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Abstract— Semistability is the property whereby the solutions
of a dynamical system converge to Lyapunov stable equilibrium
points determined by the system initial conditions. In this paper,
we extend the theory of semistability to discontinuous time-
varying dynamical systems. In particular, Lyapunov-based tests
for semistability, weak semistability, as well as uniform semista-
bility for nonautonomous differential inclusions are established.
Using these results we develop a framework for designing
semistable protocols in switching dynamical networks with
time-dependent and state-dependent communication topologies.

I. INTRODUCTION

Due to recent technological advances in sensing, actuation,
communication, and computation, a considerable research
effort has been devoted to the control of networks and control
over networks. Network systems involve distributed decision-
making for coordination of dynamic agents involving infor-
mation flow enabling enhanced operational effectiveness via
cooperative control in autonomous systems. These dynamical
network systems cover a very broad spectrum of applica-
tions including cooperative control of unmanned air vehicles
(UAV’s) [1], autonomous underwater vehicles (AUV’s) [2],
distributed sensor networks [3], air and ground transportation
systems [4], swarms of air and space vehicle formations [5],
and congestion control in communication networks [6], to
cite but a few examples.

In many applications involving multiagent systems, groups
of agents are required to agree on certain quantities of
interest. In particular, it is important to develop information
consensus protocols for networks of dynamic agents wherein
a unique feature of the closed-loop dynamics under any
control algorithm that achieves consensus is the existence
of a continuum of equilibria representing a state of equipar-
titioning or consensus. Under such dynamics, the limiting
consensus state achieved is not determined completely by the
dynamics, but depends on the initial system state as well.

Since every neighborhood of a nonisolated equilibrium
contains another equilibrium, a non-isolated equilibrium can-
not be asymptotically stable. Hence, asymptotic stability is
not the appropriate notion of stability for systems having
a continuum of equilibria. For such systems possessing a
continuum of equilibria, semistability [7], [8] is the relevant
notion of stability. Semistability is the property whereby ev-
ery trajectory that starts in a neighborhood of a Lyapunov sta-
ble equilibrium converges to a (possibly different) Lyapunov
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stable equilibrium. It is important to note that semistability is
not equivalent to set stability of the equilibrium set [9]. From
a practical viewpoint, it is not sufficient to only guarantee that
a network converges to a state of consensus since steady state
convergence is not sufficient to guarantee that small perturba-
tions from the limiting state will lead to only small transient
excursions from a state of consensus. It is also necessary to
guarantee that the equilibrium states representing consensus
are Lyapunov stable, and consequently, semistable.

Since communication links among multiagent systems
are often unreliable and time-varying due to multipath ef-
fects and exogenous disturbances, the information exchange
topologies in network systems are often dynamic. In par-
ticular, link failures or creations in network multiagent
systems result in switchings of the communication topol-
ogy. This is the case, for example, if information between
agents is exchanged by means of line-of-sight sensors that
experience periodic communication dropouts due to agent
motion. Variation in network topology introduces control
input discontinuities, which in turn give rise to discontinuous
dynamical systems. In addition, the communication topology
may be time-varying. In this case, the vector field defining
the dynamical system is a discontinuous function of the state
and time, and hence, system stability can be analyzed using
discontinuous Lyapunov theory involving concepts such as
weak and strong stability notions, differential inclusions,
and generalized gradients of locally Lipschitz functions and
proximal subdifferentials of lower semicontinuous functions
[10].

To address agreement problems in switching networks
with time-dependent and state-dependent topologies, in this
paper we extend the theory of semistability to discontinuous
time-varying dynamical systems. In particular, we develop
necessary and sufficient conditions to guarantee weak and
strong invariance of Fillipov solutions under the assumption
that the discontinuous time-varying vector field is uniformly
bounded. Moreover, we present Lyapunov-based tests for
(strong) semistability, weak semistability, as well as uniform
semistability for nonautonomous differential inclusions. It is
important to note that our results are different from the results
in the literature [11], [12] since the Lipschitz conditions in
[11], [12] are not valid for autonomous differential inclusions
considered in [13]. However, the autonomous differential
inclusions considered in [13] are indeed a special case of
the nonautonomous differential inclusion discussed in this
paper.

