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Abstract— In this paper, we study the stability of discrete-
time switched linear systems via symbolic topology formulation
and the multiplicative ergodic theorem. A sufficient and neces-
sary condition for µA-almost sure stability is derived, where
µA is the Parry measure of the topological Markov chain
with a prescribed transition (0,1)-matrix A. The obtained µA-
almost sure stability is invariant under small perturbations of
the system. The topological description of stable processes of
switched linear systems in terms of Hausdorff dimension is
given, and it is shown that our approach captures the maximal
set of stable processes for linear switched systems. The obtained
results cover the stochastic Markov jump linear systems, where
the measure is the natural Markov measure defined by the
transition probability matrix.

Keywords: Discrete-time switched linear system; topolog-
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I. INTRODUCTION

A switched linear system consists of a family of linear

subsystems and a rule that governs the switching among

them. These types of models are found in many practical

systems in which switching is necessary and essential as the

system dynamics evolve. More specifically, we consider the

discrete-time dynamical system in the form of

xℓ+1 = Hωℓ
xℓ, ℓ ≥ 0 (1)

where xℓ ∈ R
n and n ≥ 2 is a fixed integer, ωℓ takes a

value in a given finite-symbolic set, say A = {1, . . . , κ},

and Hi ∈ R
n×n for i ∈ A. Let us denote the nonnegative

integer set by Z+ = {0, 1, 2, . . .} and the set of all mappings

Z+ → A by

Σκ =
{
ω| ω: Z+ → A

}
. (2)

Then switching can be classified into two situations: (i)

arbitrary switching, i.e., the switching rule is characterized

by Σκ defined by (2); (ii) switching is subject to certain

constraints, i.e., the switching rule is characterized by a

subset of Σκ.

Stability is the primary concern for switched systems. The

analysis of its stability is much more difficult and challenging

than that of linear systems. When arbitrary switching is con-

sidered, a switched system is said to be asymptotically stable

if all its trajectories converge to the origin. This is also called

absolute stability and it requires that all infinite products of

matrices taken from {H1, H2, . . . , Hκ} converge to zero.

That is, limℓ→∞
∏ℓ−1

j=0 Hωj
= 0 for any index sequence

{ω0, ω1, ...} with ωj ∈ A. This can be equivalently stated

by requiring the joint spectral radius of {H1, H2, . . . , Hκ}
to be strictly less than one [2]. To the best of our knowledge,

the study of stability of switched linear systems (1) has

been focused on absolute stability (for example, see [13],

[19], [29], [30], [32], [34], [35], and references therein).

Current available approaches for showing absolute stability

of switched systems are essentially based on the search

of common Lyapunov functions or variations of the same

framework. The existence of a common Lyapunov function

for a given switched system is quite restrictive, since an

expecting common Lyapunov function has to guarantee that

the energy of the overall system decreases to zero along all

possible state trajectories governed by switches. Moreover,

some critical situations are not able to be addressed by

using the Lyapunov function approach. For instance, it is

well known that the system (1) may not be absolutely

stable even if each Hi, i ∈ A is asymptotically stable (i.e.

all eigenvalues of Hi are inside the unit circle) (f.g., see

[8]). A switched system that is not absolutely stable does

not imply the end of stability analysis of the system. For

example, for the stochastic Markov jump systems, almost

sure stability (instead of absolute stability) plays a key role

in the study of these types of systems, since it provides

important convergence information in an “average” sense

(under appropriate probability measures) which has been

proved to be very useful and effective in applications (see

[4], [5], [15], [16], [17], [21], [23], [22], [26], [24], [27],

[31], [36], and references therein). Another situation is when

switching is subject to a subset of Σκ (so called admissible

switching set), how to identify the stability of (1) has not

been clearly characterized yet.

The main challenge for the study of switched systems

results from the switched paths that are arbitrary, although it

may be subject to some constraints. The switched mechanism

basically is uncertain, and the stability analysis has to cover

all possible switchings (jumps). With such an uncertainty, the

condition of absolute stability of switched systems is hardly

met as the number of switches increases (i.e. κ is getting

large). Thus, to look for condition(s) of “almost” stability

instead of absolute stability becomes more realistic in real

applications.

