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Abstract— Research on numerical solution methods for par-
tially observable Markov decision processes (POMDPs) has
primarily focused on discrete-state models, and these algorithms
do not generally extend to continuous-state POMDPs, due to
the infinite dimensionality of the belief space. In this paper,
we develop a computationally viable and theoretically sound
method for solving continuous-state POMDPs by effectively
reducing the dimensionality of the belief space via density pro-
jection. The density projection technique is also incorporated
into particle filtering to provide a filtering scheme for online
decision making. We provide an error bound between the value
function induced by the policy obtained by our method and
the true value function of the POMDP. Finally, we illustrate
the effectiveness of our method through an inventory control
problem.

I. INTRODUCTION

Partially observable Markov decision processes

(POMDPs) model sequential decision making under

uncertainty with partially observed state information. At

each stage or period, an action is taken based on a partial

observation of the current state along with the history

of observations and actions, and the state transitions

probabilistically. The objective is to minimize (or maximize)

a cost (or reward) function, where costs (or rewards) are

accrued in each stage.

A POMDP can be converted to a continuous-state Markov

decision process (MDP) by introducing the notion of the

belief state [4], which is the conditional distribution of the

current state given the history of observations and actions.

For a finite-state model, the belief space is finite dimensional

(i.e., a simplex), whereas for a continuous-state model, the

belief space is an infinite-dimensional space of continuous

probability distributions. This difference suggests that simple

generalizations of many of the discrete-state algorithms to

continuous-state models are not appropriate or applicable.

For example, discretization of the continuous-state space

may result in a discrete-state POMDP of dimension either

too huge to solve computationally or not sufficiently pre-

cise. Taking another example, many algorithms for solving

discrete-state POMDPs (see [11] for a survey) are based on

discretization of the finite-dimensional probability simplex;
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however, it is usually not feasible to discretize an infinite-

dimensional probability distribution space.

Despite the abundance of algorithms for discrete-state

POMDPs, the aforementioned difficulty has motivated some

researchers to look for efficient algorithms for continuous-

state POMDPs [15] [19] [17] [6]. Thrun [19] addressed

continuous-state POMDPs using particle filtering to simulate

the propagation of belief states and represent the belief states

by a number of samples. The number of samples determines

the dimension of the belief space, and the dimension could

be very high in order to approximate the belief states

closely. Roy [17] proposed augmented MDP (AMDP), using

maximum likelihood state and entropy to characterize belief

states, which are usually not sufficient statistics except for

the linear Gaussian model. As shown by the author, the

algorithm fails in a simple robot navigation problem, since

the two statistics are not sufficient for distinguishing between

a unimodal distribution and a bimodal distribution. Brooks

et al. [6] proposed a parametric POMDP, representing the

belief state as a Gaussian distribution with the parameters of

mean and standard deviation, so as to convert the POMDP

to a problem of computing the value function over a two-

dimensional continuous space. The restriction to the Gaus-

sian representation has the same problem as the AMDP.

Motivated by the work of [19], [17], and [6], we develop a

computationally tractable algorithm that effectively reduces

the dimension of the belief state and also has the flexibility

to represent arbitrary belief states, such as multimodal or

heavy tail distributions. The idea is to project the original

high/infinite-dimensional belief space to a low-dimensional

family of parameterized distributions by minimizing the

Kullback-Leibler (KL) divergence between the belief state

and its projection on that family of distributions. For an

exponential family, the minimization of KL divergence can

be carried out in analytical form, making the method very

easy to implement. The projected belief MDP can then be

solved on the parameter space by using simulation-based

algorithms, or can be further approximated by a discrete-

state MDP via a suitable discretization of the parameter space

and thus solved by using standard solution techniques such

as value iteration and policy iteration. Our method can be

viewed as a generalization of the AMDP in [17] and the

parametric POMDP in [6], which considers only the family

of Gaussian distributions. In addition, we provide theoretical

results on the error bound of the value function and the

performance of the policy generated by our method.

