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Abstract— This paper describes the problem of feedback
control for stabilization of the plasma vertical instability in
a tokamak. Such controllers are typically designed based on
a model that assumes the plasma mass m is identically zero.
However, the assumption of m = 0 can lead to a controller C
that appears to be stabilizing according to the massless analysis
but in fact will increase the instability of the physical system.

In this work, we consider the most commonly used type
of controller, a proportional-derivative controller. Suppose C
is a PD controller which stabilizes the vertical instability
with plasma mass assumed to be zero. We give easy-to-check
necessary and sufficient conditions for C to also stabilize the
physical system, in which the plasma actually has a small mass.

I. INTRODUCTION

Tokamaks are torus-shaped devices designed to confine a
plasma composed of ionized hydrogen isotopes while the
plasma is heated to initiate fusion reactions. This paper
describes the problem of feedback control for stabilization
of the vertical instability in tokamaks. Such controllers are
typically designed based on a massless model of the plasma.
Our goal is to produce a few additional constraints on the
design to ensure that the controller performs adequately in
the physical system, in which plasmas actually have a small
mass. The solution of this problem is of more than academic
interest, since the assumption of zero mass represents a point
of bifurcation in the plasma response model [1]. Without
careful handling, this bifurcation can lead to a completely
erroneous analysis of the system and massively destabilizing
control design.

A. Background on the Model

The dynamics of the plant comprising a tokamak confining
an assumed axisymmetric plasma is constructed from the
basic electromagnetic equation [1]

Mİ + RδI + Ψz ˙zC + Ψr ˙rC = UδV (1)

where M and R are the mutual inductance and resistance
of the toroidal conductors whose currents define the states
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of (1), and Ψz,Ψr represent the partial derivatives of flux
values at those conductors with respect to vertical (zC) and
radial (rC) motion of the plasma current centroid (“center of
mass” of the distributed plasma current). Toroidal currents in
(respectively, voltages on) conductors are represented by the
vector I (resp., V ) while δI = I−Ieq (resp., δV = V −Veq )
represents a perturbation of the currents (voltages) from their
values defining a nominal plasma equilibrium. The vector I
includes both currents in active control coils and in toroidal
conducting vessel elements. We make the standard approxi-
mation that plasma current is conserved on the time scale of
the vertical instability. In the following, we use the notation
δI = [δIc δIv]T to represent a partitioning of the current
vector into the nc active control coils and the nv passive
(vacuum vessel) currents, U = [Inc

0nc×nv
]T , where Inc

and 0nc×nv
are identity and zero matrices respectively. The

vertical motion of the centroid for a plasma having mass m
can be represented by the inertial momentum equation

mz̈C = fzδzC + fIδI (2)

where δzC = zC − zC,eq represents perturbed values relative
to the plasma current centroid vertical coordinate at the
nominal plasma equilibrium, fz = ∂Fz/∂zC , fI = ∂Fz/∂I ,
and Fz is the total vertical force on the plasma. We note that
Ψz = fT

I [1].
The equations (1) and (2) can be combined to form the

overall plant model. From equation (1) we obtain

M#İ + RδI + Ψz ˙zC = UδV (3)

where M# = M+Ψr(∂rC/∂I) and ∂rC/∂I is derived from
a linearization of the plasma response around the chosen
nominal plasma equilibrium. Defining the variables vz =
˙zC = d(δzC)/dt, xz = [vT

z δzT
C ]T , we can write (2) as(

0 1
m 0

)
ẋz +

(
−1 0
0 −fz

)
xz +

(
0
−fI

)
δI = 0 .

Combining with (3), we obtain the matrix equation

M̃ẋ + R̃x = ŨδV , (4)

where

x =

 vz

δzC

δI

 , M̃ =

 0 1 0
m 0 0
0 Ψz M#

 , (5)

R̃ =

−1 0 0
0 −fz −fI

0 0 R

 , Ũ =

0
0
U

 .
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If the equilibrium plasma boundary is sufficiently verti-
cally elongated, so that fz > 0, it can be shown [1] that the
system (4) possesses a single positive real eigenvalue. The
eigenvector corresponding to the unstable root corresponds
to a nearly rigid vertical motion of the plasma current
distribution, hence the name. Stabilization of the vertical in-
stability requires a feedback control loop that produces radial
magnetic field across the plasma in response to changes in
some measure of the plasma vertical position, typically the
plasma current centroid position zC [2]. The vertical control
portion of a tokamak shape and stability feedback system
often takes the (PD) form

δV = −Gp(zC − zC,ref)−Gd dzC/dt , (6)

where δV is the additional (nonequilibrium) voltage applied
to the PF coils, zC − zC,ref is the displacement of zC from
some reference position zC,ref, and dzC/dt is the vertical
velocity of the plasma. The gains Gp and Gd are vectors
which map the scalar errors to the set of active control
coils. Under many conditions, this feedback can completely
stabilize the vertical instability [2].

