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Abstract— This paper considers the optimal control of time
varying, finite horizon, continuous time Markov chains under
the assumption that their behavior can be influenced by the
adjustment of selected transition rates. We assume a quadratic
penalty on the amount of the rate adjustment and that
the system is completely observable. We derive an ordinary
differential equation whose solution gives the minimum return
function and describe how the optimal feedback control law
is obtained from it. The results bear some resemblance to the
solution of the quadratic regulator problem for linear systems,
but because of the bilinear structure of these problems, the
details are significantly different.

I. INTRODUCTION

From its beginnings as a identifiable subject in the late
1950’s [1], [2] the control of Markov processes has enjoyed
growing success and is, by now, supported by a large litera-
ture in areas as diverse as operations research, economics, fi-
nancial engineering, artificial intelligence and, more recently,
learning theory. The abundant interest notwithstanding, few
explicitly solvable problems have been identified , most
papers recommend some variation of dynamic programming
and/or possible heuristics as the solution technique; few ex-
plicitly solvable problems have been identified. The purpose
of this paper is to describe a broad class of such problems for
which there is an effective optimization procedure involving
only the solution of a differential equation with a specified
initial condition, analogous to, but distinct from, the way the
Riccati equation is used in optimal control.

The problems considered here can be characterized as
1) Finite or infinite horizon; time varying parameters
2) Arbitrary running cost on the state, quadratic on the

controls
3) Finite or denumerably many states
4) Perfect observation of the state
5) Affine dependence of the transition rates on the con-

trols
Although the basic results require neither time invariance
nor infinite horizon, we do describe some simplifications
which occur in these special cases. The development is
carried out in a continuous time setting; there is an analogous
development for the discrete time problems.

Essential elements of the development here include
1) A representation of sample paths for Markov processes

using Poisson counters
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2) A “basis vector” representation of the states of the
Markov process

3) A linear functional representation of the minimum
return function.

The reader is directed to the paper [4] where some of these
ideas play a role and also to the very recent paper [5] where
aspects of this formalism are used as part of a new design
methodology for hybrid systems.

II. PRELIMINARIES

The Model: Because we seek optimal feedback control
laws for observed Markov processes, it is necessary to have a
representation of the sample paths. Our choice is to consider
the states to be the standard basis vectors in Rn. This makes
it possible to give a convenient description in terms of Itô
equations involving Poisson counters. The sample path x(t)
takes on values in the finite set e1, e2, ..., en and the model
for the evolution is

dx =
m∑

i=1

GixdNi ; Gi ∈ Ĝ

where N1, N2, ..., Nm are Poisson counters with rates λi and
Ĝ is the set of matrices of the form Ek,l − El,l where Eij

is the matrix of all zeros except for a one in the ith row and
jth column. The resulting Itô equation generates a Markov
process whose transition probabilities are related to the rates
of the Poisson counters in accordance with

P (t) =
m∑

i=1

Giλi(t)

The rates of the counters are allowed to depend on controls
in accordance with

P (t, u(t)) =
m∑

i=1

Gi

νi +
m∑

j=1

µijuj(t)


This will be abbreviated as

P (t, u(t)) = A(t) +
∑

uiBi(t)

Let G denote the set of square matrices whose columns
sum to zero and whose off diagonal entries are nonnegative.
These are the so called infinitesimal generators of continuous
time Markov processes. Because the counting rates must be
nonnegative, A is necessarily in G, and the Bi are matrices
whose columns must sum to zero; the Bi but they are not
necessarily infinitesimal generators. This is consistent with
the idea that nonzero values of u may correspond to either
increasing or decreasing the resources available when the
system is in a specific state.
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The Performance Measure: We assume that nonzero
values of u have an associated cost and that each state of the
process can be assigned a cost (or reward) that is expressible
in terms of an integral over time plus an end point penality.
More specifically, we assume that there is a cost function
associated with each of the states such that

η = E
∫ T

0

n∑
i=1

ci(t)xi(t) + uT (t)u(t) dt + 〈φf , x(T )〉

measures the performance. Observe that if c is bounded then∫ T

0

cT (t)x(t) + uT udσ ≥ inf
i,t

ci(t)T

and thus there are upper and lower bounds on the optimal
value of η provided that T is finite.

