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Abstract— The approach adopted in this paper for the
problem of transient stabilization of multimachine power sys-
tems sees the entire network as the (structure-preserving)
interconnection of the network components, described by well
known models. These structure-preserving models preserve the
identity of the network components and allow for a more
realistic treatment of the loads. Our main contribution is the
explicit computation of a control law that, under a detectability
assumption, ensures that all trajectories converge to the desired
equilibrium point, provided that they start and remain in the
region where the model makes physical sense.

I. INTRODUCTION

Classical research on transient stabilization of power sys-

tems has relied on the use of aggregated reduced network

models that represent the system as an n–port described by

a set of ordinary differential equations. Several excitation

controllers that establish Lyapunov stability of the desired

equilibrium of these models have been reported. The nonlin-

ear controller design techniques that have been considered

include feedback linearization [15], damping injection [8],

[16], [17], as well as, the more general, interconnection and

damping assignment passivity–based control, see [12], [11]

and [10].

Aggregated models erase the identity of the network

components and impose an unrealistic treatment of the loads.

In this paper, we abandon the aggregated n–port view of the

network and consider the more natural and widely popular

structure–preserving models (SPM), first proposed in [2].

Since these models consist of differential algebraic equa-

tions (DAE) they require the development of some suitably

tailored tools for controller synthesis and stability analysis.

Another original feature of the present work is that we do not

aim at Lyapunov stability, but establish instead a “global”

convergence result.1

In [5] SPM with nonlinear loads have been studied using

singular perturbation approach in which the algebraic equa-

tions are considered as a limit of the fast dynamics. This

approach is used in order to circumvent the singular proper-

ties in DAE system. See [18] for more details. Furthermore,
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1The precise meaning of the qualifier “global” will be given in the sequel.
It essentially boils down to restricting the analysis to the trajectories that
remain in the region where the model makes physical sense.

in [4] SPM were used to identify—in terms of feasibility of

a LMI—a class of power systems with nonlinear (so-called

ZIP) loads and leaky lines for which a linear time–invariant

controller renders the overall linearized system dissipative

with a (locally) positive definite storage function, thus en-

suring stability of the desired equilibrium for the nonlinear

system. Unfortunately, a full–fledged nonlinear analysis of

the problem was not possible due to the difficulty in handling

the complicated interdependence of the variables appearing

in the algebraic constraints of the DAEs. The Lyapunov

function in that paper is obtained by adding a quadratic term

in the rotor angle to the classical energy function of [14].

This quadratic term is needed to compensate for a linear term

(in rotor angle) appearing in the energy function of [14] and

render the new storage function positive definite. To obtain

our “global” convergence result we observe that removing the

linear term from the energy function of [14] and increasing

the quadratic term in bus voltages yields a function whose

time derivative can be arbitrarily assigned with a “globally”

defined static state feedback. Furthermore, although this new

function is not positive definite, it is bounded from below and

has some suitable radial unboundedness properties—features

that are essential to establish boundedness of trajectories. We

then select a control law that renders “globally” attractive

the level set of this function that contains the desired

equilibrium point. If, furthermore, the function defines a

detectable output, then all trajectories will asymptotically

converge to the equilibrium. The only critical assumption

required to establish this result is that the loads are constant

impedances—a condition that is implicitly assumed in all

controllers derived for aggregated models.

The structure of the paper is as follows. Section II presents

the mathematical model of the various elements comprising

the power system. Then, we formulate the control problem

in Section III and give a key preliminary lemma. Section

IV contains our main “global” convergence result that relies

on the aforementioned detectability assumption. Section V

includes the application of the proposed technique to a clas-

sical example. We wrap up the paper with some concluding

remarks in Section VI. Proofs of some of the Lemmas are

presented in the appendices.