B. Plasmas With and Without Mass

For convenience of design, the mass of the plasma is
neglected in virtually every design of stabilizing controllers
for the vertical instability [1]. In neglecting plasma mass,
the inertial momentum equation (2) is used with m = 0
to derive the algebraic relation ∂zC/∂I = −fI/fz , which
reduces by two the state dimension of (4). However, the
assumption of m = 0 can lead to erroneous conclusions
and, in particular, to controllers that appear to be stabilizing
according to the massless analysis but will not actually
stabilize the physical system. Such controllers can in fact
cause the closed loop system to be far more unstable than the
original open-loop system [1]. For the simple PD controller
(6), additional physical insight is typically used in the control
design process to ensure a correctly stabilizing controller.
Absent this insight or when designing a more sophisticated
(e.g. LQG) controller, the question remains as to how to
guarantee that a stabilizing controller developed with the
assumption m = 0 will also be stabilizing for the actual
physical plant, for which m > 0.

In [1], stability properties of the open-loop system (1)
were characterized and several conditions necessary for a
PD controller of the form (6) to feedback-stabilize the
physical (with-mass) system were derived. In the present
work, we address the practical problem of characterizing
when a controller that has been designed using the standard
but strictly incorrect zero plasma mass assumption is able to
actually stabilize the physical system with mass m > 0.
We provide necessary and sufficient conditions for a PD
controller (6) to guarantee stability with mass m > 0 if it
stabilizes the system with m = 0.

C. Mathematical Problem Statement

We can derive an expression for the characteristic polyno-
mial for the plasma with mass model (4) with PD feedback

(6) which is key to analyzing stability [3]. In our situation,
this polynomial can be defined as the determinant

det

−1 λ 0
λm −fz −fI

0 λΨz + λgd + gp λM# + R

 , (7)

where the vectors gp = [GT
p 0]T and gd = [GT

d 0]T

contain zeros in entries corresponding to the passive (vessel)
conductors. The closed loop system is asymptotically stable
if and only if this determinant is nonzero for all values of
λ in the closed RHP, which in turn holds if and only if
det G(λ) 6= 0 where

G(λ) =
(

λ2m− fz −fI

λΨz + λgd + gp λM# + R

)
.

Equivalently, the closed loop is stable if and only if the
matrix G(λ) is invertible for all λ in the closed RHP.

At this point we note that both M# and R are positive
definite; hence M# is invertible and [λM# +R] is invertible
for all λ in the closed RHP [3].

We would like to answer the following:

Problem 1.1: Suppose one has chosen a controller
(gd, gp) so that the system is asymptotically stable for mass
m = 0. What are necessary and sufficient conditions so that
the system will be asymptotically stable for all masses in
some interval containing zero? Furthermore, we would like
a method for computing the maximum allowable mass.

We have explained how the asymptotic stability of the
physical system is equivalent to the invertibility of G(λ) for
all λ in the closed RHP. Next we will express this condition
in terms of another function of λ.

Definition 1.2: We define a function

Sm(λ) := λ2m− fz + fI [λM# + R]−1 [λΨz + λgd + gp] .

The reason for defining this function is the following:

Remark 1.3: For any complex number λ where
[λM# + R] is invertible, we have

G(λ) is invertible ⇐⇒ Sm(λ) 6= 0 .

Proof. This is immediate since Sm(λ) is just the Schur
complement of the matrix G(λ). See, for example, page 21
of [4]. �

In addition, this function has the following useful proper-
ties:

Lemma 1.4: For all m ≥ 0,

1) Sm(λ) is a rational function of λ,
2) Sm(λ) = S0(λ) + λ2m,
3) S0(λ) is analytic and real valued at ∞. In particular,

S0(∞) = −fz + fIM
−1
# [Ψz + gd] .
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Proof. From the definition of Sm(λ), the first and second
claim are obviously true. It remains to prove the last claim.
We have

S0(λ) = −fz + fI [λM# + R]−1[λΨz + λgd + gp] .

