transformations. Sec-

ondly, we derive a condition to maintain stochastic passivity

of the system. Thirdly, we introduce stochastic generalized

canonical transformations which are extension of general-

ized canonical transformations proposed in [15]. Stochastic

generalized canonical transformations are pairs of coordinate

and feedback transformations under which the stochastic

port-Hamiltonian structure is preserved. Finally, we propose

a stabilization method based on stochastic passivity such

that we transform a stochastic port-Hamiltonian system to

a passive one and then stabilize the system by the output

feedback based on stochastic passivity.

II. STOCHASTIC PORT-HAMILTONIAN SYSTEMS

This section proposes stochastic port-Hamiltonian systems

which are extension of port-Hamiltonian systems [3], [1], [2]

and clarifies some of their properties.

Port-Hamiltonian systems are described by the following

form (1) and they are utilized to express various deterministic

passive systems







ẋ = (J(x) − R(x))
∂H(x)

∂x

T

+ g(x)u

y = g(x)T
∂H(x)

∂x

T
. (1)

We extend these systems into the stochastic dynamical

systems which are described by the following stochastic

differential equation written in the sense of Itô,







dx = (J(x) − R(x))
∂H(x)

∂x

T

dt + g(x)u dt + h(x)dw

y = g(x)T
∂H(x)

∂x

T
.

(2)

Here x(t) ∈ R
n, u(t), y(t) ∈ R

m describe the state,

the input and the output, respectively. The structure matrix

J(x) ∈ R
n×n and the dissipation matrix R(x) ∈ R

n×n

are skew-symmetric and symmetric positive semi-definite,

respectively. Hamiltonian H(x) ∈ R is smooth function,

which describes the total energy of the system. w(t) ∈ R
r

is a standard Wiener process defined on a probability space

(Ω,F ,P), where Ω is a sample space, F is the sigma algebra

of the observable random events and P is a probability

measure on Ω. g : R
n → R

n×m and h : R
n → R

n×r are
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smooth functions. We define the systems (2) as stochastic

port-Hamiltonian systems. In this paper, according to [16]

we introduce the notion of stability in probability for the

systems (2) as follows.

Definition 1: The equilibrium solution x ≡ 0 of the

systems (2) is stable in probability if and only if for any

ǫ > 0 and δ > 0, there exists r = r(ǫ, δ) > 0 such that if

the initial condition x(t0) satisfies ‖x(t0)‖ < r(ǫ, δ), then

P

{

sup
t≤t0

‖x(t)‖ > ǫ

}

< δ.

Definition 2: The equilibrium solution x ≡ 0 of the

systems (2) is asymptotically stable in probability if and only

if it is stable in probability and for any ǫ > 0,

lim
T→∞

P

{

sup
t≤T

‖x(t)‖ > ǫ

}

= 0.

The following lemma is obtained in [15] for the port-

Hamiltonian systems.

Lemma 1: [15] The port-Hamiltonian system (1) is trans-

formed into another one by any time-invariant coordinate

transformation.

This lemma implies that the port-Hamiltonian structure is

preserved under any time-invariant coordinate transforma-

tion. However, this lemma does not always hold in the

case of the stochastic port-Hamiltonian system. One can

prove the following theorem which characterizes the class

of time-invariant coordinates which preserve the stochastic

port-Hamiltonian structure.

Theorem 1: The stochastic port-Hamiltonian system (2) is

transformed into another stochastic port-Hamiltonian system

by a time-invariant coordinate transformation x̄ = Φ(x) if

and only if there exists a skew-symmetric matrix K(x) and

a symmetric matrix S(x) such that R(x) + S(x) is positive

semi-definite and they satisfy

1

2
tr

{

∂

∂x

(
∂Φi

∂x

)T

hhT

}

=
∂Φi

∂x
(K − S)

∂H

∂x

T

(i = 1, 2, · · · , n) , (3)

where tr{·} represents the trace of the argument and (·)i

represents the i-th row of the argument.