In this paper we apply the ergodic theorem from topology

to discuss the stability of (1), an approach that is not available

in the current literature. More specifically, we translate the
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problem (1) into a finite state topological Markov chain set-

ting under the framework of symbolic topology formulation.

Then we study the dynamics (1) by the Lyapunov expo-

nents based on the corresponding topological Markov chain.

The main mathematical tool is the Multiplicative Ergodic

Theorem, which is a fundamental theory for describing the

qualitative behaviors of dynamical systems from the topo-

logical point of view. We derive a necessary and sufficient

condition for µA-almost sure stability of (1) in which µA

is the Parry measure, i.e., the unique measure with maximal

entropy for the underlying setting. Moreover we have shown

that the almost sure stability is not altered under small linear

perturbation of the system (1), which is important and critical

for real applications. Furthermore, a topological description

of stable processes of (1) in terms of Hausdorff dimension is

given and this finding illustrates the significance for choosing

the measure µA (the Parry measure). Our obtained results

cover the stochastic Markov jump linear systems, where

the measure is the natural Markov measure defined by the

transition probability matrix. The proposed approach and the

obtained results of this paper provide a fresh point of view

for the study of switched systems.

The paper is organized as follows. In section 2, we trans-

form the switched system (1) to a symbolic dynamical system

under the framework of topology. Then system (1) with

constraints is expressed equivalently as a one-sided topolog-

ical Markov chain with a prescribed transition (0,1)-matrix

A. The concept of almost sure stability is introduced and

two preliminary propositions are provided in this section. In

section 3, a necessary and sufficient condition forµA-almost

sure stability of (1) is presented, and a topological description

of stable processes of (1) in terms of Hausdorff dimension

is given. Section 4 addresses the connection between our

obtained results and those for stochastic Markov jump linear

systems. The paper ends with concluding remarks.

Let H = (hij) be an n × n matrix of real numbers.

Throughout this paper the norm, ‖H‖, of H can be either

‖H‖F , or ‖H‖1, or ‖H‖∞ whose definitions are respectively

‖H‖F =

√
√
√
√

n∑

i,j=1

|hij|2, ‖H‖1 =

n∑

i,j=1

|hij|,

and ‖H‖∞ = max1≤i,j≤n |hij|.

II. SYMBOLIC TOPOLOGY FORMULATION

We use a symbolic string ω = (ω0ω1 · · ·) with ωj ∈ A =
{1, . . . , κ} to represent a specific switching path of (1). The

set of all possible switching paths ω = (ω0ω1 · · ·) is the

κ-dimensional one-sided symbolic space given by (2), that

is,

Σκ = {ω = (ω0ω1 · · ·) |ωi ∈ A for i = 0, 1, 2, . . .},

which is a compact metric space endowed with the usual

distance function

dist(ω, ω′) = ρ−n(ω,ω′), ∀ω, ω′ ∈ Σκ, (3)

where ρ > 1 is any prescribed constant and

n(ω, ω′) = inf{ℓ ∈ Z+ |ωℓ 6= ω′
ℓ}.

If ωℓ = ω′
ℓ for all nonnegative integers ℓ, then n(ω, ω′) :=

+∞. In order to include those cases in which switching

constraints exist, let A = [aij] be an irreducible (0, 1)-matrix

of size κ× κ, which is predefined. That is, aij equals either

0 or 1, and for any pair (i, j) there is some integer n > 0

such that a
(n)
ij > 0 where a

(n)
ij is the (i, j)-th element of An.

The admissible set ΣA is defined to be

ΣA =
{
ω = (ω0ω1 · · ·) ∈ Σκ | aωℓωℓ+1

= 1, ℓ = 0, 1, . . .
}

.