Notation All vectors in the paper are column vectors, even

the gradient of a scalar function: ∇x = ∂
∂x

. For any function

f : Rn → R, we define ∇zj
f(z) := ∂f

∂zj
(z), and for vector

functions g : Rn → Rn, we define the Jacobian ∇g(z) :=
[∇g1(z), . . . ,∇gn(z)]⊤ ∈ Rn×n. To simplify notation we
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introduce the sets

M
n := S

n × R
n × R

n
>0 × S

n × R
n
>0, n ∈ n̄ := {1, .., n},

where S is the unitary circle and Rn
>0 := {x ∈ Rn | xj > 0}.

II. STRUCTURE–PRESERVING MODELLING

In this section we recall the well–known structure–

preserving model reported in [14]. To simplify the presenta-

tion of our results we assume a simplified network topology

where attached to each bus there is a machine and a load.2

Each bus, and their corresponding machine and load, have

an associated identifier j ∈ n̄ := {1, .., n}. Buses are

interconnected through transmission lines that are identified

by the double subindex jk ∈ Ω ⊂ n̄ × n̄, indicating that

the line jk connects the bus j ∈ n̄ with the bus k ∈ n̄; the

set avoids obvious repetitions, e.g., if jk ∈ Ω then kj /∈ Ω.

All elements share as port variables the angle θj and the

magnitude Vj of the bus voltage phasor yj = col(θj , Vj) ∈
S ×R>0. Associated to each bus are the active and reactive

powers entering the machine, the load or the transmission

lines, that are denoted

[

PM
j

QM
j

]

,

[

PL
j

QL
j

]

,

[

Pjk

Qjk

]

∈ R
2, (1)

respectively. Following standard convention, we take active

and reactive powers as positive when entering their corre-

sponding component.

A. Synchronous machines model

Each synchronous machine is described by a set of third

order DAE’s, [14]:

δ̇j =ωj

Mjω̇j=Pmj
− Djωj + PM

j

τjĖj =−
xdj

x′

dj

Ej +
xdj

−x′

dj

x′

dj

Vj cos(δj − θj) + EFj
,

(2)

PM
j = −

EjVj

x′

dj

sin(δj − θj) − Y2jV
2
j sin(2(δj − θj))

QM
j = (YVj

− Y2j cos(2(δj − θj)))V
2

j −
EjVj

x′

dj

cos(δj − θj),

(3)

where, to simplify notation, we defined the constants

Y2j :=
x′

dj
− xqj

2xqj
x′

dj

, YVj
:=

x′
dj

+ xqj

2xqj
x′

dj

.

The state variables xj := col(δj , ωj , Ej) ∈ S × R × R>0

denote the rotor angle, the rotor speed and the quadrature axis

internal e.m.f., respectively. The control variable is the field

voltage EFj
, which is split in two terms E⋆

Fj
+ vj . The first

is constant and fixes the equilibrium value, while the second

one is the control action. The parameters are denoted as in

[14], and are fairly standard.

2As will become clear below the derivations are also applicable for other
network topologies—at the expense of a more cluttered notation.

B. Loads model

Loads are described by the standard ZIP model, see [7],

PL
j = PZj

V 2
j + PIj

Vj + P0j

QL
j = QZj

V 2
j + QIj

Vj + Q0j
,

(4)

which explicitly represent the contribution of each type of

load (constant impedance, current or power). As will become

clear below, to state our main result we must consider a

simplified model for the loads. Namely, we assume only

constant impedance loads:

PL
j = PZj

V 2
j

QL
j = QZj

V 2
j

(5)

This simplification, which is necessary to obtain the lumped

parameter model used in most transient stability controller

design studies, allows us to transform the algebraic con-

straints into a set of linear equations for which we can give

conditions for solvability.

C. Transmission lines model

The transmission lines are modeled with the standard

lumped Π circuit, see [1],

Pjk = GjkV 2
j + BjkVjVk sin(θj − θk)−

GjkVjVk cos(θj − θk)
Qjk = (Bjk − Bc

jk)V 2
j − BjkVjVk cos(θj − θk)−

GjkVjVk sin(θj − θk)

(6)

where jk ∈ Ω, while Gjk, Bjk and Bc
jk denote the lines

conductance, series and shunt susceptance, respectively.