Proof: Firstly, the necessity of Eq. (3) is shown. By

utilizing the Itô formula [17], [16], the dynamics of the

system in the new coordinate x̄ is calculated as

dx̄i =
∂Φi

∂x
dx +

1

2
tr

{

∂

∂x

(
∂Φi

∂x

)T

hhT

}

dt

=

[

∂Φi

∂x
(J − R)

∂H

∂x

T

+
1

2
tr

{

∂

∂x

(
∂Φi

∂x

)T

hhT

}]

dt

+
∂Φi

∂x
gudt +

∂Φi

∂x
hdw (4)

Suppose that a stochastic port-Hamiltonian system (2) is

transformed into another one by a time-invariant coordinate

x̄ = Φ(x). Then, the following equation holds for all u and

w

R.H.S. of Eq. (4)

≡

[

(J̄(x̄) − R̄(x̄))
∂H(Φ−1(x̄))T

∂x̄

]i

dt +
[
ḡ(x̄)u

]i
dt

+
[
h̄(x̄)dw

]i
. (5)

This implies

∂Φ

∂x
g ≡ ḡ,

∂Φ

∂x
h ≡ h̄. (6)

The symbol [·]−1 represents the inverse matrix of the argu-

ment and if no confusion arises, ·−1 represents the inverse

function of the argument function in what follows. The first

term of the right hand side of Eq. (5) is calculated as follows:

[

(J̄(x̄) − R̄(x̄))
∂H(Φ−1(x̄))T

∂x̄

]i

=

[

∂Φ

∂x

[
∂Φ

∂x

]−1

(J̄ − R̄)

[
∂Φ

∂x

]−T
∂Φ

∂x

T ∂H(Φ−1(x̄))T

∂x̄

]i

=
∂Φi

∂x

[
∂Φ

∂x

]−1

(J̄ − R̄)

[
∂Φ

∂x

]−T
∂H(x)T

∂x
. (7)

By using Eqs. (4), (5) and (7), we have

1

2
tr

{

∂

∂x

(
∂Φi

∂x

)T

hhT

}

=
∂Φi

∂x

[
([∂Φ

∂x

]−1

J̄

[
∂Φ

∂x

]−T

−J
)

−
([∂Φ

∂x

]−1

R̄

[
∂Φ

∂x

]−T

−R
)
]

∂H(x)T

∂x
. (8)

We define the matrices K(x) and S(x) from Eq. (8) as

K(x) :=

[
∂Φ

∂x

]−1

J̄(Φ(x))

[
∂Φ

∂x

]−T

− J(x),

S(x) :=

[
∂Φ

∂x

]−1

R̄(Φ(x))

[
∂Φ

∂x

]−T

− R(x).

Then, K(x) is skew-symmetric since J(x) and J̄(Φ−1(x))
are so and, for R(x) is symmetric and R̄(Φ−1(x)) is

symmetric positive semi-definite, S(x) is symmetric and

R(x)+S(x) is symmetric positive semi-definite. This proves

the necessity of Eq. (3).

Secondly, the sufficiency of Eq. (3) is shown. The output

y can be calculated using Eq. (6) in the new coordinate x̄ as

y = gT

[
∂Φ

∂x

]T [
∂Φ

∂x

]−T
∂H

∂x

T

=

(
∂Φ

∂x
g

)T(
∂H

∂x

∂Φ−1(x̄)

∂x̄

)T

= ḡT ∂H

∂x̄

T

. (9)

Therefore, the output y has the same form in x̄ as in x. Now

suppose that Eq. (3) holds. Then, by utilizing Eqs. (3) and
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(4), the dynamics of the system can be calculated in the new

coordinate x̄ as

dx̄i =

[

∂Φi

∂x
(J − R)

∂H

∂x

T

+
∂Φi

∂x
(K − S)

∂H

∂x

T
]

dt

+
∂Φi

∂x
gudt +

∂Φi

∂x
hdw

=

[(
∂Φ

∂x
(J + K)

∂Φ

∂x

T

︸ ︷︷ ︸

=:J̄

−
∂Φ

∂x
(R + S)

∂Φ

∂x

T

︸ ︷︷ ︸

=:R̄

)

×
∂H(Φ−1(x̄))

∂x̄

T
]i

dt +
∂Φi

∂x
g

︸ ︷︷ ︸

=:ḡi

udt +
∂Φi

∂x
h

︸ ︷︷ ︸

=:h̄i

dw (10)

=:

[

(J̄(x̄) − R̄(x̄))
∂H(Φ−1(x̄))T

∂x̄

]i

dt +
[
ḡ(x̄)u

]i
dt

+
[
h̄(x̄)dw

]i
. (11)

Then, J̄(x̄) is skew-symmetric since J(Φ−1(x̄)) and

K(Φ−1(x̄)) are so, and R̄(x̄) is symmetric positive semi-

definite because of the assumption that R(Φ−1(x̄)) +
S(Φ−1(x̄)) is so. This proves the sufficiency of Eq. (3).