II. MATHEMATICAL PRELIMINARIES

The notation used in this paper is fairly standard. Specifi-
cally, R denotes the set of real numbers, R

n denotes the set
of n × 1 real column vectors, and (·)T denotes transpose.
For A ∈ R

n×m we write rankA to denote the rank of A,
and ∂S and S to denote the boundary and the closure of
the subset S ⊂ R

n, respectively. Furthermore, we write ‖ · ‖
and 〈·, ·〉 for the Euclidean vector norm and inner product,
respectively, on R

n, Bε(α), α ∈ R
n, ε > 0, for the open ball

centered at α with radius ε, dist(p,M) for the distance from
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a point p to the set M, that is, dist(p,M) , infx∈M ‖p−x‖,
x(t) → M as t → ∞ to denote that x(t) approaches the set
M, that is, for each ε > 0 there exists T > 0 such that
dist(x(t),M) < ε for all t > T , and x(t) ⇉ M as t → ∞
to denote x(t) approaches the set M uniformly in the initial
time t0 ∈ R.

In this paper, we consider time-varying differential equa-
tions given by

ẋ(t) = f(t, x(t)), x(t0) = x0, t ≥ t0, (1)

where t ∈ R, x(t) ∈ R
q , and f : R × R

q → R
q is Lebesgue

measurable and locally essentially bounded [14], [15], that
is, bounded on a bounded neighborhood of every point,
excluding sets of measure zero. An absolutely continuous
function x : [t0, τ ] → R

q is said to be a Filippov solution
[14], [15] of (1) on the interval [t0, τ ] with initial condition
x(t0) = x0, if x(t) satisfies

ẋ(t) ∈ K[f ](t, x(t)), a. a. t ∈ [t0, τ ], (2)

where the Filippov set-valued map K[f ] : [0,∞) × R
q →

B(Rq) is defined by

K[f ](t, x) ,
⋂

δ>0

⋂

µ(S)=0

co {f(t,Bδ(x)\S)},

(t, x) ∈ [t0,∞) × R
q, (3)

where B(Rq) denotes the collection of all subsets of R
q , µ(·)

denotes the Lebesgue measure in R
q, and “co” denotes the

convex closure. Dynamical systems of the form given by (2)
are called differential inclusions in the literature [16] and for
each state x ∈ R

q, they specify a set of possible evolutions
rather than a single one. Note that it follows from [10] that
there exists a set Nf ⊂ R

q of measure zero such that, for
every set W ⊆ R

q of zero measure,

K[f ](t, x)

= co
{

lim
i→∞

f(t, xi) : xi → x, xi 6∈ Nf ∪W
}

. (4)

Since the Filippov set-valued map given by (3) is upper
semicontinuous with nonempty, convex, and compact values,
and is also locally bounded, it follows that Filippov solutions
to (1) exist [15].

An equilibrium point of (1) is a point xe ∈ R
q such

that 0 ∈ K[f ](t0, xe) for all t0 ≥ 0. We denote the set
of equilibrium points of (1) by E . The upper semicontinuity
of the set-valued map K[f ] implies that E is closed.

Let S be a given closed subset of R
q . Then the pair

(S,K[f ]) is called weakly positively invariant (resp., strongly
invariant) if for all initial conditions (t0, x0) with x0 ∈ S,
S contains a Fillippov solution (resp., all Filippov solutions)
x(·) of (1) on [t0,∞) satisfying x(t0) = x0. The Clarke
generalized gradient of V : R

q → R at x is the set

∂V (x) , co
{

lim
i→∞

∇V (xi) : xi → x, xi 6∈ N ∪ S
}

, (5)

where ∇ denotes the nabla operator, N is the set of measure
zero points where ∇V does not exist, and S is an arbitrary
set of measure zero in R

q.

An equilibrium point xe ∈ E of (1) is Lyapunov stable if
for every t0 ∈ R and every ε > 0, there exists δ = δ(t0, ε) >
0 such that for every ‖x0 − xe‖ ≤ δ, the Fillippov solutions
x(t), t ≥ t0, with the initial condition x(t0) = x0 satisfy
‖x(t)− xe‖ < ε for all t ≥ t0. An equilibrium point xe ∈ E
of (1) is uniformly Lyapunov stable if for every ε > 0, there
exists δ = δ(ε) > 0 such that for every ‖x0 − xe‖ ≤ δ, the
Fillippov solutions x(t), t ≥ t0, with the initial condition

x(t0) = x0 satisfy ‖x(t)− xe‖ < ε for all t ≥ t0 and for all
t0 ∈ R. The following definitions are needed.