Remark 1: In contrast with reduced network models Gjk

here is the effective line conductance and not the transfer

conductance that lumps the effects of the line conductance

and the load impedances. While Gjk may, sometimes, be

neglected it is impermissible to neglect the transfer con-

ductances [10]. We are interested in this paper in the more

realistic case of leaky lines with capacitive effects.

D. Bus equations

From Kirchhoff’s laws, at each bus we have

0 =
∑

k∈Ωj
Pjk + PM

j + PL
j

0 =
∑

k∈Ωj
Qjk + QM

j + QL
j

(7)

where Ωj := {k ∈ n̄ | ∃ jk ∈ Ω}, the set of buses that

are linked to the bus j through some transmission line.

Remark 2: We bring to the readers attention the fact

that Vj , being a magnitude of a phasor, is non–negative.

Similarly, due to physical considerations, Ej > 0. These

fundamental physical constraints of the model are assumed

for our derivations.
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III. CONTROL PROBLEM AND A KEY LEMMA

To obtain the overall model we group all the algebraic

constraints and write the system equations in the compact

form
{

ẋ = f(x, y) + Lvv
0 = g(x, y),

(8)

where (x := col(xj), y := col(yj)) ∈ Mn, v := col(vj) ∈
Rn, the matrix Lv := diag{col(0, 0, 1

τj
)} ∈ R3n×n, and

the functions f : Mn → R3n, and g : Mn → R2n are

defined by (2), and the replacement of (3), (5) and (6) into

(7), respectively.

A. Problem formulation

Assumption A1. There exists an isolated asymptotically

stable open loop equilibrium (x⋆, y⋆) of the system (8).

Asymptotic Convergence Problem. Consider the system

(8) satisfying Assumptions A1 and A2. Find a control law

v = v̂(x, y) such that:

(x(t), y(t)) ∈ M
n, ∀t ≥ 0 ⇒ lim

t→∞
(x(t), y(t)) = (x⋆, y⋆).

Consequently, (x⋆, y⋆) is an attractive equilibrium of the

closed–loop provided trajectories start, and remain, in

Mn—the set where the model is physically valid.

Remark 3: Assumption A1 is standard in transient

stability studies where v is included to enlarge the domain

of attraction of the operating point. On the other hand, the

requirement of convergence to the equilibrium point is very

stringent for engineering applications, see [6]. Due to space

limitations we do not dwell here on a “more practical”

stability requirement instead, aiming at the average control

reader, stick to this classical property.

B. Proposed solution strategy

The solution to the problem stated in section III-A pro-

ceeds along the following steps:

1) Give an explicit solution of the power balance equa-

tions g(x, y) = 0.

2) Representation of the system dynamics as a perturbed

port–Hamiltonian system using a Hamiltonian function

with desired characteristics.

3) Construction of a control signal that, assigning the

derivative of the Hamiltonian function, ensures that

trajectories will converge to the level set of the Hamil-

tonian that contains the equilibrium point. Trajectories

will then converge to the equilibrium if the Hamilto-

nian function defines a detectable output.

4) Prove that the resulting controller is well defined and

convergence is guaranteed—provided the trajectories

remain in M
n.

The second and the third steps can be carried out for the

model with the general ZIP loads (4). Invoking the existence

of an isolated local minimum of Assumption A1, using

some continuity arguments and assuming detectability we

can, therefore, conclude that the proposed controller renders

the equilibrium locally attractive. This kind of local results

are easily obtained using linearization, and known in the

power systems community as small–signal stability. In this

paper we are interested in the nonlinear transient stability

phenomenon,i.e., the large–signal stability problem, there-

fore, the last step is indispensable. To complete it, the first

step is essential—unfortunately, this imposes the restrictive

requirement of constant impedance loads (5).