We also develop a projection particle filter for online

filtering and decision making, by incorporating the density
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projection technique into particle filtering. The projection

particle filter we propose here is a modification of the

projection particle filter in [2]. Unlike in [2] where the

predicted conditional density is projected, we project the

updated conditional density, so as to ensure the projected

belief state remains in the given family of densities.

II. CONTINUOUS-STATE POMDP

A discrete-time continuous-state POMDP can be formu-

lated as:

xk+1 = f(xk, ak, uk), k = 0, 1, . . . , (1)

yk = h(xk, ak−1, vk), k = 1, 2, . . . , (2)

y0 = h0(x0, v0),

where for all k, the state xk is in a continuous state space

S ∈ Rnx , the action ak is in a finite action space A ∈ Rna ,

the observation yk is in a continuous observation space O ∈
Rny , the random disturbances {uk} ∈ Rnx and {vk} ∈ Rny

are sequences of i.i.d. continuous random vectors. Assume

that {uk} and {vk} are independent of each other, and

independent of x0, which follows a distribution p0. Also

assume that f(x, a, u) is continuous in x for every a ∈ A

and u ∈ Rnx , h(x, a, v) is continuous in x for every a ∈ A

and v ∈ Rnx , and that h0(x, v) is continuous in x for every

v ∈ Rnx .

A belief state is defined as the conditional probability

density of the current state xk given the past history, i.e.,

bk(xk) = pk(xk|y0, y1, . . . , yk, a0, a1, . . . , ak−1).

Given our assumptions on (1) and (2), bk exists, and can be

computed recursively via Bayes’ rule:

bk+1(xk+1) ∝

p(yk+1|xk+1, ak)

∫

p(xk+1|ak, xk)bk(xk)dxk. (3)

The righthand side of the above expression can be expressed

in terms of bk, ak and yk+1. Hence,

bk+1 = ψ(bk, ak, yk+1), (4)

where yk+1 is characterized by the time-homogeneous con-

ditional distribution PY (yk+1|bk) that is induced by (1) and

(2), and does not depend on {y0, . . . , yk}.

A POMDP can be converted to an MDP by conditioning

on the history of observations and actions, and the converted

MDP is called the belief MDP. The states of the belief

MDP are the belief states, which follow the system dynamics

(4), where yk can be seen as the system noise with the

distribution PY . The state space of the belief MDP is the

belief space, denoted by B, which is the set of all belief

states, i.e., a set of probability densities. A policy π is a

sequence of functions π = {µ0, µ1, . . .}, where each function

µk maps the belief state bk into the action space A. We

assume the one-step cost function g : S×A → R is bounded

for all (x, a) ∈ S × A. The belief one-step cost function

g̃(bk, ak) is related to g(x, ak) by

g̃(bk, ak) =

∫

x∈S

g(x, ak)bk(x)dx

, 〈g(·, a), b〉.

The objective is to find a policy π to minimize the cost

function

Jπ(b0) = E{Yk}

{

∞
∑

k=0

γkg̃(xk, µk(bk))

}

,

where γ ∈ (0, 1) is the discount factor. The dynamic

programming (DP) mapping to any bounded function J :
S → R is defined by

TJ(b) = min
a∈A

[〈g(·, a), b〉 + γEY {J(ψ(b, a, Y ))}], (5)

where EY denotes the expectation with respect to the distri-

bution PY . The optimal cost function is obtained by

J∗(b) = lim
k→∞

T kJ(b), ∀b ∈ B.

For finite-state problems, the belief state b lies in a finite-

dimensional probability simplex. For continuous state-space

problems, the belief space is an infinite-dimensional space of

continuous probability densities. The infinite dimensionality

prohibits exact value iteration, and also imposes difficulty

on applying the approximate algorithms that were developed

for finite state-space POMDPs. One straightforward and

commonly used approach is to approximate a continuous-

state POMDP by a discrete-state one via discretization of

the state space. In practice, this could lead to computational

difficulties, either resulting in a belief space that is of huge

dimension or in a solution that is not accurate enough. In

addition, note that even for a relatively nice prior distribution

bk (e.g., a Gaussian distribution), the exact evaluation of

the posterior distribution bk+1 is computationally intractable;

moreover, the update bk+1 may not have any structure, and

therefore can be very difficult to handle. Therefore, for

practical reasons, we often wish to have a low-dimensional

belief space and to have a posterior distribution bk+1 that

stays in the same distribution family as the prior bk.