Observe that for any nonzero λ where [λM#+R] is invertible
we have

[λM# + R]−1[λΨz + λgd + gp]

= λ−1[M# + λ−1R]−1λ[Ψz + gd + λ−1gp]

= [M# + λ−1R]−1[Ψz + gd + λ−1gp] .

As λ →∞ we have

[Ψz + gd + λ−1gp] → [Ψz + gd]

and since M# is invertible,

[M# + λ−1R]−1 → M−1
# .

The result follows. �
All of this (Remark 1.3 and Lemma 1.4) combines to

prove that we would solve Problem 1.1 if we could solve
the following more general problem:

Problem 1.5: Suppose that for all m ≥ 0,
1) sm(λ) is a rational function of λ,
2) sm(λ) = s0(λ) + λ2m,
3) s0(λ) is analytic and real valued at ∞.

Suppose s0(λ) has no zeros in the closed RHP. What are
necessary and sufficient conditions so that there exists m∗ >
0 with the property that sm(λ) has no λ zeroes in the closed
RHP for all m ∈ [0,m∗)? Furthermore, we would like a
method for computing the maximum choice for m∗.

Since it is merely a question concerning rational func-
tions, Problem 1.5 constitutes a considerable abstraction of
Problem 1.1. For this reason, we write sm(λ) to denote a
general rational function with the desired properties (as in
the statement of Problem 1.5), and write Sm(λ) to mean
the specific function (which has these properties) given in
Definition 1.2.

In this paper we will solve Problem 1.5, thereby solving
Problem 1.1.

II. MAIN RESULTS

In this section we describe our main results. In §II-A we
give the solution to Problem 1.5, and in §II-B we translate
this into the language of the tokamak and plasma system,
thus giving the solution to Problem 1.1. In §II-C we outline a
practical method for determining the maximum plasma mass
for which the zero-mass feedback controller is stabilizing.

A. Solution in Terms of Rational
Functions

The solution to Problem 1.5 is given by the following
theorem, whose proof we postpone until §III.

Theorem 2.1: Suppose that for m ≥ 0,
1) sm(λ) is a rational function of λ,
2) sm(λ) = s0(λ) + λ2m,
3) s0(λ) is analytic and real valued at ∞.

Define a constant c by writing

s0(λ) = s0(∞)+cλ−1+b(λ) , with λb(λ) → 0 as λ →∞.

Suppose that s0(∞) 6= 0 and c 6= 0. Further, suppose that
s0(λ) has no zeros in the closed RHP. Then there exists
m∗ > 0 such that sm(λ) has no zeros in the closed RHP for
all m ∈ [0,m∗) if and only if s0(∞) > 0 and c < 0.

It remains to give a closed form expression for the largest
possible choice of m∗. The following definition will help us
write down such an expression.

Definition 2.2: Let s0(λ) be a rational function. We call
ω0 a critical value if the graph of s0(iω) crosses the positive
real axis at ω = ω0. Clearly there are finitely many critical
values.

The following proposition, whose proof we also postpone
until §III, gives the expression we seek.

Proposition 2.3: In Theorem 2.1, the largest choice for
m∗ is

m∗ = min
k=1,...,`

{
s0(iωk)

ω2
k

}
, (8)

where ω1, . . . , ω` are the nonzero critical values. If there are
no nonzero critical values, then the quantity on the righthand
side of (8) is defined to be ∞.

B. Vertical Stability of the Tokamak Plasma

Here are necessary and sufficient conditions for a massless
plasma analysis to predict the vertical stability of a plasma
with small mass (thus solving Problem 1.1).

Theorem 2.4: Consider the tokamak and plasma system
discussed in §I. Suppose the closed loop system is stable for
mass zero. Define

ξ = −fz + fIM
−1
# [Ψz + gd]

η = fIM
−1
# gp − fIM

−1
# RM−1

# [Ψz + gd] .

Suppose that ξ 6= 0 and η 6= 0. Then there exists m∗ > 0
such that the system is stable for all m ∈ [0,m∗) if and only
if ξ > 0 and η < 0.