The Admissible Controls: Defining U: Because x only
takes on values in the set {e1, e2, ..., en} any real valued
function of x, say φ(x), can be expressed as a linear
functional, φ(x) = 〈φ̃, x〉. In fact, φ̃i = φ(ei). We will
use this representation repeatedly. Our optimization problem
consists of finding a feedback control u(t, x) that minimizes
η. The controls are constrained by the fact that P must be
an infinitesimal generator. To make this constraint explicit,
let U denote the set of functions mapping the state space,
{ei}n

i=1, to the space of controls, Rm, such that the matrix
with jth column

fj = Aej +
m∑

i=1

ui(ej)Biej ; j = 1, 2, ..., n

is an infinitesimal generator. Such controls can be identified
with a convex subset of the set of m by n matrices of the
form

U =


u1(e1) u1(e2) ... u1(en)
u2(e1) u2(e2) ... u2(en

... ... ... ...
um(e1) um(e2) ... um(en)


with the entries possibly time dependent. The set of such
m by n matrices which result in P being an infinitesimal
generator is a convex because the requirements on P are
expressible as a a set of linear inequalities constraining its
entries and P depends linearly on u. The set U can be
characterized as the intersection of mn or fewer half spaces.
It is not necessarily compact.

III. THE MINIMUM RETURN FUNCTION

In Theorem 1 below the function

φ(k, x) = 〈φ(k), x〉 = min
u(x)∈A

(
m∑

i=1

uik
T Bx + u2

i

)
plays a role. If there were no constraints on u the minimum
would be achieved at

ui(x) = −1
2
kT Bix

and the minimizing value would be

φ∗(x) = −1
4

m∑
i=1

kT BT
i xxT Bik

In this situation it is clear that both the value of the minimum
and the minimizing choice of u are continuous functions
of k. When − 1

2kT Bx lies outside the constraint set the
minimizing feedback control u(x) lies on the boundary of
U . Because of the uT u term , φ(k, x) is a strictly convex
function of u. The minimizing value of u for fixed k need
not be unique, but all local minima are global minima and
because φ depends continuously on k the minimum value
is continuous as a function of k. For values of k for which
the minimizing u is not unique the strict convexity implies
that there are at most a finite number of local minima and
these are isolated. At any such value of u φ is a Lipschitz
continuous function of k in a neighborhood and thus the
choice that minimizes φ results in φ∗ being a Lipschitz
continuous function of k.

Theorem 1: Let Gi, and Ni be as described with the
rates of the Ni being λi0 +

∑
µijuj . The λi0 and µij may

be time varying but are assumed to be bounded. Assume that
x satisfies the Itô equation

dx =
m∑

i=1

GixdNi ; , x(t) ∈ {e1, e2, ..., en}

Define A and Bi as

A =
m∑

i=1

Giλi0 ; Bi =
m∑

j=1

µijGj

and let U be the constraint set defined above. Then for any
T > 0 and any φf ∈ Rn there exists a unique solution of
the equation

k̇ = −AT k−c+ min
u(x)∈U

(
m∑

i=1

uik
T Bix + u2

i

)
; k(T ) = φf

on the interval [0, T ]. Moreover, the control law

u(x) = arg min
u(x)∈A

(
m∑

i=1

uik
T Bix + u2

i

)
minimizes

η = E
∫ T

0

cT (t)x(t) + uT udσ + E〈φ, x(T )〉

relative to all other past measureable control laws and the
minimizing value of η is

η∗(x(0)) = kT (0)x(0)

Proof: Consider a candidate for the the minimum return
function written as 〈k(t), x(t)〉 = kT (t)x(t) and observe that
the Itô differentiation rule gives

d〈k, x〉 = 〈k̇, x〉dt +
m∑

i=1

〈k,GixdNi〉

Note that dNi − (λi0 +
∑m

j=1 ujµji)dt is a martingale, and
from the definitions of A and Bi, the expectation of

m∑
j=1

GixdNi −

(
Ax +

m∑
i=1

uiBix

)
dt
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vanishes. Thus we see that

η − EkT (t)x(t)
∣∣T
t=0

= φT
f x(T )+

E
∫ T

0

k̇T x + cT x + kT
(
Ax +

∑
Bixui

)
+ uT udt

Introducing a minimization with respect to u we get the
inequality

η − EkT (t)x(t)
∣∣T
t=0

− φT x(T ) ≥

E
∫ T

0

k̇T x + kT Ax + min
u(x)∈U

(
m∑

i=1

uik
T Bx + u2

i

)
dt

Now suppose that there exists a k satisfying the differ-
ential equation of the theorem statement with the boundary
condition k(T ) = φf . In that case we see that

η ≥ EkT (0)x(0)

and that equality can be obtained by letting u(x) be the
minimizing function of x identified in the theorem statement.