Thus it is clear that in general ΣA ⊂ Σκ. For the arbitrary

switching case where the matrix A satisfies aij ≡ 1 for any

1 ≤ i, j ≤ κ, we have ΣA = Σκ. Clearly the matrix A

contains transition information of all admissible paths, and

thus it is usually called a transition matrix. It is not difficult

to see that if (ω0ω1ω2 · · ·) ∈ ΣA then we have (ω1ω2 · · ·) ∈
ΣA. For a given ΣA, the mapping

σA: ΣA → ΣA; (ω0ω1 . . .) 7→ (ω1ω2 . . .)

is called the one-sided shift defined by the transition matrix

A. The dynamical system (ΣA, σA) is said to be one-

sided topological Markov chain with the transition matrix

A, which is a compact subsystem of the one-sided full-shift

dynamical system (Σκ, σ), where σ: Σκ → Σκ is defined by

(ω0ω1 · · ·) 7→ (ω1ω2 · · ·) for any ω = (ω0ω1 · · ·) ∈ Σκ.

We next define a random matrix over ΣA associated with

the system (1) by

S: ΣA → {H1, . . . , Hκ}; ω 7→ S(ω) = Hω0
∀ω ∈ ΣA.

Let us denote for any t ∈ N and for any ω ∈ ΣA

σt
A =

t times
︷ ︸︸ ︷
σA ◦ · · · ◦ σA and σ0

A = id: ΣA → ΣA (4)

and

S(ω, t) = S
(
σt−1

A ω
)
· · ·S(ω): Rn → R

n.

Here S(ω, t) is called a linear cocycle based on (ΣA, σA).
Notice S

(
σℓ

Aω
)

= Hωℓ
for any ω = (ω0ω1 · · ·). Then the

system

xℓ+1 = S
(
σℓ

Aω
)
xℓ, where ω ∈ ΣA, (5)

can be regarded as a hybrid linear system with Markovian

switchings.

For a given one-sided topological Markov chain (ΣA, σA)
with a transition matrix A, one always can define an invariant

measure µ under the one-sided shift σA from the classical

Krylov-Bogolioubov theorem [37]. Now we are ready to

introduce the definition of µ-almost sure stability of (1).

Definition 1: Let A be an irreducible transition matrix and

µ be an ergodic σA-invariant Borel probability measure on

ΣA; namely, µ(σ−1
A B) = µ(B) for any Borel subset B of

ΣA and µ(B) = 0 or 1 whenever σ−1
A B = B holds µ-mod
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0.1 The switched linear system (1) is said to be “µ-almost

sure stable” with respect to an admissible set ΣA if (1) is

exponentially stable for µ-almost all switching sequences ω

in ΣA. This is equivalent to saying, for µ-a.e. ω ∈ ΣA we

have

lim
ℓ→∞

1

ℓ
ln ‖xℓ‖ = lim

ℓ→∞

1

ℓ
ln ‖S(ω, ℓ)x0‖ < 0 ∀x0 ∈ R

n.

III. ALMOST SURE STABILITY

Following convention, we now define a canonical Markov

measure generated by an irreducible (0, 1)-matrix A of size

κ × κ. Let us denote the spectral radius of the nonnegative

matrix A by ρA. Then from the Perron-Frobenius theorem it

follows that there are two positive vectors

v = (v1, . . . , vκ)T and u = (u1, . . . , uκ) (6)

in R
κ such that

Av = ρAv and uA = ρAu with

κ∑

i=1

uivi = 1. (7)

Let

pA = (p1, . . . , pκ) with pi = uivi for 1 ≤ i ≤ κ (8)

and

PA = [pij], where pij =
aijvj

ρAvi

for 1 ≤ i, j ≤ κ. (9)

Then we have pAPA = pA. The matrix PA = [pij] can be

viewed as a transition probability matrix with pij = 0 if and

only if aij = 0. The canonical σA-invariant Markov measure

µA on ΣA is derived as follows:

µA([i0 · · · iℓ]A) = pi0pi0i1 · · ·piℓ−1iℓ
(10)

where

[i0 · · · iℓ]A = {ω ∈ ΣA |ω0 = i0, . . . , ωℓ = iℓ} (11)

is the cylinder defined by the word of length ℓ + 1 for

(i0 · · · iℓ) ∈ Aℓ+1 with any ℓ + 1 ∈ N. One can verify that

(1) µA is supported on ΣA with supp(µA) = ΣA, where

supp(µA) means the minimal σA-invariant closed subset

of ΣA with µA-measure 1.