Based on a small example set (see §II-C) and on physical
intuition, we speculate that the maximum mass m∗ will
always be so large as to impose no practical constraint
beyond satisfaction of the basic necessary and sufficient
conditions ξ > 0 and η < 0 just described.

We remark that the necessity of these conditions has
already been shown in [1]. To prove this result we require a
lemma which explicitly computes the constant c as described
in Theorem 2.1.
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Lemma 2.5: The function S0(λ) given in Definition 1.2
has the following expansion in 1/λ.

S0(λ) = −fz + fIM
−1
# [Ψz + gd] +

fIM
−1
# gp − fIM

−1
# RM−1

# [Ψz + gd]
λ

+ . . .

Proof. We set M = M# and v = Ψz + gd for ease of
notation. Now we have

S0(λ) = −fz + fI [λM + R]−1 [λv + gp]

Observe that, for |λ| sufficiently large,

[λM + R]−1 =
[
λM(I + (λM)−1R)

]−1

=
[
I + (λM)−1R

]−1
(λM)−1

=
[
I − (λM)−1R + . . .

]
(λM)−1

=
M−1

λ
− M−1RM−1

λ2
+ . . . ,

and hence

[λM + R]−1 [λv + gp]

=
[
M−1

λ
− M−1RM−1

λ2
+ . . .

]
[λv + gp]

= M−1v +
M−1gp −M−1RM−1v

λ
+ . . . ,

and the result follows. �
We remark in passing that the above also gives an alternate

proof to part 3 of Lemma 1.4.

Proof of Theorem 2.4. We apply Theorem 2.1 (which will
be proved in §III) to the function Sm(λ) given in Definition
1.2 and take into account the explicit computations of S0(∞)
and c given in Lemmas 1.4 and 2.5. �

C. Outline of the Method with an Example

Here we outline a practical method for computing the
maximum mass stabilizable using gains chosen based on the
massless plasma approximation.

1) Choose a controller (gd, gp) so that the system is
asymptotically stable for mass zero .

2) Check that the conditions given in Theorem 2.4 hold.
3) Plot the graph {S0(iω) : −∞ < ω < ∞} and estimate

the critical values ω1, . . . , ω` (see definitions 1.2 and
2.2).

4) Compute the maximum allowable mass using Propo-
sition 2.3.

As an illustration, we describe an application of this
method to a model of the KSTAR Tokamak [5], [6]. A cross-
section of the KSTAR Tokamak is shown in Figure 1, with a
plasma cross-section shown in the interior. The active control
coils 1 through 14 outside of the vacuum vessel are used to
establish the plasma equilibrium. The internal coils 15 and

Fig. 1. Cross-section of the KSTAR Tokamak.

17 are dedicated to vertical position (stability) control and
coils 16 and 18 used for radial position control.

To achieve vertical stability of the plasma we set the
following gains:

gd(15) = 0;
gd(17) = 0;
gp(15) = 800;
gp(17) = -800;

Step 1: Our software verifies that these gain values stabilize
the closed loop system at mass zero.

Step 2: As required by Theorem 2.4 we compute the values
of ξ and η:

ξ = 6.2 · 106

η = −208.0 · 106

Since ξ > 0 and η < 0, we know that the closed loop
system is stable for sufficiently small mass. (Therefore it
makes sense to compute the maximum allowable mass.)

Step 3: We obtain the following plot for S0(iω):

Fig. 2. Plot of {S0(iω) : −∞ < ω < ∞}
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The graph in Figure 2 crosses the real axis at 4 values of ω.
The (ω, S0(iω)) pairs are:

(−11.0, 2.8 · 106)
(0, 2.5 · 107)
(+11.0, 2.8 · 106)
(∞, 6.2 · 106)

The crossings at ω1 := −11.0 and ω2 := +11.0 yield
nonzero critical values, since wk ∈ R\{0} and S0(iωk) > 0
for k = 1, 2.

Step 4: For k = 1, 2 we compute S0(iωk)/ω2
k. We obtain:

2.3 · 104,

2.3 · 104

(It was expected that these two values would be equal since
ω1 = −ω2. In general, the nonzero critical values will
come in pairs and the above computation only needs to be
performed once for each pair.) The maximum allowable mass
m∗ is the minimum of the values we just computed (see
Proposition 2.3). In this simple example there is only one
value. We conclude that m∗ = 2.3 · 104 kg, a quantity far
greater than the masses occurring in the tokamak which are
on the order of a milligram.