IV. MAIN RESULT

This section contains our main “global” convergence re-

sult, which is derived proceeding along the steps delineated

in Subsection III-B.

A. Solution of g(x, y) = 0

In this subsection we present an explicit solution to the

algebraic constraints g(x, y) = 0, a result which is of interest

on its own. To simplify the presentation we define, for j ∈ n̄,

the complex variables

Vj := Vje
iθj ∈ C, V := col(Vj)j∈n̄ ∈ C

n, (9)

and

E := col(Ej)j∈n̄ ∈ R
n, δ := diag{δj}j∈n̄ ∈ R

n×n.

Lemma 1: Consider the algebraic equations g(x, y) = 0
of the power systems model (8) defined by (3), (5), (6) and

(7). If
1

x′
dj

+ QZj
>

∑

k∈Ωj

Bc
jk, j ∈ n̄, (10)

g(x, y) = 0 has a “globally” defined solution. That is, there

exists a function ŷ : Sn × Rn
>0 → Sn × Rn

>0 such that

g(x, ŷ(x)) = 0. Furthermore, this function can be written in

the form

V = W (δ)E, (11)

where W : Rn×n → Cn×n is bounded and invertible, with

elements are rational functions of cos(δj) and sin(δj) [3].

The proof is given in Appendix I.

Remark 4: Note that condition (10) is always verified and

realistic, since we are considering the low voltage terminals

of the generators, which is usually connected through a single

step-up transformer to the network. Also, it is clear that the

construction of ŷ directly follows from (9) and (11), and is

omitted for brevity.

Remark 5: Since the solution of the algebraic equations

g(x, y) = 0 is globally defined, and it will be used in

the design of the controller, we overcome the classical

assumption made about the invertibility of ∇yg(x, y), i.e.

the continuity of the trajectories restricted to g(x, y) = 0,

see [18], [5]. Moreover, using equation (11) all the external

perturbations will be taken implicitly into consideration in

the model since the matrix W (δ) represents in some way

the network.
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B. Perturbed port–Hamiltonian representation

The j-th synchronous machine model dynamics (2) can

be written as a perturbed port–Hamiltonian system

ẋj = (Jj − Rj)∇xj
Hj(xj , yj) + Lvj

vj + ξj (12)

with the Hamiltonian functions Hj : M1 → R,

Hj :=
1

2
Mjω

2

j +
1

2
YEj

E2

j +
1

2
[∆j + YVj

]V 2

j − YFj
E⋆

Fj
Ej

−
Y2j

2
cos 2(θj − δj)V

2

j −
EjVj

x′
dj

cos(θj − δj) (13)

and we defined the matrices

Jj :=









0
1

Mj

0

−
1

Mj

0 0

0 0 0









= −J⊤
j , Rj :=











0 0 0

0
Dj

M2
j

0

0 0
1

τjYFj











,

Lvj
:= [0, 0, 1

τj
]⊤, ξj := [0,

Pmj

Mj
, 0]⊤, and the constants

YEj
:=

xdj

x′
dj

(xdj
− x′

dj
)
, YFj

:=
1

xdj
− x′

dj

,

where Rj ≥ 0 and ∆j ≥ 0 is a key design parameter.

One important property of the Hamiltonian Hj is that

it is quadratic in Zj := col(ωj , Ej , Vj) and, furthermore,

bounded from below. (Consequently, if Hj is non–increasing,

we can conclude that all signals are bounded—because Zj

will be bounded and θj and δj live in compact sets.) To prove

this fact, let us write the function in the form

Hj =
1

2
Z⊤

j Tj(θj − δj)Zj + Z⊤
j bj (14)

where we have defined

Tj :=













Mj 0 0

0 YEj

− cos(θj − δj)

x′
dj

0
− cos(θj − δj)

x′
dj

∆j + YVj
− Y2j cos 2(θj − δj)













and bj := col(0,−YFj
E⋆

Fj
, 0). Using the fact that (for all

∆j ≥ 0)