Definition 2.1: i) An equilibrium point xe ∈ E of (1) is
weakly semistable (resp., semistable) if for every t0 ∈ R, xe
is Lyapunov stable and there exists δ = δ(t0) > 0 such that,
for every ‖x0 − xe‖ ≤ δ, a Fillippov solution (resp., every
Filippov solution) x(t), t ≥ t0, with the initial condition
x(t0) = x0 satisfies limt→∞ x(t) = z and z ∈ E is a
Lyapunov stable equilibrium point. The system (1) is weakly
semistable (resp., semistable) if all the equilibrium points of
(1) are weakly semistable (resp., semistable).

ii) An equilibrium point xe ∈ E of (1) is uniformly weakly
semistable (resp., uniformly semistable) if xe is uniformly
Lyapunov stable and there exists δ > 0 such that, for
every x0 ∈ R

q satisfying ‖x0 − xe‖ ≤ δ, there exists
a uniformly Lyapunov stable equilibrium point zx0

∈ E
such that a Filippov solution (resp., every Filippov solution)
x(t), t ≥ t0, with the initial condition x(t0) = x0 satisfies
limt→∞ x(t) = zx0

uniformly in t0 ∈ R, that is, for every
ε > 0, there exists T = T (ε) > 0 such that ‖x(t)−zx0

‖ < ε
for every t ≥ t0 + T (ε). The system (1) is uniformly
weakly semistable (resp., uniformly semistable) if all the
equilibrium points of (1) are uniformly weakly semistable
(resp., uniformly semistable).

Definition 2.2 ([11]): Let S be a closed subset of R
q.

Give u 6∈ S, let x ∈ ∂S be such that ‖x−u‖ = infs∈S ‖s−
u‖. Then x is called a projection of u onto S. The set of
all such projections is denoted by proj(u,S). The vector
u − x (and all its nonnegative multiples) defines a proximal
normal direction to S at x. The set of all vectors constructed
in this way (for fixed x, by varying u) is called the proximal
normal cone to S at x, and is denoted by NP

S (x). Thus,
NP

S (x) = {α(u − x) : x ∈ proj(u,S), α ≥ 0}.

Definition 2.3: The contingent set of a Fillipov solution
x(·) : [t0, t1] → R

q of (1) satisfying x(t0) = x0 is the set of

all limit points of the seuqences of the form {xi(ti)−x0

ti−t0
}∞i=1

where {ti}∞i=1 is a sequence in [t0, t] converging to t0.

III. LYAPUNOV-BASED SEMISTABILITY ANALYSIS FOR

TIME-VARYING DISCONTINUOUS DYNAMICAL SYSTEMS

In this section, we develop Lyapunov-based semistability
theory for time-varying discontinuous dynamical systems of
the form given by (1). The following lemma is needed for
the main results of the paper.

Lemma 3.1: Let S be a closed subset of R
q and consider

(t, x) ∈ [t0, t0 + a] × Bb(x0) for (2). Assume that for every
(t, z) ∈ [t0, t0 + d] × Bb(x0) there exists w ∈ proj(z,S)
such that 〈v, z − w〉 ≤ 0 for every v ∈ K[f ](t, z), where
d = min{a, b

m
} and m = sup{‖v‖ : v ∈ K[f ](t, x), (t, x) ∈

[t0, t0 + a] × Bb(x0)}. Then dist(x(t),S) ≤ dist(x(t0),S)
for every t ∈ [t0, t0 + d] and every Filippov solution x(·) of
(2) on [t0, t0 + d] satisfying x(t0) = x0.

Next, we present necessary and sufficient conditions for
characterizing weak invariance. It is important to note that
our results are different from the results in [11], [12] since
the Lipschitz conditions in [11], [12] do not hold for the
nonautonomous differential inclusion discussed in this paper;
see Examples 3.1 and 3.2 below. A similar observation holds
for Proposition 3.4.

Proposition 3.1: Let S be a closed subset of R
q. Assume

that there exists M > 0 such that for every (t, x) ∈ R
q+1 and

every v ∈ K[f ](t, x), ‖v‖ ≤ M . Then (S,K[f ]) is weakly
positively invariant if and only if, for every w ∈ ∂S and
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every ζ ∈ NP
S (w),

min
v∈K[f ](t,w)

〈ζ, v〉 ≤ 0, t ∈ R. (6)

The following propositions are needed for the next result.
For the first proposition recall that the epigraph of a function
f : X → R is defined by the α-sublevel set Ep(f) ,
{(x, α) ∈ X × R : f(x) ≤ α} [17, p. 23].