To address the aforementioned difficulties, we apply

the density projection technique to project the infinite-

dimensional belief space onto a finite/low-dimensional pa-

rameterized family of densities, so as to derive a so-called

projected belief MDP, which is an MDP with a finite/low-

dimensional state space and therefore can be solved by many

existing methods.

III. PROJECTED BELIEF MDP

A projection mapping from the belief space B to a family

of parameterized densities Ω, denoted as ProjΩ : B → Ω,

is defined by

ProjΩ(b) , arg min
f∈Ω

DKL(b‖f), b ∈ B, (6)
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where DKL(b‖f) denotes the Kullback-Leibler (KL) diver-

gence (or relative entropy) between b and f , which is

DKL(b‖f) ,

∫

log
b(x)

f(x)
b(x)dx. (7)

Hence, the projection of b on Ω has the minimum KL

divergence from b among all the densities in Ω.

When Ω is an exponential family of densities, the min-

imization (6) has an analytical solution and can be carried

out easily. The exponential families include many common

families of densities, such as Gaussian, binomial, Poisson,

Gamma, etc. An exponential family of densities is defined as

follows [3]:

Definition 1: Let {c1(·), . . . , cm(·)} be affinely inde-

pendent scalar functions defined on R
n, i.e., for dis-

tinct points x1, . . . , xm+1,
∑m+1

i=1
λic(xi) = 0 and

∑m+1

i=1
λi = 0 implies λ1, . . . , λm+1 = 0, where c(x) =

[c1(x), . . . , cm(x)]T . Assuming that Θ0 = {θ ∈ R
m :

ϕ(θ) = log
∫

exp (θT c(x))dx < ∞} is a convex set with

a nonempty interior, then Ω defined by

Ω = {f(·, θ), θ ∈ Θ},

f(x, θ) = exp [θT c(x) − ϕ(θ)],

where Θ ⊆ Θ0 is open, is called an exponential family

of probability densities. θ is the parameter and c(x) is the

sufficient statistic of the probability density.

For an exponential family, the projection mapping in (6)

can be carried out in analytical form, as shown below. Since

DKL(b‖f(·, θ))

=

∫

log b(x)b(x)dx −

∫

log f(x, θ)b(x)dx,

minimizing DKL(b‖f(·, θ)) is equivalent to maximizing
∫

log f(x, θ)b(x)dx =

∫

(θT c(x) − ϕ(θ))b(x)dx. (8)

Recalling the fact that the log-likelihood l(θ) =
θT c(x) − ϕ(θ) is strictly concave in θ [13], therefore,
∫

(θT c(x) − ϕ(θ))b(x)dx is also strictly concave in θ.

Hence, (8) has a unique maximum and the maximum is

achieved when the first-order condition is satisfied, i.e.
∫

(cj(x) −

∫

cj(x) exp (θT c(x))dx
∫

exp (θT c(x))dx
)b(x)dx = 0.

Therefore,

Eb[cj(X)] = Eθ[cj(X)], j = 1, . . . ,m, (9)

where Eb and Eθ denote the expectations with respect to b

and f(·, θ), respectively.

Density projection is a useful idea to approximate an

arbitrary (most likely, infinite-dimensional) density as accu-

rately as possible by a density in a chosen family that is

characterized by only a few parameters. Using this idea, we

can transform the belief MDP to another MDP confined on

a low-dimensional belief space, and then solve this MDP

problem. We call such an MDP the projected belief MDP.