It remains only to show that there actually exists a solution
to the differential equation for k. We have already argued for
the Lipschitz continuity of the right-hand side of this equa-
tion. Thus there is local existence and uniqueness theorem
for small values of |t− T |, t < T . Moreover, we have from
the argument above

kT (t)x = min
u∈U

E
∫ T

t

cT x + u2dt

As noted, the right-hand side has at most linear growth in
|t− T | so we see that for t ≤ T , k(t) must be bounded and
hence we have existence and uniqueness for all t ≤ T .

This completes the proof.
Notation: If x is a vector in Rn then the vector in Rn

whose entries are the squares of the corresponding entries in
x will be written as x.2.

Corollary: Under the hypothesis of theorem one, if for

k̇ = −AT k − c +
1
4

∑(
BT

i k
).2

; k(T ) = φf

the feedback control

ui(x) = −1
2

∑
kT Bix

lies in U then it is the optimal control.
The optimal control problem defined and solved by this

theorem requires the choice of a time dependent m by n
matrix U(t) ∈ U . We now describe a deterministic problem
that is equivalent to the problem described in Theorem one in
the sense that there is a simple mapping between its solution
and the solution given by Theorem 1. This formulation
provides an alternate way to conceptualize the situation and,
because it is deterministic, can be treated as a open loop
optimization problem.

Notation: Let e be the vector whose components are all
ones,

e =
n∑

i=1

ei

Theorem 2: Let A,Bi, c be as in Theorem 1 and let p
satisfy the equation

ṗ =

(
A +

m∑
i=1

BiDi

)
p ; p(0) = given

with p(0) a probability vector and the Di arbitrary, time
dependent, diagonal matrices, considered as controls. The
minimization of

η =
∫ T

0

cT p +
m∑

i=1

eT D2
i pdt + φT

f p(T )

subject to the constraint that

A +
m∑

i=1

BiDi ∈ G

results in a choice for the jth element of Di which equals
the optimal choice of ui(ej) in Theorem 1.

Proof: Because there are m diagonal matrices, each with
n potentially nonzero entries, there are mn controls to be
determined. We use the maximum principle to find first order
necessary conditions. Introduce the Hamiltonian with costate
variable q (we assume normality)

h(p, q,D) = qT

(
A +

m∑
i=1

BiDi)

)
p + cT p +

∑
eT D2

i p

so that

Di = arg min
A+

P
BiDi∈G

∑
qT BiDip +

∑
eT D2

i p

The costate equation is then

q̇ = −AT q − c + min
A+

P
BiDi∈G

m∑
i=1

qT (BiDip + D2
i e)

In comparing this with the equation for k in theorem 1,

k̇ = −AT k − c + min
u(x)∈U

(
m∑

i=1

uik
T Bix + u2

i

)
the important point to note is that the minimization of

min
A+

P
BiDi∈G

m∑
i=1

qBiDip + eT
∑

D2
i p =

n∑
i=1

γipi

decouples in the sense that it can be done by considering
one column of A +

∑
BiDi at a time. Moreover, the pi are

necessarily nonnegative and so the minimization is achieved
by minimizing qT BDiei. However, this is what is required
for the minimization of

min
u(x)∈U

(
m∑

i=1

uik
T Bix + u2

i

)
By observing that the constraints and the value of the
minimum are preserved if we let

dij = ui(ej)

with dij being the jth diagonal of Di. Thus q and k are
the same and we see that the costate is not just the local
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gradient of the minimum return function but represents it
over the entire interval [0, T ].

This completes the proof.
Remark 1: Because the Ex(t) = p and because eT p =

1, we see that the effect of changing c in the performance
measure to c + βe and simultaneously changing φf to φf +
βe is simply to add βT to the minimum return function.
Such a change has no effect the optimal control law because
BT e = 0. Consequently, it is only the projection of c onto
the orthogonal complement of e, i.e., the vector c−(cT e/n)e
that plays a role in determining the optimal control.