Proposition 3.2: Assume that there exists M > 0 such
that for every (t, x) ∈ R

q+1 and almost every v ∈ K[f ](t, x),
‖v‖ ≤ M . Furthermore, assume that there exist a continu-
ously differentiable function V (·) and a continuous function
W (·) such that the following statements hold:

i) α(‖x‖) ≤ V (x) ≤ β(‖x‖), x ∈ R
q, where α(·) and

β(·) are class K∞ functions.
ii) minv∈K[f ](t,x)〈∇V (x), v〉 ≤ −W (x) for all x ∈ R

q

and t ∈ R, where W (x) ≥ 0 for all x ∈ R
q .

Then (V −1([0, c]),K[f ]) is weakly positively invariant and,
for every x0 ∈ R

q, there exists a Filippov solution x(·) to
(1) on [t0,∞) with x(t0) = x0 such that x(t) → W−1(0)
as t → ∞, where c > 0.

Proof. Since V (·) is continuously differentiable, it follows
from Proposition 2 of [16, p. 32] that {∇V (x)} = ∂V (x),
x ∈ R

q . Thus, it follows from ii) that minv∈K[f ](t,x)〈p, v〉 ≤
0, p ∈ ∂V (x), x ∈ R

q . Consider the epigraph of V (·)
defined by Ep(V ) , {(x, z) ∈ R

q × R : V (x) ≤ z}.
Note that Ep(V ) is closed. Let (ζ, λ) ∈ R

q × R belong
to NP

Ep(V )(x, z) for some (x, z) ∈ Ep(V ). We show that for

(ζ, λ) ∈ NP
Ep(V )(x, z), there exists v ∈ K[f ](t, x) such that

〈ζ, v〉 ≤ 0.

First, we show that λ ≤ 0. Let y be in the domain of
V and (y∗, 0) ∈ NP

Ep(V )(y, V (y)) with y∗ 6= 0. Without

loss of generality, assume that ‖y∗‖ = 1. Then there exists
(x, V (y)) 6∈ Ep(V ) such that ‖(x, V (y)) − (y, V (y))‖ =
inf(s,V (s))∈Ep(V ) ‖(x, V (s))− (s, V (s))‖ and (x− y)/‖x−
y‖ = y∗, where (y, V (y)) ∈ Ep(V ). By Proposition 2.1
of [18] we can assume, without loss of generality, that
(y∗, 0) ∈ ∂dist((x, V (y)), Ep(V )). Note that for every
(x̂, V (ŷ)), it follows from the definition of an epigraph
that dist((x̂, V (ŷ)), Ep(V )) ≤ dist((x̂, V (ŷ) − t), Ep(V ))
for every t > 0. Suppose that there exists (x̂, V (ŷ)) ar-
bitrarily close to (x, V (y)) and t > 0 arbitrarily small so
that dist((x̂, V (ŷ)), Ep(V )) < dist((x̂, V (ŷ) − t), Ep(V )).
Then it follows from Theorem 1.4 of [18] that there exists
(ζ, λ) ∈ ∂dist((x̄, V (ȳ)), Ep(V )), where (x̄, V (ȳ)) is arbi-
trarily close to (x, V (y)) such that 〈(ζ, λ), (x̂, V (ŷ) − t) −
(x̂, V (ŷ))〉 > 0, which implies that λ < 0. For the case where
dist((x̂, V (ŷ)), Ep(V )) = dist((x̂, V (ŷ)−t), Ep(V )), t > 0,
it follows that 〈(ζ, λ), (x̂, V (ŷ)− t)− (x̂, V (ŷ))〉 = 0, which
implies that λ = 0. Hence, λ ≤ 0.

If λ < 0, then (ζ/(−λ),−1) ∈ NP
Ep(V )(x, z), which

implies that −ζ/λ ∈ ∂V (x). Now, it follows from ii) that
there exists v ∈ K[f ](t, x) such that 〈(−ζ/λ), v〉 ≤ 0, and
hence, 〈ζ, v〉 ≤ 0. Alternatively, if λ = 0, then (ζ, 0) ∈
NP

Ep(V )(x, V (x)). Now, it follows from Theorem 2.4 of [18]

that there exist sequences {(ζi,−εi)}∞i=1, with εi > 0, and
{xi}∞i=1 such that limi→∞(ζi,−εi) = (ζ, 0), (ζi,−εi) ∈
NP

Ep(V )(xi, V (xi)), and limi→∞ xi = x. Using the above

result for the case where λ < 0, it follows that there exists
vi ∈ K[f ](t, xi) such that 〈ζi, vi〉 ≤ 0. By assumption, the
sequence {vi}∞i=1 is uniformly bounded. Hence, there exists
a subsequence {ni}∞i=1 such that {vni

}∞i=1 converges to the
limit v. Furthermore, v ∈ K[f ](t, x) since K[f ] is upper

semicontinuous. Thus, 〈ζ, v〉 ≤ 0.