Its state is the projected belief state b
p
k ∈ Ω that satisfies the

system dynamics

b
p
0 = ProjΩ(b0),

b
p
k+1

= ψ(bp
k, ak, yk+1)

p, k = 0, 1, . . . ,

where ψ(bp
k, ak, yk+1)

p = ProjΩ(ψ(bp
k, ak, yk+1)), and the

dynamic programming mapping on the projected belief MDP

is

T pJ(bp) = min
a∈A

[〈g(·, a), bp〉 + γEY {J(ψ(bp, a, Y )p)}].

(10)

For the projected belief MDP, a policy is denoted as πp =
{µp

0, µ
p
1, . . .}, where each function µ

p
k maps the projected

belief state b
p
k into the action space A. Similarly, a stationary

policy is denoted as µp; an optimal stationary policy is

denoted as µ
p
∗; and the optimal value function is denoted

as J
p
∗ (bp).

The projected belief MDP is in fact a low-dimensional

continuous-state MDP, and can be solved in numerous ways.

For example, it can be solved using value iteration or

policy iteration by converting the projected belief MDP to

a discrete-state MDP problem via a suitable discretization

of the projected belief space (i.e., the parameter space) and

then estimating the one-step cost function and transition

probabilities on the discretized mesh.

IV. PROJECTION PARTICLE FILTERING

Solving the projected belief MDP gives us a near-optimal

policy, which tells us what action to take at each projected

belief state. In an online implementation, at each time k,

the decision maker receives a new observation yk, estimates

the belief state bk, and then chooses his action ak according

to bk and the near-optimal policy. Hence, to implement our

approach requires addressing the problem of estimating the

belief state. Estimation of bk, or simply called filtering,

does not have an analytical solution in most cases except

linear Gaussian systems, but it can be solved using many

approximation methods, such as the extended Kalman filter

and particle filtering. Here we focus on particle filtering,

because 1) it outperforms the extended Kalman filter in many

nonlinear/non-Gaussian systems [1], and 2) we will develop

a projection particle filter to be used in conjunction with the

projected belief MDP.

Particle filtering is a Monte Carlo simulation-based

method that approximates the belief state by a finite number

of particles/samples and mimics the propagation of the belief

state [1] [9]. As we have already shown, the belief state

evolves recursively as (3). The integration in (3) can be

approximated using Monte Carlo simulation, which is the

essence of particle filtering. Specifically, suppose {xi
k−1}

N
i=1

are drawn i.i.d. from bk−1, and xi
k|k−1

is drawn from

p(xk|ak−1, x
i
k−1) for each i; then bk(xk) can be approxi-

mated by the probability mass function

b̂k(xk) =
N

∑

i=1

wi
kδ(xk − xi

k|k−1), (11)
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where

wi
k ∝ p(yk|x

i
k|k−1, ak−1), (12)

δ denotes the Kronecker delta function, {xi
k|k−1

}N
i=1 are

the random support points, and {wi
k}

N
i=1 are the associated

probabilities/weights which sum up to 1. To avoid sample

degeneracy, new samples {xi
k}

N
i=1 are sampled i.i.d. from the

approximate belief state b̂k. At the next time k+1, the above

steps are repeated to yield {xi
k+1|k}

N
i=1 and corresponding

weights {wi
k+1}

N
i=1, which are used to approximate bk+1.

This is the basic form of particle filtering, which is also

called the bootstrap filter [10]. (Please see [1] for a rigorous

and thorough derivation for a more general form of particle

filtering.)

To obtain a reasonable approximation of the belief state,

particle filtering needs a large number of samples/particles.

Since the number of samples/particles is the dimension of the

approximate belief state b̂, particle filtering is not very helpful

in reducing the dimensionality of the belief space. Moreover,

particle filtering does not give us an approximate belief state

in the projected belief space Ω, hence the near-optimal policy

we obtained by solving the projected belief MDP is not

immediately applicable. Therefore, we incorporate the idea of

density projection into particle filtering, so as to approximate

the belief state by a density in Ω.