∆j + YVj
> Y2j ,

it is possible to show that, uniformly in θj − δj , there exists

ǫj > 0 such that Tj ≥ ǫjI . Consequently, after some basic

bounding, we can prove that

Hj ≥ −
(YFj

E⋆
Fj

)2

2ǫj

. (15)

Remark 6: The functions Hj defined in (13) should be

contrasted with the energy functions used in [13], see also

[4]. On one hand, the latter includes an additional term

−Pmjδj .3 On the other hand, we have included a term

∆jV
2
j that, as will come clear below, is essential for the

3Removing this term induces the appearance of the constant term ξj in
(12), but we show in the sequel that its effect can be compensated with a
suitable selection of the control law.

construction of the control law.

Remark 7: To handle the linear term −Pmjδj in a

Lyapunov–like analysis we must take care of some delicate

theoretical issues that have, unfortunately, been overlooked

in the literature and we discuss in detail here—see also

discussion in [10] and [16]. Since this function is not defined

in S, but in R, if we look at the system as evolving in Mn

it will be a discontinuous function and (standard) Lyapunov

arguments will not hold true. To avoid this difficulty, we

should consider that δj evolves in R, instead of S. In

this case, the function Hj is not lower bounded anymore,

stymying the establishment of the property of trajectory

boundedness needed for LaSalle–based arguments.4

Remark 8: Due to the presence of the term ξj in (12) it

is clear that the set of open–loop equilibria and the set of

minima of Hj are disjoint. Therefore, the new Hamiltonian

cannot qualify as a Lyapunov function candidate (for the

desired equilibrium).

C. “Global” assignment of Ḣ(x, ŷ(x))

Besides being lower bounded and quadratic (in Zj) we

prove in the paper another fundamental property of the

function Hj , namely, that the derivative of the function

H(x, y) :=
∑

j∈n̄

Hj(xj , yj) (16)

restricted to the set g(x, y) = 0, can be arbitrarily assigned

with a suitable selection of the control v. Towards this end,

compute

Ḣ = −∇⊤
x HR∇xH + ξ̃(x, y)+∇⊤

EHτ−1v+∇⊤
y Hẏ (17)

where R := diag{Rj}j∈n̄ ∈ R3n×3n, ξ̃(x, y) :=
∑

j∈n̄ ωjPmj ∈ R and τ := diag{τj}j∈n̄ ∈ Rn×n. Lemma 1

shows that the set g(x, y) = 0 is equivalent to V = W (δ)E.

Therefore, to evaluate ẏ it is convenient to express the

Hamiltonian function (13), (16) in terms of the complex

variables V defined in (9). Hence, noticing that

V 2

j cos 2(θj − δj) = Re{e−2iδj
V

2

j},

we define

HC(x,V) :=
1

2

(

w⊤Mw + E⊤YEE + V
H(YV + ∆)V

)

−
1

2
Re{V

⊤ Y2e
−2iδ

V} − Re{E
H X V} − E⊤YF EF

where EF := col(E⋆
Fj

)j∈n̄, YV , Y2, X are defined in

Appendix I and

M := diag{Mj}j∈n̄, YE := diag{YEj
}j∈n̄,

YF := diag{YFj
}j∈n̄, ∆ := diag{∆j}j∈n̄

are defined in Rn×n.

4This unfortunate mistake is made in many papers. For instance, in
Proposition 1 of [5], where the interesting idea of damping injection for
structure preserving models is proposed, boundedness of trajectories is never
established—nor assumed.
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The following lemma, whose proof is given in Appendix

I, is instrumental to compute the required derivative.

Lemma 2: Consider the quadratic function f : R × R →
R,

f(µ1, µ2) = c1µ
2

1 + 2c3µ1µ2 + c2µ
2

2,

with ci ∈ R and µ1, µ2 : R → R. Define z = µ1 + iµ2 ∈ C

and the function fC : C → R such that

fC(z) = f(µ1, µ2).