Remark 1: Consider the port-Hamiltonian system (1) and

we apply Theorem 1 to the system. In this case, h(x) ≡ 0
holds. Then, Eq. (3) is rewritten by

∂Φi

∂x
(K − S)

∂H

∂x

T

= 0, (i = 1, 2, · · · , n). (12)

The condition (12) holds for any H and Φ if we select

the matrices K(x) ≡ 0 and S(x) ≡ 0. This implies that

any time-invariant coordinate transformation preserves the

Hamiltonian structure. It shows that Theorem 1 implies the

existing result for the port-Hamiltonian system as a special

case.

We now turn to another fundamental property of the

stochastic port-Hamiltonian system which is an extension of

the passivity of the port-Hamiltonian system. The passivity

of the port-Hamiltonian system is stated by the following

lemma.

Lemma 2: [2] Consider the port-Hamiltonian system (1).

Suppose that Hamiltonian H(x) is positive semidefinite.

Then, the system is passive with the storage function H(x).
Furthermore, if R(x) ≡ 0, then, the system is lossless with

the storage function H(x).
In the literature [11], the notion of stochastic passivity

which corresponds to the passivity for the deterministic

system is introduced for the stochastic system as follows.

Definition 3: [11] Consider the nonlinear stochastic dif-

ferential system written in the sense of Itô

{
dx = f(x, u)dt + h(x)dw

y = s(x, u)
, (13)

where x(t) ∈ R
n, u(t), y(t) ∈ R

m describe the state, the

input and the output, respectively. w(t) ∈ R
r is a standard

Wiener process defined on a probability space (Ω,F ,P).
f : R

n×R
m → R

n, h : R
n → R

n×r and s : R
n×R

m → R
m

are smooth functions.

The stochastic system (13) is said to be stochastic passive

if there exists s positive semidefinite function V : R
n → R,

called the storage function satisfying

LV (x) ≤ s(x, u)Tu. (14)

Here L(·) represents the infinitesimal generator [16] of the

stochastic process of the system (13) defined as

L(·) :=
∂(·)

∂x
f +

1

2
tr

{

∂

∂x

(
∂(·)

∂x

)T

hhT

}

. (15)

Unlike in the case of the port-Hamiltonian system, the

stochastic port-Hamiltonian system is not always stochastic

passive even if Hamiltonian H(x) is positive semi-definite.

The following lemma characterizes the stochastic passivity

of the stochastic port-Hamiltonian system.

Lemma 3: Consider the stochastic port-Hamiltonian sys-

tem (2). Suppose that Hamiltonian H(x) is positive semi-

definite. Then, the system is stochastic passive if and only

if

1

2
tr

{

∂

∂x

(
∂H(x)

∂x

)T

h(x)h(x)T

}

≤
∂H

∂x
R

∂H

∂x

T

(16)

holds.

Proof: Firstly, the necessity of Eq. (16) is shown. By

utilizing Eq. (15), LH(x) is calculated as

LH(x) =
∂H

∂x

(

(J − R)
∂H

∂x

T

+ gu

)

+
1

2
tr

{

∂

∂x

(
∂H

∂x

)T

hhT

}

= −
∂H

∂x
R

∂H

∂x

T

+ yTu +
1

2
tr

{

∂

∂x

(
∂H

∂x

)T

hhT

}

. (17)

Since J is skew-symmetric, the following equation holds

∂H

∂x
J

∂H

∂x

T

= 0.

Suppose that the system (2) is stochastic passive. Then, from

Eq. (14), we obtain

LH(x) ≤ yTu. (18)

By utilizing Eqs. (17) and (18), we can prove the necessity

of Eq. (16).

Secondly, the sufficiency of Eq. (16) is shown. Substituting

Eq. (16) for Eq. (17), we obtain Eq. (18). According to Eq.

(14), this proves the sufficiency of Eq. (16).

Due to Lemma 3, we obtain the following corollary.
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Corollary 1: Consider the stochastic port-Hamiltonian

system (2). Suppose that Hamiltonian H(x) is positive semi-

definite and R(x) ≡ 0. Then, the system is stochastic lossless
1 if and only if

tr

{

∂

∂x

(
∂H(x)

∂x

)T

h(x)h(x)T

}

= 0

holds. Suppose the system (2) is stochastic lossless and

moreover u ≡ 0. Then, Hamiltonian H(x) is a conserved

quantity of the stochastic system.

