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Abstract— The detection of transient responses, i.e. non–
stationarities, that arise in a varying and small fraction of the
total number of neural spike trains recorded from chronically
implanted multielectrode grids becomes increasingly difficult as
the number of electrodes grows. This paper presents a novel
application of an unsupervised neural network for clustering
neural spike trains with transient responses. This network
is constructed by incorporating projective clustering into an
adaptive resonance type neural network (ART) architecture
resulting in a PART neural network. Since comparisons are
made between inputs and learned patterns using only a subset
of the total number of available dimensions, PART neural net-
works are ideally suited to the detection of transients. We show
that PART neural networks are an effective tool for clustering
neural spike trains that is easily implemented, computationally
inexpensive, and well suited for detecting neural responses to
dynamic environmental stimuli.

I. INTRODUCTION

Developments in technology make it possible to simulta-

neously record electrical activity from hundreds of individual

neurons using chronically implanted electrodes in awake and

behaving animals, including humans, for extended periods

[1]–[3]. By using grids of electrodes the workings of entire

neural populations can be studied neuron–by–neuron [4]–[6].

This technology has translated into novel therapies which

utilize neural stimulation [7] and, for example, the neural

control of robotic limbs [8], [9]. Indeed the possibility

of constructing direct neural–analog interfaces is becoming

a real possibility [10], [11]. However, as the number of

recording electrodes grows, the limitations of our current

abilities to extract useful information from the resulting large

data sets become increasingly apparent.

The temporal structure of the spike train often contains

more information about the stimulus than do quantities

derived over the entire train [4], [12], [13]. From a neu-

robiological point of view these localized transients often

have significance, for example, the transient synchroniza-

tions associated in processing both sensory and cognitive

information [5], [14], focal high frequency EEG oscillations

observed at seizure onset [15], and the abrupt changes in
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neural spiking patterns observed both experimentally [16]–

[18] and theoretically [18],[19] which have implications

for neural encoding. Consequently features that characterize

temporal structure, such as spike counts, interval statistics,

and synchrony, must be computed locally in bins rather

than over the entire response. The portion of the spike train

that corresponds to a bin depends on the feature chosen

for clustering, e.g. for a spike time feature the bin length

corresponds to the width of a spike, whereas it will be

longer if the feature is mean frequency. Consequently if we

define a dimension as the value of a statistic in a given bin,

the number of dimensions grows large as the length of the

spike train grows relative to the bin size, and as the number

of potentially relevant features grows [20], i.e. dimension

= number of bins × number of features. Thus analysing

populations of neural spike trains falls naturally into the

domain of high dimensional clustering [21].

One well–studied approach for clustering data without su-

pervision is to use a neural network with Adaptive Resonance

Theory (ART) [22], [23] (Figure 1a). ART neural networks

have been shown to be very effective in self–organized data

clustering problems when data cluster on all of the input

dimensions. However, as the number of dimensions becomes

large it becomes increasingly unlikely that data is similar on

all dimensions. Consequently ART neural network perfom

poorly on realistic large data sets [24] – [26]. This problem

cannot be solved by performing a dimension reduction before

analysis using techniques such as Principal Components

Analysis (PCA) [29].

This “dimensionality curse” can be overcome by incorpo-

rating projective clustering techniques into an ART neural

network; the resultant neural network is designated PART

[25]–[29] (Figure 1b). Since in a PART neural network

similarities between clusters are based on comparisons in-

volving only certain subsets of the dimensions, PART neural

networks are particularly well suited to handle issues re-

lated to nonstationarities. This is because we can identify

different time windows with different subsets of the cluster

dimensions. Here we develop a PART neural network for

the purpose of identifying transients clusters within multiple

neural spikes trains on the basis of changes in neurobi-

ologically relevant statistical features such as temporally

modulated firing rate, coefficient of variation and spike

patterns. The resulting PART neural network provides a

powerful method for clustering of neural spike trains that is

easily implemented, computationally inexpensive, and well

suited for identifying responses in neural spike trains related

to transient environmental stimuli.
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II. ART NEURAL NETWORKS

The dynamics of the unsupervised ART (Fig. 1a) and

PART (Fig. 1b) networks are governed by the equations that

describe the short term (STM) and long term (LTM) memory

traces together with a similarity condition [25], [26]. STM

corresponds to the type of memory that can be readily reset

without leaving an enduring trace. LTM represents the type

of memory usually associated with learning. It is stored in

the adaptive weights of both the bottom–up and top–down

paths (labelled z in (Fig. 1b)). Learning takes the form of

changes in these synaptic weights.