Then,

ḟ = Re

{(

∂fC

∂z

)∗

ż

}

,

where ∂fC

∂z
:= ∂fC

∂µ1

+ i ∂fC

∂µ2

.

From the lemma it is clear that, to compute the time

derivative of H , we require the term Re
{

(∇VHC)
H

V̇

}

.

It is easy to see that

∇VHC = (YV + ∆)V−Y2e
2iδ

V
∗ −X E

where (·)
∗

denotes complex conjugation. We recall now the

identity (23) established in Appendix I that, for ease of

reference, we recall here

A0 V
∗ −X E

∗ −Y2e
−2iδ

V = 0.

Substituting the complex conjugate of the latter in ∇VHC

above we get

∇VHC = (YV + ∆ − A∗
0)V,

and by definition of A0, given in (24), we get ∇VHC =
D V, where

D := ∆ − QZ − Bd + B + i(−PZ − Gd + G) ∈ C
n×n.

We recall that the matrices ∆, QZ , PZ , Bd and Gd are

diagonal. All these matrices are defined in Appendix I.

Let us now compute V̇. In Lemma 1 it is shown that

V = WE, where W : Rn×n → Cn×n is bounded and

invertible. Therefore,

V̇ = ẆE + WĖ

The function Ẇ depends on δ and ω, but is independent of

v, while Ė will bring along terms on v. We now come back

to Ḣ, that takes the form

Ḣ = −∇⊤
x HR∇xH+ξ̃+∇⊤

EHτ−1v+Re
{

(∇VHC)
H

V̇

}

.

That, replacing the computations above, can be compactly

written as

Ḣ = −∇⊤
x HR∇xH +Ξ(δ, w, E,V)+L⊤(δ, w, E,V)τ−1v

(18)

where we defined the (real valued) functions

Ξ := ξ̃ + Re
{

(∇VHC)H
[

ẆE −W (τYF )−1 ∇EH
]}

L⊤ :=
{

∇⊤
EH + Re

{

(∇VHC)
H

W
}}

. (19)

Let us take a brief respite to analyze (18). It is clear that,

wherever the vector L(δ, w, E,V) is bounded away from

zero, we can easily select a control law v that assigns an

arbitrary function to Ḣ .

Proposition 1: Consider the power systems model (8)

with Assumption A1 and the Hamiltonian function (13).

There exists ∆min
j > 0 such that, for all ∆j ≥ ∆min

j we

have

L⊤(x, ŷ(x))E > 0 for all x ∈ S
n × R

n × R
n
>0,

where L⊤ is given in (19). Therefore, for any function α :
Mn → R, the “globally” defined control law

v =
1

L⊤E
[α(x, y) + ∇⊤

x HR∇xH − Ξ]τE (20)

ensures Ḣ = α.

Proof: By definition,

L⊤E = Re
{

(∇VHC)HW (δ)E
}

+ ∇⊤
EHE. (21)

Let us consider the first term. Since V = W (δ)E and

∇VHC = D V we have

Re
{

(∇VHC)HWE
}

= Re
{

V
H D V

}

= V
H D + D∗

2
V

The matrix D is symmetric (not Hermitian self conjugate).

Therefore,

D + D∗

2
= ∆ − QZ − Bd + B,

where QZ , Bd and B are constant matrices defined in

Appendix I. The quadratic form above can then be made

arbitrarily large by choosing a large ∆ > 0.

Using again V = WE and invertibility of W we see that

the second term in (21) is also a quadratic function of V,

that can be written in the form

∇⊤
EHE = V

H S(δ)V + Re(V
H s(δ)E⋆

F ),

for some suitable matrices S, s : Rn×n → Cn×n. From

boundedness of W−1 we have that S and s are also bounded

and we can conclude that, throughout Mn, the first term in

(21) can be made strictly greater than the second. Therefore,

the denominator in (20) is always larger than zero, complet-

ing the claim.