Projecting the empirical belief state b̂k onto an exponential

family Ω involves finding a f(·, θ) with the parameter θ

satisfying (9). Hence, letting b = b̂k in (9) and plugging

in (11), θ should satisfy

N
∑

i=1

wicj(x
i
k|k−1) = Eθ[cj ], j = 1, . . . ,m,

which constitutes the projection step in the projection particle

filtering.

Algorithm 1: Projection particle filtering for an exponen-

tial family of densities (PPF).

• Input: a (stationary) policy µp on the projected be-

lief MDP; a family of exponential densities Ω =
{f(·, θ), θ ∈ Θ}; a sequence of observations

y1, y2, . . . arriving sequentially at time k = 1, 2, . . ..

Output: a sequence of approximate belief states

f(·, θ̂1), f(·, θ̂2), . . ..
• Step 1. Initialization: Sample x1

0, . . . , x
N
0 i.i.d. from the

approximate initial belief state f(·, θ̂0). Set k = 1.

• Step 2. Prediction: Compute x1
k|k−1

, . . . , xN
k|k−1

by

propagating x1
k−1, . . . , x

N
k−1 according to the system

dynamics (1) using the action ak−1 = µp(f(·, θ̂k−1))
and randomly generated noise {ui

k−1}
N
i=1, i.e., sample

xi
k|k−1

from p(·|xi
k−1, ak−1), i = 1, . . . , N .

• Step 3. Bayes’ updating: Receive a new observation yk.

Calculate weights as

wi
k =

p(yk|x
i
k, ak−1)

∑N
i=1

p(yk|xi
k, ak−1)

, i = 1, . . . , N.

• Step 4. Projection: The approximate belief state is

f(·, θ̂k), where θ̂k satisfies the equations

N
∑

i=1

wi
kcj(x

i
k|k−1) = E

θ̂k
[cj ], j = 1, . . . ,m.

• Step 5. Resampling: Sample x1
k, . . . , xN

k from f(·, θ̂k).
• Step 6. k ← k + 1 and go to Step 2.

In an online implementation, at each time k, the PPF

approximates bk by f(·, θ̂k), and then decides an action ak

according to ak = µp(f(·, θ̂k)), where µp is the near-optimal

policy solved for the projected belief MDP.

V. ANALYSIS OF ERROR BOUNDS

Assuming perfect computation of the original and pro-

jected belief states, our method solves the projected belief

MDP instead of the original belief MDP. That raises two

questions: 1. How well the optimal value function of the

projected belief MDP approximates the true optimal value

function, which is be measured by

|J∗(b) − Jp
∗ (bp)|.

2. How well the optimal policy µ
p
∗ for the projected belief

MDP performs on the original belief space, which is mea-

sured by

|J∗(b) − Jµ̄
p
∗

(b)|,

where µ̄
p
∗(b) , µ

p
∗ ◦ ProjΩ(b) = µ

p
∗(b

p).
Assumption 1: There is a stationary optimal policy for the

belief MDP, denoted by µ∗, and a stationary optimal policy

for the projected belief MDP, denoted by µ
p
∗.

Assumption 1 holds under certain mild conditions [4],

[12].

Assumption 2: There exist ǫ1 > 0 and δ1 > 0 such that

for all a ∈ A, y ∈ O and b ∈ B,

|〈g(·, a), b − bp〉| ≤ ǫ1,

|〈g(·, a), ψ(b, a, y) − ψ(bp, a, y)p〉| ≤ δ1.

Assumption 2 bounds the difference between the belief

state b and its projection bp, and also the difference between

their one-step evolutions ψ(b, a, y) and ψ(bp, a, y)p. It is an

assumption on the projection error.

Assumption 3: For all b, b′ ∈ B, if |〈g(·, a), b − b′〉| ≤ δ,

then there exists ǫ > 0 such that |Jk(b)−Jk(b′)| ≤ ǫ,∀k, and

there exists ǫ̃ > 0 such that |Jµ(b) − Jµ(b′)| ≤ ǫ̃,∀µ ∈ Π.

Assumption 3 can be seen as a continuity property of the

value function. Now we present our main result.