Remark 2: If A− 1
2

∑
uiBi is an infinitesimal generator

for
ui(t, x) = −1

2
k(t)TB(t)x(t)

and

k̇ = −AT k − c− 1
4

∑
(BT

i k).2 ; k(tf ) = φf

then u is the optimal solution. For fixed values of A and Bi,
this will be the case if the entries in A are strictly positive
off the diagonal and if c− (cT e/n)e is sufficiently close to
zero. It will also be the case if B is an infinitesimal generator
and −BT k is element-by-element nonnegative.

Remark 3: The quadratic programming problem consist-
ing of minimizing η = a+bT u+uT u subject to u ∈ U with
U defined by the intersection of half-planes is quite standard.
The minimum always exists and occurs either at u = − 1

2b, if
this point is in the interior of U , or else on the boundary of
U . If u is a scalar constrained by gl ≤ u ≤ gu, the minimum
is

ηmin(u) =


a + glb + g2

l − 1
2b ≤ gl

a− 1
4b2 gl ≤ −1

2b ≤ gu

a + gub + gugu gu ≤ − 1
2b

In the vector case the minimum may occur in the interior
of U , on a hyperplane defined by hT u = r, at the intersection
of two such hyperplanes, etc. If u is in the interior then
η = a − bT b/4. In case u lies on a hyperplane hT u = r
we may always suppose that hT h = 1. Using a Lagrange
multiplier we are led to

ηλ = a + bT u + uT u + λ(hT u− r)

whose minimum occurs at

u = −1
2
(b− λh)

Enforcing hT u = r gives an equation for λ

hT (b− λh) = −2r

Thus λ = 2r + hT b and the minimizing value of u is given
by

u∗ = −1
2
(
b− (2r + hT b)h

)
The minimum value of η is then

η∗ = a− 1
4
bT b + r2 + rhT b/2

Further details are left to the reader.

IV. THE CONSTANT COEFFICIENT CASES

If we assume that the vector c and the matrices A and Bi

entering in Lemma 1 are time invariant, some simplification
occurs. In this case the problem becomes invariant with
respect to a translation in time, and we may expect that the
gains defining the optimal control will approach a constant
as T goes to infinity. We will, in fact, show that under
appropriate assumptions there exists a time invariant optimal
control policy even though k is not bounded on [0,∞).

Lemma 1: Under the assumptions of Theorem 3, and with
A, B, and c constant, suppose that for

ṗ = (A +
m∑

i=1

BiDi)p

there exists a finite interval [0, T ] and a time dependent
choice of Di on that interval such that A +

∑
BiDi is an

infinitesimal generator that transfers p1 to p2. Also suppose
there exists a control with these properties that transfers p2

to p1. Then there is a constant m such that

||kT (t)(p1 − p2)|| ≤ m

for all probability vectors p1, p2 and all t > 0.
Proof: Without loss of generality we can consider an

infinite horizon problem. For t > T the minimum cost from
p2 can be expressed as∫ T

0

cT x(t) +
∑

eT D2
i pdt +

∫ ∞

T

cT x(t) +
∑

eT D2
i pdt

The minimum cost from p1 can not exceed the minimum
cost from p2 by more than the cost of getting from p1 to p2

on the interval [0, T ] and this is finite. Reversing the roles
of p1 and p2 completes the proof.

In the next section we will consider the controllability
question in slightly more detail, but notice that if the set of
points (a − b) with the property that a can be steered to b
and b can be steered to a has in its linear span all vectors
whose entries sum to zero then k − e(eT k/n is necessarily
bounded.