D. A “globally” convergent controller

In this subsection we propose to select the function α such

that trajectories converge to (x⋆, y⋆) under the following.

Assumption A2. The function H(x, y) − H⋆ defines a

detectable output for the closed–loop system.

Proposition 2: Consider the power systems model (8)

with Assumption A1 in closed–loop with the control (20)

with

α(x, y) = −λ[H(x, y) − H⋆], (22)

where H⋆ := H(x⋆, y⋆), λ > 0, ∆j ≥ ∆min
j , and ∆min

j is

as in Proposition 1.

(i) Assume (x(t), y(t)) ∈ Mn, ∀t ≥ 0. Then, trajectories

are bounded.

(ii) Furthermore, if Assumption A2 holds

limt→∞(x(t), y(t)) = (x⋆, y⋆).
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Proof: First, note that

d

dt
[H(x, y) − H⋆] = −λ[H(x, y) − H⋆].

Hence H is bounded, ensuring boundedness of trajectories.

Furthermore, we have that H(x(t), y(t)) → H⋆. The proof

is completed invoking LaSalle’s Invariance Principle and

the definition of detectability.

Remark 9: The controller of Proposition 1 drives the

trajectories towards the level set {(x, y) ∈ Mn | H(x, y) =
H⋆}. The analysis of the dynamics restricted to this set is

quite involved. However, we prove in [3] that the assumption

is verified for the classical single machine infinite bus system.

Remark 10: A practically interesting property of the

control law (20) is that it is “almost” decentralized. Indeed,

it is of the form vi = β(x, y)Ei, where the scalar function

β : Mn → R is the only information that needs to be

transferred among the generators.

Remark 11: We recall that the minima of H are not equi-

libria of the system—hence, it is not a Lyapunov function

candidate and the property Ḣ ≤ 0 is not sufficient to

guarantee some stability/convergence properties.

G 1
G 2

G 3

L o a d  A L o a d  B

L o a d  C

Fig. 1. Three-machines, nine-buses system.

V. A BENCHMARK SIMULATION EXAMPLE

We consider here the classical 3-machines, 9-buses system

considered in [1] and depicted in Fig. 1. We assume that the

active and reactive components of the loads have constant

impedance characteristics. Computations were done with the

software package PSAT [9]. We analyze the response of (8)

to a short circuit which consists of a zero-impedance three

phase fault as shown in Fig. 1. The fault is introduced at

t = 0.5 s and removed after a certain time (called the clearing

time and denoted tcl), after which the system is back to its

pre-disturbance topology.

To tune the controller there is a compromise between the

choices of ∆ that, as indicated in Proposition 1, should be

big enough to ensure that the denominator of the controller

will stay away from zero, and λ that determines the speed of

convergence to the desired level set. Indeed, ∆ appears in H
as ∆V 2 where V represents, in some way, the perturbation.

Then, the bigger ∆ is, the bigger H will be in the transient

phase, and we have to decrease λ to eliminate impulsive

responses in the controller during the perturbation.

Fig. 2 depicts the transient response of the nonlinear

systems with tcl = 0.1 s, ∆j = 10, j = 1, 2, 3, and λ = 3. As

it can be seen, the controller is able to significantly improve

the system’s stability and provide damping.

0 1 2 3 4 5 6 7 8 9 10
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0.35
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d
/
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Fig. 2. Speed w1. Open loop (dashed), closed loop (continuous).

VI. CONCLUSIONS AND FUTURE WORK

We have presented in this paper an excitation controller to

improve the transient stability properties of multi–machine

power systems described by SPM with leaky lines including

capacitive effects. Our main contribution is the explicit

computation of a control law that ensures “global” asymp-

totic convergence to the desired equilibrium point of all

trajectories starting and remaining in the physical domain of

the system—provided a detectability assumption is satisfied.

Note that this assumption was numerically verified for the

standard SMIB system in [3]. To the best of our knowledge,

no equivalent result is available in the literature at this level

of generality. The usefulness of the technique for synthesis

was illustrated with its application to a classical example.