III. PROOFS

In this section we provide the proofs of the results stated
in §II-A. Together, §III-A, §III-B, and §III-C make up the
proof of Theorem 2.1, which is the meat of the situation and
underlies all our results. Then in §III-D, we give the proof
of Proposition 2.3. Throughout this section we will use basic
results from complex function theory. One reference, among
many possible references, is [7].

A. Counting the zeros of sm(λ)

We want to understand the behavior of the zeros of sm(λ)
as we vary the parameter m. We start with a lemma.

Lemma 3.1: Suppose that for m ≥ 0,

1) sm(λ) is a rational function of λ,
2) sm(λ) = s0(λ) + λ2m,
3) s0(λ) is analytic and real valued at ∞.

Suppose s0(∞) 6= 0. Then we have the following:

1) If s0(λ) has k zeros counting multiplicity, then sm(λ)
has k + 2 zeros counting multiplicity for all m > 0.
Moreover, all of these zeros move continuously in m.

2) We may write the zeros of s0(λ) as {α1
0, . . . , α

k
0}

and for fixed m > 0 the zeros of sm(λ) as
{α1

m, . . . , αk
m, β1

m, β2
m} so that m 7→ αi

m gives a
continuous function [0,∞) → C for i = 1, . . . , k, and
m 7→ βi

m gives a continuous function (0,∞) → C for
i = 1, 2. We call β1

m and β2
m the excess zeros.

3) As m → 0 we have βi
m →∞ for i = 1, 2.

Proof. Since s0 is rational with s0(∞) 6= 0, we can write
s0 = p/q for coprime polynomials of equal degree; hence

sm(λ) =
p(λ) + λ2mq(λ)

q(λ)
. (9)

When m > 0, the numerator of (9) is a polynomial of degree
k + 2; furthermore, (9) is in lowest terms since a common
zero of p(λ) + λ2mq(λ) and q(λ) would be a zero of p(λ).
It follows that sm(λ) has k + 2 zeros counting multiplicity.

Now we show that the zeros move continuously in m.
Fix m ∈ [0,∞). Let γ1

m, . . . , γr
m be an enumeration of the

zeros of sm(λ); repeats are allowed. Let ε > 0. Without
loss of generality, suppose that ε > 0 is small enough so
that all the closed balls Bε(γi

m) of radius ε centered at the
roots of sm(λ) are disjoint (except that possibly some of
them are identical) and that furthermore, that sm(λ) has no
poles in any of these closed ε-balls. Take δ > 0 such that
|m̂ − m| < δ implies that sm̂(λ) has no poles in any of
the closed ε-balls and no zeros on their boundaries. (When
we write |m̂ − m| < δ, it is implicit that m̂ ≥ 0.) When
|m − m̂| < δ, the number of zeros sm̂(λ) in Bε(γi

m) is
given by

N(γi
m; m̂) :=

1
2πi

∫
|ξ−γi

m|=ε

s′m̂(ξ)
sm̂(ξ)

dξ .

Since s′m̂(ξ)/sm̂(ξ) is continuous in m̂, we immediately see
that N(γi

m; m̂) is a continuous function of m̂ defined on
the set {m̂ : |m̂ −m| < δ}. Since N(γi

m; m̂) takes integer
values, we immediately see that N(γi

m; m̂) = N(γi
m;m)

whenever |m̂−m| < δ. When m̂ and m are within distance
δ of each other, we have paired each γi

m with a zero of
sm̂(λ) which is within ε distance of γi

m. We conclude that
the zeros of sm(λ) move continuously in m. Part (2) of the
lemma follows immediately from part (1).

It remains to show that βi
m → ∞ as m → 0. Let βm

denote either of the βi
m. If it is not the case that βm → ∞

as m → 0, then there is a sequence of nonzero real numbers
mn → 0 such that βmn converges to a complex number β0,
which must be a zero of s0(λ); that is, β0 = αj

0 for some
j. We seek a contradiction. Setting m = 0 and letting ε > 0
be sufficiently small as in the above argument (where now
we have r = k and γi

m = αi
0) we can choose δ > 0 so that

N(αi
0; m̂) = N(αi

0; 0) when 0 ≤ m̂ < δ. By part (1) of
the lemma, the total number of zeros of s0(λ) is equal to k.
Hence for 0 ≤ m̂ < δ, we have