Since for (ζ, λ) ∈ NP
Ep(V )(x, z), there exists v ∈

K[f ](t, x) such that 〈ζ, v〉 ≤ 0, it follows from Proposi-
tion 3.1 that the pair (Ep(V ),K[f ]×{0}) is weakly invariant,
and hence, for every x0 ∈ R

q , there exists a Filippov solution
x(·) to (1) on [t0,∞) with x(t0) = x0 such that V (x(t)) ≤
V (x0) for all t ≥ t0, which implies that (V −1([0, c]),K[f ])
is weakly invariant.

To show the second assertion, define a function U :
R

q × R → R by U(x, y) , V (x) + y and a set-valued

map F(t, x, y) , K[f ](t, x) × {y : y = W (x)}. We claim
that for every α ∈ R

q, there exists a Filippov solution
(x, y) to the differential inclusion ż ∈ F(t, z) almost
everywhere on [t0,∞) with x(t0) = α and y(t0) = 0
such that U(x(t), y(t)) ≤ U(α, 0) for all t ≥ t0. Let
(ζ, η) ∈ ∂U(x, y). Then ζ ∈ ∂V (x) and η = 1. Since
〈v, ζ〉 ≤ −W (x) for some v ∈ K[f ](t, x), it follows that
〈v, ζ〉+W (x) ≤ 0, or, equivalently, 〈(v, W (x)), (ζ, 1)〉 ≤ 0.
Using similar arguments as above, it can be shown that the
pair (Ep(U),F × {0}) is weakly invariant, which implies
that for every α ∈ R

q, there exists a Filippov solution
(x, y) to ż ∈ F(t, z) almost everywhere on [t0,∞) with
x(t0) = α and y(t0) = 0 such that U(x(t), y(t)) ≤ U(α, 0)
for all t ≥ t0. Note that U(x(t), y(t)) ≤ U(α, 0) for

t ≥ t0 implies that V (x(t)) +
∫ t

t0
W (x(τ))dτ ≤ V (α),

where x(·) is a Filippov solution to (1). Hence, V (x(t)) and
∫ t

t0
W (x(τ))dτ are bounded. Furthermore, note that ẋ(t) is

uniformly bounded for almost all t ≥ t0. Now, using similar
arguments as in the proof of Theorem 8.4 of [19], it can be
shown that x(t) → W−1(0) as t → ∞.

Proposition 3.3: Consider the time-varying discontinuous
dynamical system (1). Assume that the Filippov solutions of
(1) are bounded and every point in E is Lyapunov stable.
Furthermore, assume that for a given x0 ∈ R

q, there exists a
Filippov solution to (1) satisfying x(t) → E as t → ∞. Then
x(t) → z as t → ∞, where z ∈ E . Alternatively, assume that
every point in E is uniformly Lyapunov stable and for given
x0 ∈ R

q , there exists a Filippov solution to (1) satisfying
x(t) ⇉ E as t → ∞. Then x(t) ⇉ z as t → ∞, where
z ∈ E .

Next, we present sufficient conditions for weak semista-
bility and uniform weak semistability for (1).

Theorem 3.1: Assume that there exists M > 0 such that
for every v ∈ K[f ](t, x), ‖v‖ ≤ M . Furthermore, assume
that there exist a continuously differentiable function V (·)
and a continuous function W (·) such that i) and ii) of
Proposition 3.2 hold, and E ⊆ W−1(0). If every point in
W−1(0) is a Lyapunov stable equilibrium of (1), then (1) is
weakly semistable. Alternatively, if every point in W−1(0)
is a uniformly Lyapunov stable equilibrium of (1), then (1)
is uniformly weakly semistable.

Proof. It follows from Proposition 3.2 that there exists
a Filippov solution x(·) to (1) such that x(t) → W−1(0)
as t → ∞. Since every point in W−1(0) is a Lyapunov
stable equilibrium of (1), it follows that W−1(0) ⊆ E . Fur-
thermore, since, by assumption, E ⊆ W−1(0), it follows that
W−1(0) = E . Hence, x(t) → E as t → ∞ and every point in
E is Lyapunov stable. Now, it follows from Proposition 3.3
that x(t) → z as t → ∞, where z ∈ E . By definition,
(1) is weakly semistable. To show the second assertion,
note that since ẋ(t) is uniformly bounded, it follows using
similar arguments as in the proof of Proposition 3.2 that
x(t) ⇉ W−1(0) as t → ∞. Now, using similar arguments
as above, it can be shown that (1) is uniformly weakly
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semistable.