A. Short–term memory (STM) equations

Following [25], [26], the STM equations for layers F1 and

F2 in a PART neural network (Fig. 1b) are

ǫ
dxi

dt
= −xi + Ii (1)

ǫ
dxj

dt
= −xj + (1 − Axj)J

+

j − (B − Cxj)J
−
j (2)

The F2 equations derive from a Hodgkin-Huxley formulation

with center-on, surround-off, connectivity [22]. Following the

convention of [22], we use the index i to refer to the F1

nodes and j to refer to the F2 nodes. We take A = 1, B =
0 and C > 0 [25], [26]. The terms J+ and J− give the

F2 layer self–excitation and self–inhibition, and have their

typical form

J+

j = g(xj) + Tj (3)

J−
j =

∑

k 6=j,k⊂F2

g(xk) (4)

where g is a signal function, the notation k ⊂ F2 means the

indices of all the elements in the F2 node, and the total input

Tj to the j-th node of F2 is given by

Tj =
∑

i⊂F1

zijhij (5)

where zij and zji are the bottom–up and top–down synaptic

weights, and hij is the selective output (see below). Specific

forms of the signal function g are not important; however,

the simulations in this paper are based on the usual binary

function.

B. Long-term memory (LTM) equations

A node in F2 layer is called committed if it has learned

some input patterns in previous learning traces and non–

committed is it has not yet learned an input pattern. The

evolution of the bottom-up weights, zij is given by

δ
dzij

dt
= f2(xj)



(1 − zij)hijL − zij

∑

k 6=i,k⊂F1

hkj



 (6)

for the committed neurons and

δ
dzij

dt
= (1 − zij)L − zij(m − 1) (7)

Fig. 1. Schematic of ART and PART networks. a) ART network: The total
signal received by an F2 neuron is the weighted (by bottom-up weights zij )
sum of the outputs of the F1 neurons, each of which encodes a dimension of
the input space. The neuron in F2 that is activated by a given input is chosen
by a “winner–take–all” mechanism. Inputs are clustered by identifying the
input with the winning F2 node. b) The key element for the dimensionality
curse proposed by [25] was the addition of a hidden layer between the F1

and F2 layers. This hidden layer calculates the similarity between the output
of a F1 neuron and the top-down weight zji; a signal is propagated from
F1 to F2 only if the similarity measure is sufficiently high. Thus a given
F2 clustering node receives input only from a subset of the F1 neurons;
this subset determines the dimensions of the projective cluster.

for the uncommitted neurons where L is a constant para-

meter set to 2 in this paper. The top-down weights for the

uncommitted neurons evolve as

δ
dzji

dt
= f2(xj) [−zji + f1(xi)] (8)

and the committed neurons as

γ
dzji

dt
= f2(xj) [−zji + f1(xi)] (9)

Since the effect of f1(x) on the F2 layer is mediated

through the comparison layer (Fig. 1) we incorporate it into

the definition of hij (see below). Under the steady state

assumptions discussed in Section IV, f2(x) equals 1 if j is

the winning node and is 0 otherwise. It should be noted that

zij , zji, hij , and x are all time dependent variables; however,

we have omitted the (t) argument in order to simplify the

notation.

III. PART NEURAL NETWORKS

The essential differences between a PART and an ART

neural network reside in the definition of the selective output

mechanism, hij , that enables outputs to be forwarded from

the F1 to the F2 node. In a PART network, this selection

process takes place in a hidden layer between the F1 and F2

layers [25], [26]. The hidden layer calculates the similarity

between the output of a F1 neuron and the corresponding

feature of the cluster represented by a neuron in the F2–

layer: a signal is transmitted without significant loss from

F1 to F2 only if this measure of similarity is sufficiently

high. In particular we have

hij = hσ(f1(xi), zji)ℓθ(zij) (10)

where hσ compares the bottom–up signal f1(xi) and the

top-down template zji, and ℓθ is the function that insures

the bottom-up weight zij is sufficiently large. The neuron in
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F2 that learns the input is chosen through a “winner–take–

all” mechanism, i.e. the neuron in F2 with the highest net

input wins. This selection mechanism is coupled with a reset

mechanism: a winning F2 node will be reset so that it will

always be inactive during the remainder of the current trial

if it does not satisfy some vigilance conditions. In particular,

a winning (active) F2 node will be reset if at any time the

degree of match, rj ,

rj =
∑

i

hij

is less than a perscribed vigilance

rj < ρ (11)

where ρ is the vigilance parameter. The vigilance condition

ensures that clusters are formed in a subspace of significant

dimensions and thus avoids the selection of clusters based

on trivial unimportant featres. Note that this does not require

clusters to be formed in the full space.