′∑
N(αi

0; m̂) =
′∑

N(αi
0; 0) = k

where the sum is taken over a set of representatives for the
collection of distinct ε-balls. However, if we choose N large
enough so that

|mN | < δ , |βmN
− αj

0| < ε ,

then we find that

α1
mN

, . . . , αk
mN

, βmN
∈

k⋃
i=1

Bε(αi
0)
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are all zeros of sm(λ), and hence the value of
∑′

N(αi
0; m̂)

is at least k + 1, a contradiction. �

B. The asymptotics of the excess zeros

If we assume that α1
0, . . . , α

k
0 lie in the open LHP, then

for small m > 0, we know that α1
m, . . . , αk

m also lie in the
open LHP. We want to know which half-plane the βi

m lie in
when m > 0 is small.

Proposition 3.2: Suppose that for m ≥ 0,
1) sm(λ) is a rational function of λ,
2) sm(λ) = s0(λ) + λ2m,
3) s0(λ) is analytic and real valued at ∞.

Define a constant c by writing

s0(λ) = s0(∞)+cλ−1+b(λ) , with λb(λ) → 0 as λ →∞.

Let βm denote either of the excess zeros (as in Lemma 3.1).
If s0(∞) > 0, then as m → 0 we have

<(βm) → c

2s0(∞)
, |=(βm)| → ∞ .

Here, <(z) and =(z) denote the real and imaginary parts
of a complex number z, respectively.

Proof. We write

sm(λ) = s0(∞) + cλ−1 + b(λ) + λ2m

with λb(λ) → 0 as λ →∞. Let βm be either of the excess
zeros. We see that βm satisfies

s0(∞) + cβ−1
m + b(βm) + β2

mm = 0

and hence

βms0(∞) + c + βmb(βm) + β3
mm = 0 .

As m → 0, we have βm → ∞ by Lemma 3.1 and hence
βmb(βm) → 0. Therefore, as m → 0, we have

βms0(∞) + c + β3
mm → 0 . (10)

We write βm in terms of its real and imaginary parts as
βm = rm + jm; for ease of notation we will write r = rm

and j = jm. Note that β3
m = r3 + 3rj2 + 3r2j + j3 which

has real part r3 + 3rj2 and imaginary part 3r2j + j3. Now
we decompose (10) into real and imaginary parts to find:

c + r[s0(∞) + (r2 + 3j2)m] → 0 (11)

j[s0(∞) + (3r2 + j2)m] → 0 (12)

The proof of the proposition will follow from our analysis
of (11) and (12). First we establish two claims.

Claim: For m > 0 small, jm is bounded away from 0.

If this is not the case, then there exists mn → 0 such that
jmn → 0. For ease of notation, we will write r = rmn ,
j = jmn

, and m = mn. In this case we must have |r| → ∞
since βm →∞ by Lemma 3.1; hence (11) gives

s0(∞) + (r2 + 3j2)m → 0 .

Finally, since 3j2m → 0 this implies s0(∞)+r2m → 0; that
is, r2m → −s0(∞). This requires s0(∞) ≤ 0 in order to be
possible, which contradicts our hypothesis that s0(∞) > 0.

Claim: rm is bounded

If this is not the case, then there is a sequence mn → 0
such that |rmn

| → ∞. We seek a contradiction. For ease of
notation, we will write r = rmn

, j = jmn
and m = mn.

From Equation (11) we have s0(∞) + (r2 + 3j2)m → 0,
which gives (r2 +3j2)m → −s0(∞), and from (12) and the
fact that |j| is bounded away from 0, we have (3r2+j2)m →
−s0(∞). Combining these yields

(8j2)m → −2s0(∞) , (8r2)m → −2s0(∞) .

Subtracting, we obtain

(|j|2 + r2)m → 0 ,

so r2m → 0 which implies s0(∞) = 0, contradicting
s0(∞) > 0. Having successfully proven the claim that rm is
bounded, we dispense with our subsequences.

In light of the fact that rm is bounded, we now know that
|jm| → ∞ since |βm| → ∞ by Lemma 3.1. It remains to
show that the limit of rm exists and find its limit. Equation
(12) gives

s0(∞) + (3r2 + j2)m → 0 ;

since r is bounded, this implies s0(∞) + j2m → 0, and
hence j2m → −s0(∞). Since r is bounded, Equation (11)
yields

c + r[s0(∞) + 3j2m] → 0 .