Remark 3.1: If all the conditions in Theorem 3.1 are
satisfied and (1) has a unique Filippov solution, then it
follows from Theorem 3.1 that (1) is semistable. Sufficient
conditions for guaranteeing uniqueness of Filippov solutions
can be found in [10], [15].

Example 3.1: Consider the time-varying discontinuous
dynamical system given by

ẋ1(t) =
1 + 2t2

1 + t2
sign(x2(t) − x1(t)),

x1(t0) = x10, t ≥ t0, (7)

ẋ2(t) =
1 + 2t2

1 + t2
sign(x1(t) − x2(t)),

x2(t0) = x20, (8)

where x1, x2 ∈ R, sign(x) , x/|x| for x 6= 0, and sign(0) ,
0. Note that, for x = [x1, x2]

T and t ≥ t0,

K[f ](t, x)

=















{ 1+2t2

1+t2
} × {− 1+2t2

1+t2
}, x2 > x1,

[

− 1+2t2

1+t2
, 1+2t2

1+t2

]

×
[

− 1+2t2

1+t2
, 1+2t2

1+t2

]

, x1 = x2,

{− 1+2t2

1+t2
} × { 1+2t2

1+t2
}, x1 > x2.

Clearly, ‖v‖ ≤ 2
√

2 for almost all v ∈ K[f ]. Next, consider
V (x1, x2) = 1

2 (x1 − α)2 + 1
2 (x2 − α)2, where α ∈ R. Then

it follows from the time-dependent version of Theorem 1 of
[20] that

[x1 − α, x2 − α]TK[f ](t, x)

= K[[x1 − α, x2 − α]Tf ](t, x)

= K
[

−1 + 2t2

1 + t2
(x1 − x2)sign(x1 − x2)

]

(t, x)

= −1 + 2t2

1 + t2
(x1 − x2)K[sign(x1 − x2)](x)

= −1 + 2t2

1 + t2
(x1 − x2)SGN(x1 − x2)

= −1 + 2t2

1 + t2
|x1 − x2|

≤ −|x1 − x2|, t ∈ R, (x1, x2) ∈ R
2, (9)

where

SGN(x) ,







−1, x < 0,
[−1, 1], x = 0,

1, x > 0,
(10)

which further implies that 〈∇V (x1, x2), v〉 ≤ −|x1 − x2|
for every v ∈ K[f ](t, x). Now, it follows from Theorem
1 of [15, p. 153] that x1 = x2 = α is Lyapunov stable.
In fact, it can be shown that x1 = x2 = α is uniformly
Lyapunov stable. Next, let W (x1, x2) = |x1 − x2| and note
that W−1(0) = {(x1, x2) ∈ R

2 : x1 = x2} = E . Now,
it follows from Theorem 3.1 that (7) and (8) is weakly
semistable. Moreover, it can be shown that (7) and (8) is
uniformly weakly semistable. Figure 1 shows the solutions
of (7) and (8) for x10 = 4, x20 = −2, and t0 = 0, 1, 2, 3. △

The next proposition characterizes strong invariance of (1).
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Fig. 1. State trajectories versus time for Example 3.1

Proposition 3.4: Consider the time-varying discontinuous
system (1). Let S be a closed subset of R

q and assume that
there exists M > 0 such that for every (t, x) ∈ R

q+1,

‖f(t, x)‖ ≤ M, (11)

for almost all t ∈ R. Then (S,K[f ]) is strongly invariant if
and only if, for every ζ ∈ NP

S (x) and every x ∈ S,

max
v∈K[f ](t,x)

〈ζ, v〉 ≤ 0. (12)

Finally, we present sufficient conditions for semistability
and uniform semistability for (1).

Theorem 3.2: Assume that there exists M > 0 such that
for almost every (t, x) ∈ R

q+1, (11) holds. Furthermore,
assume that there exist a continuously differentiable func-
tion V (·) and a continuous function W (·) such that i) of
Proposition 3.2 holds, E ⊆ W−1(0), and

max
v∈K[f ](t,x)

〈∇V (x), v〉 ≤ −W (x) (13)

for every x ∈ S and t ∈ R. If every point in W−1(0) is a
Lyapunov stable equilibrium of (1), then (1) is semistable.
Alternatively, if every point in W−1(0) is a uniformly
Lyapunov stable equilibrium of (1), then (1) is uniformly
semistable.