Remark 2: Consider the port-Hamiltonian system (1) and

we apply Lemma 3 to the system. In this case, h(x) ≡ 0
holds. Then, the condition (16) always holds. This implies

that Lemma 3 reduces to Lemma 2 for the deterministic port-

Hamiltonian system as a special case.

III. RECOVERY OF STOCHASTIC PASSIVITY VIA

STOCHASTIC GENERALIZED CANONICAL

TRANSFORMATIONS

The generalized canonical transformations are proposed

in [15] to transform both the input and the output of the

port-Hamiltonian system (1) into those of another port-

Hamiltonian system which has another Hamiltonian. This

section extends such transformations to stochastic versions

for the stochastic port-Hamiltonian systems. We clarify the

conditions of the transformations by which the transformed

system preserves the stochastic Hamiltonian structure and,

furthermore, obtains stochastic passivity.

Firstly, we define the stochastic generalized canonical

transformations. Then, we show the conditions which these

transformations should satisfy.

Definition 4: A set of transformations

x̄ = Φ(x)

H̄ = H(x) + U(x)

ȳ = y + α(x)

ū = u + β(x) (19)

that changes the coordinate x to x̄, Hamiltonian H to H̄ , the

output y to ȳ and the input u to ū is said to be a stochastic

generalized canonical transformation for the stochastic port-

Hamiltonian system if it transforms the system described by

(2) into another one. Here U : R
n → R, α : R

n → R
m and

β : R
n → R

m are appropriate functions, respectively.

Theorem 2: Consider the stochastic port-Hamiltonian

system (2). For a given scalar function U(x) and a given

vector function β(x), the set of transformations defined by

(19) yields a stochastic generalized canonical transformation

if and only if there exists a skew-symmetric matrix P (x), a

symmetric matrix Q(x) such that R(x) + Q(x) is positive

1In this paper, we define the notion of stochastic lossless by Eq. (14)
replacing “≤” by “=” as in the similar manner of the deterministic case.

semi-definite and a function Φ(x) and they satisfy

1

2
tr

{

∂

∂x

(
∂Φi

∂x

)T

hhT

}

=
∂Φi

∂x

[

(J − R)
∂U

∂x

T

+ gβ + (P − Q)
∂(H + U)

∂x

T
]

(i = 1, 2, · · · , n). (20)

Further the change of the output α(x) defined in (19) is

given by

α(x) = g(x)T
∂U(x)

∂x

T

. (21)

Proof: Firstly, the necessity of the theorem is shown.

In the same manner as Eq. (5), the dynamics of the system

in the new coordinate x̄ is calculated as

dx̄i =

[

∂Φi

∂x
(J − R)

∂H

∂x

T

+
1

2
tr

{

∂

∂x

(
∂Φi

∂x

)T

hhT

}]

dt

+
∂Φi

∂x
gudt +

∂Φi

∂x
hdw (22)

Suppose a function Φ(x) which yields a stochastic gener-

alized canonical transformation exists and a stochastic port-

Hamiltonian system (2) is transformed into another one using

a stochastic generalized canonical transformation with U, β

and Φ such that (20) holds. Then, the following equation

holds for all u and w

R.H.S. of Eq. (22)

≡

[

(J̄ − R̄)
∂H̄(Φ−1(x̄))T

∂x̄

]i

dt +
[
ḡū
]i

dt +
[
h̄dw

]i

=
∂Φi

∂x

[
∂Φ

∂x

]−1

(J̄ − R̄)

[
∂Φ

∂x

]−T
∂(H(x) + U(x))T

∂x
dt

+
[
ḡ(u + β)

]i
dt +

[
h̄dw

]i
. (23)

This implies
∂Φ

∂x
g ≡ ḡ,

∂Φ

∂x
h ≡ h̄. (24)

Using Eqs. (22), (23) and (24), we have

1

2
tr

{

∂

∂x

(
∂Φi

∂x

)T

hhT

}

=

∂Φi

∂x

[ [
∂Φ

∂x

]−1

(J̄ − R̄)

[
∂Φ

∂x

]−T
∂(H + U)

∂x

T

−(J − R)
∂H

∂x

T

+ gβ

]

. (25)

Here we define the matrices P (x) and Q(x) as

P (x) :=

[
∂Φ

∂x

]−1

J̄(Φ(x))

[
∂Φ

∂x

]−T

− J(x),

Q(x) :=

[
∂Φ

∂x

]−1

R̄(Φ(x))

[
∂Φ

∂x

]−T

− R(x). (26)
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Then, Q(x) is skew-symmetric since J(x) and J̄(Φ(x)) are

so and, for R(x) is symmetric and R̄(Φ(x)) is symmetric

positive semi-definite, Q(x) is symmetric and R(x) + Q(x)
is symmetric positive semi-definite. By substituting Eq. (26)

for Eq. (25), Equation (20) is obtained immediately.