(2) µA is an ergodic σA-invariant Borel probability measure

on ΣA.

Remark 1: Compared to the stochastic Markovian, the

above formulation is more general since the transition rates

(or called the generator) of the Markov chain can be arbitrary

due to it is not necessary for the transition matrix A to be a

probability matrix.

We now derive the first main result of this paper. All proofs

of theorems and corollaries can be found in the full version

of our paper [11].

1Two Borel sets “B = C µ-mod 0” means that µ ((B\C)∪ (C\B)) =
0. In addition, the σA-invariance of µ is equivalent to

∫

ΣA

f dµ =

∫

ΣA

f ◦ σA dµ ∀f ∈ C(ΣA)

.

Theorem 1: Consider the switched linear system (1) with

the switching sequence belonging to a topological Markov

shift (ΣA, σA). For any t ∈ N, we write

λi0i1···it−1
= ‖Hit−1

· · ·Hi0‖ ∀ (i0 · · · it−1) ∈ At, (12)

where ‖·‖ is the matrix norm and where At =

t times
︷ ︸︸ ︷

A × . . .×A.

Let pA = (p1, . . . , pκ), PA = [pij] and the measure µA be

defined by (8) and (10), respectively. Then (1) is µA-almost

sure stable if and only if there is at least one t̂ ∈ N such that

∏

(i0···it̂−1
)∈At̂

λ
pi0

pi0i1
···pi

t̂−2
i
t̂−1

i0i1···it̂−1
< 1. (13)

Moreover, if (1) is µA-almost sure stable, then there exists

some ε > 0 such that every switched linear system

xℓ+1 = H ′
ωℓ

xℓ ℓ ≥ 0

is also µA-almost sure stable on (ΣA, σA) whenever

‖Hi − H ′
i‖ ≤ ε 1 ≤ i ≤ κ. (14)

Remark 2: The ergodic σA-invariant measure µA defined

by (8)-(10) is called the “Parry measure” of the topological

Markov chain (ΣA, σA). It is a Gibbs measure which has the

maximal entropy, namely htop(σA) = hµA
(σA), and such

a property can characterize other measures in a “maximal”

way.

Chaos and entropy are characteristics of the complexity

of system (X, f) from two different viewpoints. Chaos is

closely related to system behavior, while entropy focuses

on “physical principles.” In general, they have the following

relationships:

(i) htop(f) > 0 implies that (X, f) is Li–Yorke

chaotic [3].

(j) htop(σA) > 0 if and only if (ΣA, σA) is Li–Yorke

chaotic [38].

The following theorem provides a topological description of

the set of stable processes.

Theorem 2: We consider the topological Markov jump

linear system (5). Let

Σstab(S; A) =
{

ω ∈ ΣA |xℓ+1 = S(σℓ
Aω)xℓ

is exponentially stable
}

.

If system (1) is µA-almost sure stable , then we have

HDρ(Σstab(S; A)) = HDρ(ΣA) =
htop(σA)

lnρ
. (15)

Here HDρ(·) means the Hausdorff dimension under the

metric ρ(·, ·) defined by (3). Moreover, HDρ(Σstab(S; A)) >

0 if and only if (ΣA, σA) is Li-Yorke chaotic.

Remark 3: Identity (15) implies that the µA measure

defined in (10) (which is the Parry measure of (ΣA, σA))
is a desirable measure from the topological point of view

since the “size” of the set of all stable paths is the same

as the set of all admissible paths in the sense of Hausdorff

dimension.
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The largest topological entropy of (ΣA, σA) is attained when

ΣA = Σκ and σA = σ. We thus consider the switched system

(1) with the switching paths allowed to be the whole symbol

space Σκ. The corresponding transition matrix A = [aij]
satisfies aij = 1 for all 1 ≤ i, j ≤ κ. In this case,

the unique maximal entropy measure µA is the ( 1
κ
, . . . , 1

κ
)-

product measure µκ with htop (σ) = ln κ (Theorem 8.9 in

[37]). The following corollary characterizes the µκ-almost

sure stability of (1) without constraints.