Further, since j2m → −s0(∞), this implies

c + r[−2s0(∞)] → 0 ,

and therefore
r → c

2s0(∞)
.

This completes the proof of the proposition. �
Now we completely understand the situation when

s0(∞) > 0.

Corollary 3.3: Under the hypotheses of Proposition 3.2
plus the assumption that s0(λ) has no zeros in the closed
RHP, we have:

1) If s0(∞) > 0 and c < 0, then there exists m∗ > 0
such that sm(λ) has no zeros in the closed RHP for
all m ∈ (0,m∗).

2) If s0(∞) > 0 and c > 0, then there exists m∗ > 0
such that sm(λ) has at least one zero in the open RHP
for all m ∈ (0,m∗).

Proof. This follows immediately from the continuity of the
zeros given by Lemma 3.1, and the asymptotics given in
Proposition 3.2. �
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C. s0(∞) < 0 begets instability

From the analysis given up until this point, it is not clear
what happens to the βi

m as m → 0 in the case where
s0(∞) < 0; indeed, it is not even clear whether such a limit
will exist. The following proposition gives a more delicate
analysis of the case where s0(∞) < 0.

Proposition 3.4: Suppose that for m ≥ 0,
1) sm(λ) is a rational function of λ,
2) sm(λ) = s0(λ) + λ2m,
3) s0(λ) is analytic and real valued at ∞.

Suppose s0(∞) < 0, and let δ > 0 be given. Then there
exists m ∈ (0, δ) such that sm(λ) = 0 for some λ in the
open RHP.

Proof. For any m ≥ 0, we have

sm(λ) = s0(λ) + λ2m

and therefore sm(λ) = 0 if and only if s0(λ) + λ2m = 0.
Making the substitution λ = 1/z we find that this is true
whenever

Fm(z) := m + z2s0(1/z) = 0

for some z 6= 0. Since s0(1/z) is analytic at z = 0 we may
write

s0(1/z) = s0(∞) + zg(z)

where g(z) is analytic at z = 0. By taking δ small enough,
we may assume, without loss of generality, that g(z) is
analytic and this expression for s0(1/z) holds for all z ∈
B2δ(0). This yields

m + z2s0(1/z) = m + z2s0(∞) + z3g(z)

which we can write as

Fm(z) = fm(z) + z3g(z)

when we define

fm(z) := m + z2s0(∞) .

Choose ε > 0 such that

ε < δ ,
ε2|s0(∞)|

2
< δ ,

and |z| ≤ ε implies

|zg(z)| < |s0(∞)|
2

. (13)

Fix

m :=
ε2|s0(∞)|

2

and observe that m ∈ (0, δ). Define

Ω := {z ∈ C | <z > 0, |z| < ε}

and

z0 :=
√

m

|s0(∞)|
.

Since s0(∞) < 0, we have fm(z0) = 0. Furthermore,

z2
0 =

m

|s0(∞)|
<

2m

|s0(∞)|
= ε2 ,

and hence z0 ∈ (0, ε); that is, z0 ∈ Ω. Clearly, the only other
zero of fm(z) is −z0 /∈ Ω. Also, being a polynomial, fm(z)
has no poles. Since g(z) is analytic in B2δ(0), we know that
Fm(z) has no poles in B2δ(0) ⊇ Ω.

We will shortly apply Rouche’s Theorem (see, for exam-
ple, [7]) to conclude that Fm(z) has exactly one zero in
Ω. In order to satisfy the appropriate hypotheses, we must
show that |z3g(z)| < |fm(z)| for all z ∈ ∂Ω. In particular,
this will also demonstrate that Fm(z) has no zeros on ∂Ω.
Since |z| ≤ ε for all z ∈ Ω, taking into account (13), it
suffices to show that

|fm(z)|
|z2|

≥ |s0(∞)|
2

for all z ∈ ∂Ω. First we consider the portion of ∂Ω that lies
on the imaginary axis. If z = iω with ω real and |z| ≤ ε,
then we have

|fm(z)|
|z2|

=
m

ω2
+ |s0(∞)| > |s0(∞)|

2
.