The change of the output α(x) which yields a stochastic

generalized canonical transformation (19) can be calculated

as

α = ḡT ∂H̄(Φ−1(x̄))

∂x̄

T

− gT ∂H(x)

∂x

T

= gT ∂Φ

∂x

T [∂Φ

∂x

]−T
∂(H + U)

∂x

T

− gT ∂H(x)

∂x

T

= gT ∂U

∂x

T

.

This proves the necessity of the theorem.

Secondly, the sufficiency of the theorem is shown. Now

suppose the assumption of the theorem holds. Then, by

substituting Eq. (20) for (22), the dynamics of the system

can be calculated in the new coordinate x̄ as

dx̄i =

[

∂Φi

∂x
(J − R)

∂H

∂x

T

+
∂Φi

∂x

[

(J − R)
∂U

∂x

T

+ gβ

+(P − Q)
∂(H + U)

∂x

T]
]

dt +
∂Φi

∂x
gudt +

∂Φi

∂x
hdw

=

[

∂Φ

∂x

(

(J+P ) − (R+Q)
)∂Φ

∂x

T

×
∂(H(Φ−1(x̄)) + U(Φ−1(x̄)))

∂x̄

T
]i

dt

+
∂Φi

∂x
g(u + β)dt +

∂Φi

∂x
hdw. (27)

J̄ , R̄, ḡ and h̄ are given by

J̄(x̄) =
∂Φ(x)

∂x
(J(x)+P (x))

∂Φ(x)

∂x

T
∣
∣
∣
∣
∣
x=Φ−1(x̄)

R̄(x̄) =
∂Φ(x)

∂x
(R(x)+Q(x))

∂Φ(x)

∂x

T
∣
∣
∣
∣
∣
x=Φ−1(x̄)

ḡ(x̄) =
∂Φ(x)

∂x
g(x)

∣
∣
∣
∣
∣
x=Φ−1(x̄)

,

h̄(x̄) =
∂Φ(x)

∂x
h(x)

∣
∣
∣
∣
∣
x=Φ−1(x̄)

. (28)

Then, J̄(x̄) is skew-symmetric since J(Φ−1(x̄)) and

P (Φ−1(x̄)) are so, and R̄(x̄) is symmetric positive semi-

definite because of the assumption that R(Φ−1(x̄)) +
Q(Φ−1(x̄)) is so. By utilizing Eq. (21), the output in the

new coordinate ȳ is obtained as

ȳ = gT ∂H(x)

∂x

T

+ gT ∂U(x)

∂x

T

= gT ∂Φ

∂x

T [∂Φ

∂x

]−T
∂(H + U)

∂x

T

= ḡT ∂H̄(Φ−1(x̄))

∂x̄

T

.

This proves the sufficiency of the theorem.

Remark 3: Consider the port-Hamiltonian system (1) and

we apply Theorem 2 to the system. In this case, h(x) ≡ 0
holds. Then, the condition (20) in Theorem 2 can be rewritten

as

∂Φ

∂x

[

(J − R)
∂U

∂x

T

+ gβ + (P − Q)
∂(H + U)

∂x

T
]

= 0.

This coincides with the time-invariant version of Theorem 1

(i) in [18] which is a generalized version of a result from

[15] incorporating the dissipative element R in (1). This

implies that in considering the time-invariant case, Theorem

2 implies a result for the port-Hamiltonian system as a

special case.

By utilizing Lemma 3 and Theorem 2, the following theo-

rem states a condition under which a transformed stochastic

port-Hamiltonian system by a stochastic generalized canoni-

cal transformation becomes stochastic passive with Hamilto-

nian H̄ as a storage function and, furthermore, a stabilization

method based on stochastic passivity.