In contrast, for an ART neural network there is no vigi-

lance layer (Fig. 1a) and the focus is to find clusters with

respect to all variables of the input vector. In ART the

total signal received by a F2–neuron is the weighted sum

of the outputs of the F1–neurons. Numerical simulations

demonstrate that PART algorithms significantly out-perform

ART networks for clustering moderate and high dimensional

data sets [25], [26].

We found that for spike time clustering it was sufficient

to use the following, particularly simple choices of hσ and

ℓθ

hσ =

{
1 if c(a, b) < σ
0 otherwise

(12)

and

ℓθ =

{
1 if zij > θ
0 otherwise

(13)

where c(a, b) is a measure of the closeness of f1(xi) and zji

[25], [26]. For spike train clustering we choose c(a, b) = |a−
b|; however, any meaningful function that measures closeness

can be used. Thus the hidden layer transmits a signal from

an F1 node to an F2 node only if the top–down weight and

bottom–up activity are sufficiently close, and the bottom–up

weight is sufficiently large.

IV. SPIKE TRAIN CLUSTERING USING PART

In a PART architecture there are three different time scales:

1) the rate of the STM traces in layers F1 and F2 governed

by ǫ; 2) the rate of the LTM traces for the bottom-up and

uncommitted top-down weights governed by δ; and 3) the

LTM trace for the top-down weights of the committed F2

neurons governed by γ. Since STM is a form of dynamic

memory, it evolves rapidly compared to the LTM. In addition

we assume that the committed nodes in F2 evolve much more

slowly than the uncommitted nodes. These conditions imply

0 < δ, ǫ ≪ γ; thus on the time scale of the LTM equations

for the committed F2-nodes, the STM equations and other

synaptic weight equations are approximating steady state.

Fig. 2. Algorithm for PART spike train clustering. A detailed numerical
example illutrating this alogorithm in given in [26].

Taking the steady state approximation of Eq 1 and the

signal function f1 to be identity, we have xi = Ii. As

mentioned previously, f2(xj) equals 1 if j is the winning

node and 0 otherwise. Our choices of ℓθ and hσ require

that hij is 1 if F1-node i is active to the F2-node and is

0 otherwise. The steady state approximations for the weight

updates for an input F1-node i and winning F2-node j are

thus

z1
ji =

{
(1 − α)z0

ji + αIi committed

Ii noncommitted
(14)

and

z1
ij =

{
L/(L + |X| − 1) committed

0 noncommitted
(15)

where the superscripts indicate the values at time steps 1 and

0 and |X| is the number of nodes i active to j, as in [25],

[26]. The expression for updating the zji of committed nodes

in Eq. 14 is obtained by directly integrating Eq. 9 over the

unit interval assuming constant Ii and hij over that interval,

and setting the learning rate α = 1 − e−1/γ . The other

expressions in Eqs 14 and 15 are steady state approximations

of their respective differential equations, since the bottom-

up weights and top-down weights of noncommitted nodes

all evolve rapidly compared to the synaptic weights of the

committed nodes. Unless otherwise noted, α = 0.1, θ = 0.

The algorithm for clustering spike trains is shown in

Fig. 2. A cluster corresponds to those spike trains that

led to the same winning node in F2. Using these steady

state approximations it can be shown analytically that the

PART neural network defined by (11)–(15) exhibits a regular

computational performance characterized by [26]
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• Selected output clusters remain constant,

• Winner–take–all paradigm: the F2 node with the largest

bottom–up filter input becomes the winner and only this

node is activated after some finite time.

• The set of dimensions of a specific projected cluster is

non–increasing in time.

V. APPLICATION TO SPIKE TRAINS

Equations (11)–(15) define an iterative procedure for clus-

tering neural networks using a PART neural network that

doesn’t require explicit integration of the differential equa-

tions. Under the steady state approximation there are only

two free parameters to be specified in order to implement a

PART neural network, namely, ρ and σ. Spike train inputs

for the PART neural network have the general form




bin1

︷ ︸︸ ︷
s11, s12, · · · , s1p,

bin2

︷ ︸︸ ︷
s21, s22, · · · , s2p, · · · ,

bink

︷ ︸︸ ︷
sk1, sk2, · · · , skp





where the dimension, m, is equal to the number of bins,

bink, of size ∆t times the number of statistical features

of interest, and the notation skp denotes the p–th statistical

feature evaluated for the k–th bin. The number of nodes in F1

is m and the number of nodes, n, in F2 is much greater than

the expected number of clusters. At onset all of the F2 nodes

are non–committed. The single fixed point of this iterative

procedure corresponds to a committed node in F2 which, in

turn, corresponds to a cluster. A detailed numerical example

of this clustering process is given in [26]. Briefly, hij is

computed using (12)–(13) and the winning F2 is selected.