Proof. Using similar arguments as in the proof of Propo-
sition 3.2 and Proposition 3.4 it can be shown that every
Filippov solution x(·) of (1) satisfies x(t) → W−1(0) as
t → ∞. Since every point in W−1(0) is a Lyapunov stable
equilibrium of (1), it follows that W−1(0) ⊆ E . Since, by
assumption, E ⊆ W−1(0), it follows that W−1(0) = E .
Hence, x(t) → E as t → ∞ and every point in E is
Lyapunov stable. Now, it follows from Proposition 3.3 that
x(t) → z as t → ∞, where z ∈ E . By definition, (1) is
semistable. To prove the second assertion, note that since
ẋ(t) is uniformly bounded for almost all t ≥ t0, it follows
using similar arguments as in the proof of Proposition 3.2
that x(t) ⇉ W−1(0) as t → ∞. Now, using similar
arguments as above, it can be shown that (1) is uniformly
semistable.

Example 3.2: Consider the time-varying discontinuous
dynamical system given by

ẋ1(t) = (2 − cos t)sign(x2(t) − x1(t)),

x1(t0) = x10, t ≥ t0, (14)

ẋ2(t) = (2 − cos t)sign(x1(t) − x2(t)),

x2(t0) = x20, (15)
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where x1, x2 ∈ R. Clearly, ‖f(t, x)‖ ≤ 3
√

2 for almost all
t ≥ t0 and x ∈ R

2. Next, consider V (x1, x2) = 1
2 (x1 −

α)2 + 1
2 (x2 − α)2, where α ∈ R. Then it follows from the

time-dependent version of Theorem 1 of [20] that

[x1 − α, x2 − α]TK[f ](t, x)

= K[[x1 − α, x2 − α]Tf ](t, x)

= K [−(2 − cos t)(x1 − x2)sign(x1 − x2)] (t, x)

= −(2 − cos t)(x1 − x2)K[sign(x1 − x2)](x)

= −(2 − cos t)(x1 − x2)SGN(x1 − x2)

= −(2 − cos t)|x1 − x2|
≤ −|x1 − x2|, t ∈ R, (x1, x2) ∈ R

2, (16)

which implies that 〈∇V (x1, x2), v〉 ≤ −|x1 − x2| for every
v ∈ K[f ](t, x). Now, it follows from Theorem 1 of [15,
p. 153] that x1 = x2 = α is Lyapunov stable. In fact, it can
be shown that x1 = x2 = α is uniformly Lyapunov stable.
Next, let W (x1, x2) = |x1 − x2| and note that W−1(0) =
{(x1, x2) ∈ R

2 : x1 = x2} = E . Now, it follows from
Theorem 3.2 that (14) and (15) is semistable. Moreover, it
can be shown that (14) and (15) is uniformly semistable.
Figure 2 shows the solutions of (14) and (15) for x10 = 4,
x20 = −2, and t0 = 0, 1, 2, 3. △

IV. CONSENSUS PROBLEMS IN SWITCHING DYNAMICAL

NETWORKS

In this section, we use the semistability theory developed
in Section III to analyze stability of consensus protocols with
time-dependent and state-dependent communication topolo-
gies. Specifically, we use undirected graphs to represent a
dynamical network and present solutions to the consensus
problem for networks with undirected graph topologies (or
information flow) [21]. Specifically, let G = (V , E ,A)
be a weighted directed graph (or digraph) denoting the
dynamical network (or dynamic graph) with the set of nodes
(or vertices) V = {1, . . . , n} involving a finite nonempty
set denoting the agents, the set of edges E ⊆ V × V
involving a set of ordered pairs denoting the direction of
information flow, and an adjacency matrix A ∈ R

n×n

such that A(i,j) = 1, i, j = 1, . . . , n, if (j, i) ∈ E , and
0 otherwise. The edge (i, j) ∈ E denotes that agent Gj

can obtain information from agent Gi, but not necessarily
vice versa. Moreover, we assume that A(i,i) = 0 for all
i ∈ V . A graph or undirected graph G associated with the
adjacency matrix A ∈ R

q×q is a directed graph for which
the arc set is symmetric, that is, A = AT. A graph G is

balanced if
∑n

j=1 A(i,j) =
∑n

j=1 A(j,i) for all i = 1, . . . , n.
Finally, we denote the value of the node i, i = 1, . . . , n, at
time k by xi(k) ∈ R. The consensus problem involves the
design of a dynamic algorithm that guarantees information
state equipartition, that is, limk→∞ xi(k) = α ∈ R for
i = 1, . . . , n.