Lemma 2: If A is an irreducible infinitesimal generator
then the bordered matrix

M =
[

AT −e
eT 0

]
is invertible and for ||c− e(eT c/n)|| sufficiently small there
is a real solution (α, β) to the pair of equations

αe = AT β + c− 1
4

(
m∑

i=1

BT
i β).2

)
eT β = 0

Proof: To prove the statement on M we show that there is
no nonzero vector in the null space of MT . Suppose that
(gT , h)T is in the null space of MT so that Ag +eh = 0. In
that case eT Ag + nh = 0. But because A is an infinitesimal
generator, eT A = 0. and so h = 0. Because A is irreducible
its null space is one dimensional and consists of multiples of
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some probability vector. However, eT p 6= 0 for any vector
whose components sum to something nonzero. Thus, 0 is the
only element of the null space of MT and M it is invertible.
Rewrite the given equations as

f(α, β) = M

[
β
α

]
− 1

4

[ ∑m
i=1 BT

i β).2

0

]
=
[
−c
0

]
We can express the Jacobian of the left-hand side with the
help of the following notation. Introduce the diagonal matrix
D defined as

Di(β) =


eT
1 BT

i β 0 ... 0
0 eT

2 BT
i β ... 0

... ... ... ...
0 0 ... eT

nBT
i β


The Jacobian of f evaluated at (α, β) is

J =
[

AT −e
eT 0

]
− 1

2

[ ∑m
i=1 Di(k)Bi 0

0 0

]
If c = βe then the equation for [β, α] has [β, 0]T as

a solution and the Jacobian of the left-hand side, when
evaluated at this solution, is just the invertible matrix M .
Thus the inverse function theorem implies that there will be
a solution for all c− e(eT c/n) in a neighborhood of 0.

Remark 4: This lemma shows that in the time invariant
situation, and with mild additional assumptions, the time
reversed differential equation for k admits a solution of the
form

k(t) = αet + β

This solution can be used to define the optimal solution to
an infinite horizon version of the problem

η = E
∫ T

0

cT x(t) + uT udt

The following theorem summarizes the situation.
Theorem 3: With A,Bi, c, kf as in Theorem 1, but now

constant, assume that there is a solution (α, β) of

αe = AT β + c−
m∑

i=1

1
4
(
BT

i β
).2

such that

A− 1
2

m∑
i=1

Bi diag (BT
i β) ∈ G

Then the control law ui(x) = − 1
2βT Bix gives

lim
T→∞

1
T
E
∫ ∞

0

cT x + uT udt = α/dim x

and no other feedback control improves on this asymptotic
rate. Moreover,

η1 = E
∫ ∞

0

(cT x− αeT x + uT udt = EβT x(0)

and this is the smallest possible value of η1

Notice that this implies that there is at most one solution of
the α, β equations such that A− 1

2

∑m
i=1 Bi diag (BT

i β) ∈ G

V. CONTROLLABILITY

Consider a system of the form

ṗ = Ap +
∑

uiBip

with A and Bi such that eT A = eT Bi = 0. For such systems
we see that eT p is constant and that the system evolves on
a hyperplane eT p(t) = eT p(0). From the transition matrix
point of view, solutions of

Ṗ = AP +
∑

uiBiP ; P (0) = I

evolve on the group of matrices G = {X | eT X = eT . If the
system is n-dimensional then this is a n2 − n-dimensional
group. A similarity transformation can be used to transform
the eigenvector eT to the vector en showing that as a
Lie group this group is isomorphic to the group of affine
transformations of the standard form,

G =
[

A b
0 1

]
The reachable set from I will have a nonempty interior in
this group if the Lie algebra generated by A and Bi is of
dimension n2−n. In Lemma 1 we have assumed an explicit
controllability condition but it could be replaced by this Lie
algebraic condition.

Notice that a system with two noninteracting parts would
typically have steady state minimum return functions with
different rates of growth (their α’s would not be equal) so
that without some further assumption the asymptotic growth
implied by Lemma 2 would not be described by a single
constant α but rather by two or more different rates of
growth. If the assumption that A is irreducible is dropped
then the situation described by Lemma 2 does not follow
without some mixing hypothesis. If A provides no interaction
between subsystems the Bi may do so if the system is
controllable. In this case the effect of an optimal control
policy would be to move the probability from the higher
rates of growth to the lowest rate of growth. Thus from this
point of view it seems that the role of irreducibility should be
replaced by a controllability condition which would assure
that the state can be steered to the most advantageous
invariant distribution.

VI. EXAMPLES

To illustrate the ideas involved here we give one quite
specific example of a three state system worked out in
detail. We also give an example which formulates a path
planning problem as a Markov decision problem of the type
considered here.