If this node passes the vigilance criterion, (11), then the

top–down and bottom–up weights, respectively, zji, zij , are

updated accorrding to (14)–(15), hij re–computed, and so

on. Typically the single committed node in F2 is determined

within just a few iterations of this procedure. Once the

committed F2 node has been determined, the next spike

train is presented. All spike trains that belong to the same

committed F2 node belong to the same cluster.

The number of input patterns that can be learned by a

PART neural network is limited only by the finiteness of

the number and length of spike trains that can be presented

to it. There are a number of consequences for the practical

application of PART neural networks: 1) it is better to cluster

data sets with respect to a few, e.g. one, statistical features

at a time; 2) the order of presentation of spike trains may

have an influence of the clustering results; 3) the number of

nodes in F2 must be larger than the number of suspected

clusters, i.e. n ≫ m; and 4) there will always be a small

number of spike trains which do not cluster well: following

[26] we placed all such data into an outlier node.

The PART clustering algorithm described by (11)–(15)

was validated on populations of neural spike trains con-

structed using two types of model neurons: 1) the leaky

integrate and fire (LIF) model [30]–[32], and 2) a reduced

Hodgkin–Huxley model neuron [37], [38]. The goal in

constructing these data sets was to pose a difficult clustering

problem consistent with the known physiological responses

of neurons. Validation using this procedure is facilitated by

the fact that the natures and numbers of the true clusters

are known. It was observed that in all cases this PART

neural network correctly classified the clusters when sigma
was between 0.1 and 0.2 (data not shown). This was true

whether the spike train dimensions were chosen to be related

to instantaneous firing rate clusters or to synchronization.

Fig. 3. Stimuli presented to Aplysia motoneuron: S1) A sinusoidal input
at 12.5 Hz plus a DC current at 13 nA plus a 1 nA hyperpolarizing current
with onset at 3.5 s; S2) As in S1 except the sinusoidal frequency was 9.5 Hz;
DC) The DC current only. The current inputs are shown below each of the
three voltage responses. The scale bars in the upper right are 0.5 s by 10 mV
and 0.5 s by 2 nA and apply to all three conditions.

VI. APPLICATION TO INVERTEBRATE NEURONS

Aplysia motoneurons exhibit dynamic changes in synchro-

nization to periodic or aperiodic inputs in response to small

changes in their firing rate [33], [34]. We used this as a

model preparation to test the ability of the PART algorithm

to cluster these transient behaviors in living neurons.

Aplysia care and dissection were performed as described

in [39]. Recordings from identified neurons in the buccal

motor ganglion were made in two electrode current clamp

mode using an AxoClamp 2B amplifier (Axon Instruments,

Foster City, CA) with electrode resistances ≈ 4 MΩ. Data

were low pass filtered at 1 kHz with a Frequency Devices

902 low pass filter (Frequency Devices, Haverhill, MA) and

digitally sampled at 2 kHz [33]– [35]. Sampling at twice

the corner frequency rather than twice the stop frequency

of the filter does allow some frequency aliasing to occur,

the amouint will be quite small since the corner attenuation

is 3 dB. These filtering choices might be a problem if the

object is analayze submembarne fluctuations; however, it is

neglible when the object is spikle detection. All recording

and stimulation protocols were automated using an AD2210

A/D board (Real Time Devices, State College, PA) interfaced

with a personal computer.

We used spike trains recorded from Aplysia motoneurons

to test the performance of the PART algorithm for identifying

transient responses in living neurons in response to periodic

inputs [33], [34]. Three experimental conditions were chosen

(Fig. 3). In the first two conditions, S1 and S2, the mo-

toneuron was presented with sinusoidal and direct currents
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in order to induce phase-locking [34] in only one part of

the response - first half (S1) or second half (S2). The third

condition (DC) was designed to create an outlier set. This

was accomplished by injecting a direct current which is not

expected to generate phase locking and thus not form a

synchrony cluster [33], [34], [40].