Theorem 1: Under Assumptions 1, 2 and 3, for all b ∈ B,

|J∗(b) − Jp
∗ (b)| ≤

ǫ1 + γǫ2

1 − γ
, (13)

|J∗(b) − Jµ
p
∗

(b)| ≤
2ǫ1 + γ(ǫ2 + ǫ3)

1 − γ
, (14)

where ǫ1 is the constant in Assumption 2, and ǫ2, ǫ3 are the

constants ǫ and ǫ̃, respectively, in Assumption 3 correspond-

ing to δ = δ1. (Proof: [21].)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC15.2

5579



VI. NUMERICAL EXPERIMENTS

We consider an inventory control problem, where the

observations are noisy, e.g., inventory spoilage, misplace-

ment, distributed storage. At each period, inventory is either

replenished by an order of a fixed amount or not replenished.

The arriving random demand is filled if there is enough

inventory remaining. Otherwise, in the case of a shortage,

excess demand is not satisfied and a penalty is issued on the

lost sales amount.

Let xk denote the inventory level, uk the i.i.d. random

demand, ak the replenishment decision (ak = 1 or 0), Q

the fixed order amount, yk the observation of inventory level

xk, vk the i.i.d. observation noise, h the per period per unit

inventory holding cost, s the per period per unit inventory

shortage penalty cost. We assume that the demand uk and the

observation noise vk are both continuous random variables;

hence the state xk and the observation yk are continuous.

The system equations are as follows

xk+1 = max(xk + akQ − uk, 0), k = 0, 1, . . . ,

yk = xk + vk, k = 0, 1, . . . .

The cost incurred in period k is

gk(xk, ak, uk) = h max (xk + akQ − uk, 0)

+s max (uk − xk − akQ, 0).

We consider two objective functions: average cost per period

and discounted total cost.

We compare our algorithm to two other algorithms: Cer-

tainty equivalence (CE) policy and Greedy policy. Numerical

experiments are carried out in the following settings:

• Problem parameters: initial inventory level x0 = 5,

holding cost h = 1, shortage penalty cost s = 10, fixed

order amount Q = 10, random demand uk ∼ exp(5),
discount factor γ = 0.9, inventory observation noise

vk ∼ N(0, σ2) with σ ranging from 0.1 to 3.3 in steps

of 0.4.

• Algorithm parameters: We use the usual particle filter

to obtain the mean estimate of the states for CE. The

number of particles in both the usual particle filter and

the projection particle filter is N = 200; the exponential

family in the projection particle filter is chosen as the

Gaussian family; the set of grids on the projected belief

space is G = { mean = [0 : 0.5 : 15], standard deviation

= [0 : 0.2 : 5]}; one run of horizon length H = 105 for

each average cost criterion case, 1000 independent runs

of horizon length H = 40 for each discounted total cost

criterion case.

Table I and Table II list the simulated average costs

and discounted total cost under increasing observation

noises, respectively. Each entry shows the simulated average

cost/discounted total cost, and in the parentheses the percent-

age error from the average cost/discounted total cost using

the optimal threshold policy under full observation. Our

algorithm generally outperforms the other two algorithms

under all observation noise levels. CE also performs very

TABLE I: Optimal average cost estimates using different policies.
Each entry represents the average cost of a run of horizon 10

5

(Deviation above optimum under full observation in parentheses).

σ Our method CE policy Greedy policy

0.1 12.849 (0.12%) 12.842 (0.06%) 25.454 (98.34%)

0.5 12.864 (0.23%) 12.867 (0.26%) 25.457 (98.36%)

0.9 12.904 (0.55%) 12.908 (0.57%) 25.450 (98.30%)

1.3 12.973 (1.08%) 12.977 (1.12%) 25.356 (97.57%)

1.7 13.066 (1.81%) 13.100 (2.07%) 25.324 (97.32%)

2.1 13.123 (2.25%) 13.183 (2.72%) 25.332 (97.38%)

2.5 13.250 (3.24%) 13.314 (3.74%) 25.402 (97.92%)

2.9 13.374 (4.21%) 13.458 (4.86%) 25.478 (98.52%)

3.3 13.512 (5.28%) 13.603 (6.00%) 25.655 (99.90%)

TABLE II: Optimal discounted cost estimates using different poli-
cies. Each entry represents the discounted cost on 1000 independent
runs of horizon 40 (Deviation above optimum under full observation
in parentheses).