Similarly to most developments reported by the control

theory community on the transient stability problem, it is

clear that the complexity of the proposed controller—as

well as its high sensitivity to the system parameters and

the assumption of full state measurement—severely stymies

the practical application of this result. This kind of work

pertains, however, to the realm of fundamental research

where basic issues like existence of solutions are addressed.

The present paper proves that, under a detectability assump-

tion, a solution to the “global” convergence problem for

the more natural SPM can indeed be explicitly constructed.

The equilibrium stabilization formulation of the problem

was done for mathematical convenience. However, physically

convergence of the rotor angles to a fixed point is not

required, it suffices to keep their difference bounded [1].
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APPENDIX I

PROOF OF LEMMAS

Proof of Lemma 1. In order to motivate the reader and due

to space limitations, we show in this section the first steps

of the proof of Lemma 1, where the complete version can

be found in [3]. Using equation (3), (5), (6), and after some

simple calculations, we obtain

PM
j + iQM

j = iYVj
|Vj |

2 −
iVj

x′
dj

E
∗
j −iY2j(Vj)

2e−2iδj ,

PL
j + iQL

j = (PZj
+ iQZj

)|Vj |
2,

Pjk + iQjk = [−Gjk − iBjk]Vj V
∗
k +

[Gjk + i(Bjk − Bc
jk)]|Vj |

2.

Replacing the expressions above in (7) we see that the j-th

bus equation takes the form

iVj

[

(

QZj
− iPZj

+ Bd
j − iGd

j

)

V
∗
j −

E
∗
j

x′
dj

+ YVj V
∗
j

−Y2je
−2iδj

Vj +i
∑

k∈Ωj

(iBjk + Gjk)V
∗
k



 = 0,

where we introduced the scalars

Bd
j :=

∑

k∈Ωj

(Bjk − Bc
jk), Gd

j :=
∑

k∈Ωj

Gjk.

Since the voltage Vj ∈ R>0, the term in brackets should be

zero leading to the following linear equation
(

YVj
+ QZj

− iPZj
+ Bd

j − iGd
j

)

V
∗
j −Y2je

−2iδj
Vj

−
E

∗
j

x′
dj

+
∑

k∈Ωj

(−Bjk + iGjk)V
∗
k = 0.

Grouping all bus equations (j ∈ n̄) leads to a square linear

system for the complex vector V that can be written in the

form

A0 V
∗ −X E

∗ −Y2e
−2iδ

V = 0, (23)

with

A0 := YV +QZ − iPZ +Bd− iGd−B + iG ∈ C
n×n, (24)

where we have defined the n × n real matrices

YV := diag{YVj
}, Y2 := diag{Y2j}, B := {Bjk},

PZ := diag{PZj
}, QZ := diag{QZj

}, G := {Gjk},

Gd := diag{Gd
j}, X := diag{

1

x′
dj

}, Bd := diag{Bd
j },

where j, k ∈ n̄, Bjk = Gjk = 0 if k 6∈ Ωj .

Furthermore, to compute equation (11), one should solve the

algebraic equation (23). See [3] for further details.

Proof of Lemma 2. By definition fC can be written in the

following form:

fC(z) =
c1 + c2

2
|z|2 +

c1 − c2

2
Re{z2} − Re{ic3z

2}

Where Re{ic3z
2} = −2c3µ1µ2. Then

∂fC

∂z
= (c1 + c2)z + (c1 − c2)z

∗ + 2ic3z
∗

= 2 [(c1µ1 + c3µ2) + i(c2µ2 + c3µ1)]

Hence,

ḟ(µ1, µ2) = 2(c1µ1 + c3µ2)µ̇1 + 2(c2µ2 + c3µ1)µ̇2

= 2 Re
{

[(c1µ1 + c3µ2) + i(c2µ2 + c3µ1)]
∗
ż
}

.
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