In this section, we consider a discontinuous consensus
protocol G with time-dependent and state-dependent com-
munication links given by

ẋi(t) =

q
∑

j=1,j 6=i

C(i,j)(xi(t), xj(t))aij(t, xi(t), xj(t))

·sign(xj(t) − xi(t)),

xi(t0) = xi0, t ≥ t0, i = 1, . . . , q, (17)

where t ≥ t0, xi(t) ∈ R, aij : R
3 → R satisfies

aij(t, xi, xj) = aji(t, xj , xi) and m ≤ aij(t, xi, xj) ≤ M ,
aij(t, xi, xj) 6≡ 0, i, j = 1, . . . , q, i 6= j, 0 < m < M
is a constant, and C(i,j) : R

2 → R satisfies the following
assumption:

Assumption 1: For the connectivity matrix1 C(x) ∈ R
q×q ,

x , [x1, . . . , xq ]
T ∈ R

q, associated with G defined by

C(i,j)(xi, xj) ,

{

0, if (j, i) ∈ E ,
1, otherwise,

i 6= j, i, j = 1, . . . , q, (18)

and C(i,i)(xi, xi) = −∑q
k=1, k 6=i C(i,k)(xi, xk), i = 1, . . . , q,

rank C(x) = q − 1, x ∈ R
q , and CT(x) = C(x), x ∈ R

q .

Theorem 4.1: Consider the discontinuous consensus pro-
tocol G given by (17). Assume that Assumption 1 holds.
Then G is uniformly semistable and xi(t) ⇉ 1

q

∑q
i=1 xi0 as

t → ∞, i = 1, . . . , q.

Proof. First, note that ‖f(t, x)‖ ≤ M(q−1)
√

q for almost
all t ≥ t0 and x ∈ R

q. Next, consider the Lyapunov function
candidate

V (x) =
1

2
(x − αe)T(x − αe), (19)

where x , [x1, . . . , xq]
T ∈ R

q , e , [1, . . . , 1]T, and α ∈ R,
and note that

(x − αe)TK[f ](t, x)

= K[(x − αe)Tf ](t, x)

= K[xTf ](t, x)

= K





q
∑

i=1

xi

q
∑

j=1,j 6=i

C(i,j)aijsign(xi − xj)



 (t, x)

= K



−
q

∑

i=1

q
∑

j=1,j 6=i

C(i,j)aij(xi − xj)sign(xi − xj)



 (t, x)

⊆ −
q

∑

i=1

q
∑

j=1,j 6=i

C(i,j)aij(xi − xj)K[sign(xi − xj)](x)

= −
q

∑

i=1

q
∑

j=1,j 6=i

C(i,j)aij(xi − xj)SGN(xi − xj)

1The negative of the connectivity matrix, that is, −C, is known as the
Laplacian of the directed graph G in the literature.
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= −
q

∑

i=1

q
∑

j=1,j 6=i

C(i,j)aij |xi − xj |

≤ −
q

∑

i=1

q
∑

j=1,j 6=i

mC(i,j)|xi − xj |, (t, x) ∈ [t0,∞) × R
q,

which implies that 〈∇V (x), v〉 ≤ −∑q
i=1

∑q
j=1,j 6=i mC(i,j)

|xi − xj | for every v ∈ K[f ](t, x). Now, it follows from
Theorem 1 of [15, p. 153] that x1 = · · · = xq = α is
Lyapunov stable. In fact, it can be shown that x1 = · · · =
xq = α is uniformly Lyapunov stable. Next, let W (x) =
∑q

i=1

∑q
j=1,j 6=i mC(i,j)|xi − xj | and note that W−1(0) =

{x ∈ R
q : x1 = · · · = xq} = E . Now, it follows from

Theorem 3.2 that G is uniformly semistable. Finally, since
∑q

i=1 ẋi(t) = 0, t ≥ t0, it follows that xi(t) ⇉ 1
q

∑q
i=1 xi0

as t → ∞, i = 1, . . . , q.

Note that Example 3.2 serves as a special case of Theo-
rem 4.1.

V. CONCLUSION

This paper extends the notions of semistability to nonlin-
ear dynamical systems involving discontinuous time-varying
vector fields. In particular, Lyapunov-based tests for semista-
bility, weak semistability, as well as uniform semistability are
established. These results are used to develop a framework
for information consensus algorithms in dynamical networks
with switching topologies involving time-dependent and
state-dependent communication links for addressing com-
munication link failures, communication dropouts, and time-
varying information exchange.
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