Fig. 4. Clustering spike trains from Aplysia buccal ganglion. A) Raster
response of repeated presentations of the three stimuli from Figure 3
presented in randomized order. B) The trains from A) were presented to the
PART clustering algorithm with ρ = 15 and σ = 0 (synchrony detection)
which sorted the trains two clusters and one outlier cluster; bold spikes
indicate the dimensions of the projected subspace. These three clusters
correspond closely to the three stimulus conditions (see Table I).

The stimuli were repeatedly presented to the neuron in

random order and the spike train responses are shown in

the upper raster plot of Figure 4. The spike trains were

presented to the PART algorithm tuned to detect synchronous

spiking, as in the model data above. The algorithm identified

2 clusters and one outlier cluster, which are shown in the

lower rasters of Figure 4. The algorithm correctly identifies

the different input conditions as clusters, as well as the sub

regions of the spike trains where synchronous spiking occurs

for groups S1 and S2; the detected synchronous spikes are

colored blue. The contingency table shown in Table I shows

that 23 of 24 spike of the spike trains were correctly classified

on the basis of their inputs.

TABLE I

CONTINGENCY TABLE FOR THE SYNCHRONY CLUSTERS IN Aplysia DATA

SHOWN IN FIG. 4.

S1 S2 DC Total

S1 10 0 0 10

S2 0 9 0 9

OUT 0 1 4 5

Total 10 10 4 24

VII. DISCUSSION

Neural responses are often transient. Thus it is likely

that spike trains cluster on only a subset of the time bins

(dimensions); for example, if a subpopulation responds to

only part of a stimulus, it will cluster only over the time

bins in which it responds. The strength of the PART neural

network algorithm for clustering spike trains is that it ele-

gantly handles nonstationarities of this type. If spike trains

are similar only over a subset of the time bins, PART will

identify both the clusters and the time bins over which

the trains are similar. A different cluster can be similar

over a different subset of the bins. Thus the algorithm is

readily capable of identifying one cluster that has similar

rate modulation over the first half of a stimulus, and another

cluster that exhibits a transient synchronization over the

second half.

We have shown that a PART network is a powerful tool to

sort large numbers of neural spike trains that share common

features. This point is illustrated in Figure 5a, in which

two distinct clusters of data points are scatter plotted as

gray or black over three arbitrary dimensions. On the other

hand, ART networks identify three clusters in the full space

(Figure 5b). The false third cluster (light gray) arises because

points on it are close to one another in the full dimensional

spaces. It should be emphasized that this problem cannot be

solved by doing a dimension reduction before analysis, using

techniques such as Principal Components Analysis (PCA),

because all of the dimensions are required to represent these

two clusters and PCA generates poor results in data that have

multiple clusters [42].

Fig. 5. a) Scatter plots of two clusters (gray dots and black dots) in three
dimensional space with arbitrary dimensions x, y, and z. The gray dots
cluster on dimensions x and y, and the black dots on x and z. The cluster
outlines in the project subspace are drawn as gray and black ellipses on the
respective planes. PART identifided 2 clusters and the dimensions of the
subspaces. b) ART identifies clusters in the full space, and so finds a false
third cluster (light gray) the encloses the dots from both the black and gray
clusters that are close to one another in the full space.

The advantage of this unsupervised clustering method is

that the features which delineate a group are discovered and

learned by the network automatically. Even in its simple form

used here, the PART network is highly effective for clustering

neural spike trains. Since the update equations are reduced

to an iterative map rather than numerically integrated, it is
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computationally feasible to rapidly cluster large numbers

of spike trains over a large number of dimensions even

with modest computer hardware. Inclusion of sigmoidal

signal functions, rather than the identity and hard threshold

functions used here, might further improve the performance

of the network, as might numerically integrating the full

system of differential equations. However, the network in the

reduced state is quite powerful, and is amenable to analytic

treatment [25], [26]. Other algorithms have been proposed

for cluster analysis of neural spike trains [22], [23], including

the recently emphasized methods for the identification of

spiking patterns within neural spike trains based on the K–

means algorithm [17], [18]. Since all these methods require

that data cluster on all of the dimensions, they suffer the

dimensionality curse as the dimensions become larger.

The use of our PART algorithm is not limited to clustering

neural spike trains. In principle any signal can serve as input.

Thus it may be possible to use PART networks for spike

sorting or classification of EMG and EEG signals. Of course,

in these applications appropriate features to encode the inputs

need to be identified; for example, parameters related to the

waveform for spike sorting applications, parameters related

to frequency content for EMG and EEG, and so on. A major

advantage of techniques based on PART networks is that they

minimize the effects of the variability of human performance

on the outcomes of the analysis.
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