Theorem 3: Consider the stochastic port-Hamiltonian

system (2) and transform it by the stochastic generalized

canonical transformation with appropriate functions U(x)
and β(x) such that H(x)+U(x) ≥ 0. Then, the transformed

system becomes stochastic passive with new Hamiltonian

H̄ := H + U as a storage function if and only if

1

2
tr







∂

∂x

(

∂(H + U)

∂x

[
∂Φ

∂x

]−1
)T

h(x)h(x)T
∂Φ

∂x

T







≤
∂(H + U)

∂x
(R + Q)

∂(H + U)

∂x

T

(29)

holds. Furthermore, if H + U is positive definite and a

set defined as bellow holds Γ ∩ Ω = {0}. Then the unity

feedback ū = −ȳ renders the system asymptotically stable

in probability. Here, the distribution Λ, the sets Γ and Ω are

defined as

Λ = span{adk
f̄0

ḡi|0 ≤ k ≤ n − 1, 1 ≤ i ≤ m}

Γ = {x̄ ∈ R
n|Lk

0(H + U) = 0, k = 1, · · · , r}

Ω = {x̄ ∈ R
n|Lk

0Lλ(H + U) = 0,

∀λ ∈ Λ, k = 0, · · · , r − 2},

where f̄0 := (J̄(x̄) − R̄(x̄))∂H̄(Φ−1(x̄))
∂x̄

T
, ḡi represents i-th

row of ḡ and an operator L0 denotes the operator (15) in

which f̄ is replaced by f̄0.
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Proof: Firstly, the former part of the theorem is shown.

Due to Lemma 3, the necessary and sufficient condition

is that the following equation holds in the new coordinate

transformed by the stochastic generalized canonical trans-

formation

1

2
tr

{

∂

∂x̄

(
∂H̄(Φ−1(x̄))

∂x̄

)T

h̄(x̄)h̄(x̄)T

}

≤
∂H̄

∂x̄
R̄

∂H̄

∂x̄

T

. (30)

Let us note that the following equation holds

∂

∂x̄

(
∂H̄(Φ−1(x̄))

∂x̄

)T

=
∂

∂x

(

∂H̄(x)

∂x

[
∂Φ(x)

∂x

]−1
)T[

∂Φ(x)

∂x

]−1

. (31)

By utilizing (28),(30) and (31), one can prove Eq. (29) holds

immediately. The latter part of theorem is shown by directly

applying Corollary 4.7 in [11].

Example 1: Consider a typical mechanical system with

random noises






(
dq

dp

)

=

(
0 Im

−Im −D

)




∂H(q,p)
∂q

T

∂H(q,p)
∂p

T



dt

+

(
0

Im

)

udt +

(
0

h(q, p)

)

dw

y = ∂H(q,p)
∂p

T
= M(q)−1p

(32)

with the Hamiltonian H = 1
2pTM(q)−1p, where q, p ∈

R
m, a positive matrix M(q) denotes the inertia matrix, a

positive semidefinite matrix D denotes the friction coeffi-

cients and w(t) ∈ R
m is a standard Wiener process. Im

represents the m × m unit matrix. Here we suppose that

h = diag{k1
hp1, · · · , km

h pm} with real numbers k1
h, · · · , km

h .

We assign any positive definite scalar function U(q) so that

H̄ becomes positive definite. By using Theorem 2, we obtain

a stochastic generalized canonical transformation as q̄ = q,

p̄ = p, α = 0, β = ∂U(q)
∂q

T
− Q22M(q)−1p, where

P := 0, Q :=

(

0 0

0 Q22

)

, Q22 = QT
22 ≥ 0.

Then by using Theorem 3, the condition under which the

transformed system becomes stochastic passive is

1

2
tr
{
M(q)−1hhT

}
≤ pTM(q)−1 (D + Q22) M(q)−1p.

(33)

Since we have

tr
{
M(q)−1hhT

}
= hTM(q)−1h ≤ ‖M(q)−1‖‖h‖2

≤ ‖M(q)−1‖ max
1≤i≤m

{ki
h}

2‖p‖2,

a candidate Q22 =
max1≤i≤m{ki

h
}2

2‖M(q)−1‖ Im satisfies Eq. (33) and

u = −M(q)−1p − β renders the system stochastic stable.

IV. CONCLUSION

This paper has introduced stochastic port-Hamiltonian sys-

tems and clarified some of their properties. Firstly, we have

shown a necessary and sufficient condition to preserve the

stochastic Hamiltonian structure of the original system under

time-invariant coordinate transformations. Secondly, we have

derived a condition to maintain stochastic passivity of the

system. Thirdly, we have introduced stochastic generalized

canonical transformations. We have also given a condition

that the transformed system by this transformation becomes

stochastic passive. Finally, a stabilization method based on

passivity has been proposed.

In our recent result [19], we extend the results to the

time-varying version and apply them to stochastic trajectory

tracking control.
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