(Note that the above relied again on the fact that s0(∞) < 0.)
Now we treat the remaining portion of ∂Ω. We have

|s0(∞)|
2

=
m

ε2

and hence for |z| = ε,

|fm(z)|
|z2|

=
∣∣∣m
z2

+ s0(∞)
∣∣∣

≥ |s0(∞)| − m

ε2

=
|s0(∞)|

2
.

Having satisfied the necessary hypotheses, we invoke
Rouche’s Theorem to conclude that Fm(z) has a zero, say
z0 ∈ Ω. It follows that γ := 1/z0 is in the open RHP and
sm(γ) = 0. �

Now the proof of Theorem 2.1 follows immediately from
from Corollary 3.3 and Proposition 3.4.

D. The largest value for m∗

Having completed the proof of Theorem 2.1, we are now
in a position to prove Proposition 2.3. First we need a
preliminary lemma.

Lemma 3.5: Suppose that for m ≥ 0,
1) sm(λ) is a rational function of λ,
2) sm(λ) = s0(λ) + λ2m.

If ω is a nonzero critical value (see Definition 2.2), then for

m =
s0(iω)

ω2
,

the function sm(λ) has a zero on the imaginary axis.
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Proof. By definition, ω being a nonzero critical value implies
that s0(iω) is a positive real number and hence

m =
s0(iω)

ω2

is a positive real number with s0(iω)−ω2m = 0. Substituting
λ = iω into the equation sm(λ) = s0(λ) + λ2m yields
sm(iω) = s0(iω)− ω2m = 0. That is, sm(λ) has a zero on
the imaginary axis. �

Proof of Proposition 2.3. Suppose that the hypotheses of
Theorem 2.1 are satisfied, and further suppose that s0(∞) >
0 and c < 0. In this case, Theorem 2.1 says that there exists
m∗ > 0 so that sm(λ) has no zeros in the closed RHP for
all m ∈ [0,m∗). Choose the largest possible value for m∗,
allowing the possibility that m∗ = ∞. Now define

m̂ := min
k=ω1,...,ω`

{
s0(iωk)

ω2
k

}
,

where ω1, . . . , ω` are the critical values (see Definition 2.2),
taking the convention that m̂ = ∞ if there are no critical
values. We must show that m̂ = m∗. From Lemma 3.5 we
already know m∗ ≤ m̂. To show that m∗ ≥ m̂, which would
complete the proof, we must show that for all m ∈ (0, m̂),
the function sm(λ) has no zeros in the closed RHP.

By way of contradiction, suppose that there exists m ∈
(0, m̂) such that sm(λ) has a zero in the closed RHP. By
Corollary 3.3, sm(λ) has no zeros in the closed RHP when
m > 0 is sufficiently small. Moreover, Lemma 3.1 tells us
that when m ∈ (0,∞), all of the zeros of sm(λ) move
continuously in m. Thus there is some intermediate value of
m for which sm(λ) has a zero on the imaginary axis. That
is, sm(iω) = 0 for some ω ∈ R. We note that ω 6= 0, since
if ω was equal to zero, we would have s0(0) = sm(0) = 0,
violating the hypothesis that s0(λ) has no zeros in the closed
RHP. Since sm(iω) = s0(iω) − ω2m, we have s0(iω) =
ω2m ∈ (0,∞) and hence the graph of s0(iω) crosses the
positive real axis at this particular value of ω. Thus ω is a
critical value and we conclude that

m =
s0(iω)

ω2
≥ m̂ ,

which contradicts the assumption that m ∈ (0, m̂). �

IV. CONCLUSIONS

In this paper, we have derived necessary and sufficient
conditions (see Theorem 2.4) for a proportional-derivative
controller to guarantee stabilization of the vertical instability
of a tokamak plasma having some positive mass provided
it stabilizes the instability with the plasma mass assumed
to be zero. We have also devised a means of computing
the maximum mass of a plasma that is stabilizable with this
controller (see Proposition 2.3). In practice, these two results
lead to an easy-to-follow procedure (see §II-C). Based on a
small example set and on physical intuition, we speculate that
this maximum mass will always be so large as to impose no
practical constraint on plasma mass. This means that steps
(3) and (4) in the method of §II-C may not be necessary
in practice. However, step (2), which consists of verifying
the inequalities ξ > 0 and η < 0 described in Theorem
2.4, must be performed in order to avoid reaching erroneous
conclusions (see the first paragraph of §I).
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