σ Our method CE policy Greedy policy

0.1 129.126 (13.57%) 129.120 (13.56%) 241.667 (112.55%)

0.5 129.097 (13.54%) 129.122 (13.57%) 242.656 (113.42%)

0.9 129.868 (14.22%) 129.593 (13.98%) 244.002 (114.61%)

1.3 130.336 (14.63%) 130.493 (14.77%) 245.673 (116.08%)

1.7 130.724 (14.98%) 130.952 (15.18%) 247.701 (117.86%)

2.1 131.778 (15.90%) 131.758 (15.88%) 249.452 (119.40%)

2.5 132.741 (16.75%) 132.536 (16.57%) 250.492 (120.31%)

2.9 133.484 (17.40%) 133.606 (17.51%) 250.811 (120.59%)

3.3 134.502 (18.30%) 134.807 (18.57%) 250.767 (120.56%)

well, and the greedy policy is much worse. For all the

algorithms, the average cost/discounted total cost increases

as the observation noise increases. That is consistent with the

intuition that we cannot perform better with less information.

Fig. 1 and Fig. 2 show the actions taken by our algorithm

as a function of the true inventory levels in the average cost

case under small and large observation noise, respectively

(the discounted total cost case is similar and is omitted here).

The dotted vertical line is the optimal threshold under full

observation, so the optimal threshold policy would yield

action a = 1 when the inventory level falls below the

threshold and yields a = 0 otherwise when there is no

observation noise. When the observation noise is small, our

algorithm yields a policy that picks actions very close to

the optimal threshold policy (see Fig.1). As the observation

noise increases, more actions picked by our policy violate

the optimal threshold (see Fig. 2), and that again shows the

value of information in determining the actions.

Although the performance of CE is comparable to that of

our method, we should notice that CE policy is generally a

suboptimal policy except in some special cases (cf. section

6.1 in [4]), and it does not have a theoretical error bound.

Moreover, to use CE requires solving the full observation

problem, which is also very difficult in many cases, not like

here a simple threshold policy. In contrast, our algorithm has

a proven error bound on the performance, and works with

the belief MDP directly without having to solve the MDP

problem under full observation.
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Fig. 1: When the observation noise is small (σ = 0.1), our method
picks actions very closely to the optimal threshold policy for the
full observation case.
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Fig. 2: When the observation noise is large (σ = 3.1), more actions
picked by our method violate the optimal threshold for the full
observation case.

VII. CONCLUSION

In this paper, we developed a method that effectively

reduces the dimension of the belief space via the orthogonal

projection of the belief states onto a parameterized family of

probability densities. For an exponential family, the orthogo-

nal projection has an analytical form and can be carried out

efficiently. An exponential family is fully represented by a

finite (small) number of parameters, hence the belief space

is mapped to a low-dimensional parameter space and the

resultant belief MDP is called the projected belief MDP. The

projected belief MDP can then be solved in numerous ways,

such as using standard value iteration or policy iteration, to

generate a policy. This policy is used in conjunction with the

projection particle filter for online decision making.

We analyzed the performance of the policy generated by

solving the projected belief MDP in terms of the difference

between the value function associated with this policy and

the optimal value function of the POMDP. We applied our

method to an inventory control problem, and it generally

outperformed other methods. When the observation noise is

small, our algorithm yields a policy that picks the actions

very closely to the optimal threshold policy. Although we

only proved theoretical results for discounted cost problems,

the simulation results indicate that our method also works

well on average cost problems. We should point out that our

method is also applicable to finite horizon problems, and is

suitable for large-state POMDPs in addition to continuous-

state POMDPs.
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