Example 1: Consider a three state markov chain having
a one parameter family of possible rates. The differential
equation for the probability law depends on a control u in
accordance with

d

dt

 p1

p2

p3

 =

 −1 1 0
1 −2 1
0 1 −1

 p1

p2

p3

+
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u

 −1 0 0
1 0 1
0 0 −1

 p1

p2

p3


In this case A+uB ∈ G if u ≥ −1. The problem we consider
is that of minimizing

η = E
∫ T

0

3x1 + 3x3 + u2dt

The idea is that it is advantageous to keep the system in
state e2 but there is a penalty associated with using u. More
specifically, for x = e1 or x = e3 we need u ≥ −1. There
is no constraint on u if x = e2. From Theorem 1 we see
that if the system is in state e1 and if −kT Be1/2 ≥ −1 the
optimal control is u = (k1 − k2)/2; otherwise the optimal
control is u = −1. If x = e3 and −kT Be3/2 ≥ −1 the
optimal control is u = (k3 − k2)/2; otherwise the optimal
control is u = −1. If x = e2 the optimal control is zero.
According to Theorem 1 the equation for k is k̇1

k̇1

k̇1

 = −

 −1 1 0
1 −2 1
0 1 −1

 k1

k2

k3

−
 3

0
3

+

 max{(k2 − k1)2/4, k2 − k1 + 1}
0

max{(k2 − k3)2/4, k3 − k2 + 1})


There is no end point penalty term so the boundary condition
is x(T ) = 0.

We now proceed to show that in this case, the control
−kT Bx/2 does not exceed the limits on u so that for this
problem the equation for k reduces to

k̇1 = k1 − k2 − 3 + (k2 − k1)2/4

k̇2 = −k1 + 2k2 − k3

k̇3 = −k2 + k3 − 3 + (k2 − k3)2/4

Because the problem is time invariant, it is natural to look
for the steady state solution. Following Theorem 3, we look
for a constant α and a vector β such that α = β1−β2−3−
(β2 − β1)2/4, α = β1 + 2β2 − β3 and α = −β2 + β3 − 3 +
(β2 − β3)2/4 . Clearly β1 and β3 enter this set of equations
symmetrically and so for the relevant solution they will be
equal. Let a = β1−β2 = β3−β2. From the second equation
we have α = 2a and from the first

2a = −a + 3− a2/4 =⇒ a = −6(1±
√

1 + 1/3)

Because α defines the steady state performance, and because
this is positive, we need to select the minus sign in the
expression for a

a = 6
√

1 + 1/3− 6 ≈ .92

Thus, the steady state feedback control law can be expressed
as

u(e1) = −.46 ; u(e2) = 0 ; u(e2) = −.46

This example admits an interpretation as a more classical
control problem. Consider a scalar random process z(t) that

takes on the values +1, 0, -1. Suppose that it is desired
to “reset” z(t) to zero whenever it deviates from zero.
Consider a performance measure penalizing the integral of
the sum z2(t) + u2(t). If the stochastic process description
of the evolution of z matches the one given here the optimal
solution can be identified from the solution above. In this
interpretation the system might be compared with the more
widely studied stochastic regulator problem

dy = −cydt + udt + dw ; η = lim
T→∞

1
T
E
∫ T

0

qy2 + u2dt

which has a steady state optimal control of similar form

u(t) = (c−
√

c2 + q2)y

Example 2: As an indication of the broader applicability
of the model used here, consider a path planning problem
in which an autonomous vehicle is to traverse a directed
graph, (move along roads) moving from an initial vertex
v1 while seeking to end at a goal vertex vg . Label the
branches of the graph x1, x2, ..., xn. Assume that the action
of the robot cannot be described deterministically because of
uncertainties in the environment. The path actually realized
is modeled as evolving in continuous time with the robot
traversing one branch after another. The time to traverse a
path is determined by the transition times of the Markov
process. This means that when a control is selected, the next
branch traversed is determined probabilistically, subject to
the allowed transitions coded by the Gi. There is a cost
associated with being on a branch and a final end point cost
as well. In terms of equations we have

dx =
∑

GjxdNj ; η =
∫ T

0

cT x + F (u)dt + φ(x(T )

and a performance measure

η = E
∫ T

0

cT (t)x(t) + uT udσ + kT
f Ex(T )
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