Corollary 1: Let us consider the switched linear system

(1) with the switching sequences belonging to the whole

symbol space Σκ. Then we have

(1) the system is µκ-almost stable if and only if there is at

least one t̂ ∈ N such that
∏

(i0···it̂−1)∈At̂

λi0i1···it̂−1
< 1

where λi0i1···it̂−1
is defined by (12);

(2) Let Σstab(S; Σκ) = {ω ∈ Σκ |xℓ+1 =
S(σℓω)xℓ is exponentially stable}. Then we have

HDρ(Σstab(S; Σκ)) = HDρ(Σκ) =
lnκ

ln ρ
,

provided that the system (1) is µκ-almost sure stable.

IV. STOCHASTIC MARKOV JUMP LINEAR SYSTEMS

In this section, we consider the discrete-time system (1),

where ωk is a discrete-time Markovian stochastic process

taking value in A = {1, . . . , κ}, with transition probabilities

pij = Pr{ωk+1 = j|ωk = i}. The matrix P = [pij]
is called the transition probability distribution. Now the

switched system given by

xℓ+1 = Hωℓ
xℓ, ℓ ≥ 0 (16)

is a standard stochastic Markov jump linear system whereωℓ

is a random variable. The almost sure stability of this type of

systems has been discussed by many authors. Recently a new

necessary and sufficient condition for almost sure stability

by the approach of using a so called “lifted” version of the

system is proposed [4, Proposition 3.4]. We shall show that

our results obtained in the previous section can cover such

a case.

Assume that the transition probability matrix P is ir-

reducible. According to the Perron-Frobenius theorem [6],

there exists a unique (invariant) distributionp = (p1, . . . , pκ)
such that

(a) 0 < pi < 1,
∑κ

i=1 pi = 1;

(b) (invariance)pP = p.

Now a natural Markov measure µp,P on Σκ defined by (p,P)
can be obtained as follows:

µp,P([i0 · · · iℓ]) = pi0pi0i1 · · ·piℓ−1iℓ
. (17)

Next, we define an irreducible (0, 1)-matrix AP = [aij]κ×κ

associated with P as follows:

aij =

{
1 if pij > 0,

0 if pij = 0.
(18)

Let (ΣAP
, σAP

) be the one-side Markov shift defined by the

transition matrix AP. One can verify directly that

• µp,P is supported on ΣAP
with supp(µp,P) = ΣAP

.

• µp,P is an ergodic σAP
-invariant Borel probability

measure on ΣAP
[37, Theorem 1.13].

Thus, according to the proofs of Theorem 1 and Theo-

rem 2, we immediately have

Corollary 2: Consider the stochastic Markov jump linear

system (16) with the probability transition matrix P . Let

the corresponding ergodic σAP
-invariant Borel probability

measure µp,P be defined as (17). Then the system is µp,P-

almost sure stable if and only if there is at least one t̂ ∈ N

such that
∏

(i0···it̂−1
)∈At̂

λ
pi0

pi0i1
···pi

t̂−2
i
t̂−1

i0i1···it̂−1
< 1, (19)

where λi0i1···it̂−1
is given by (12). Moreover, if (16) is µp,P-

almost sure stable, then there exists some ε > 0 such that

every switched linear system

xℓ+1 = H ′
ωℓ

xℓ ℓ ≥ 0

is also µp,P-almost sure stable based on (ΣAP
, σAP

) when-

ever

‖Hi − H ′
i‖ ≤ ε 1 ≤ i ≤ κ.

Corollary 3: Over a (p,P)-Markov shift (ΣAP
, σAP

), de-

note

Σstab(p,P) =
{

ω ∈ ΣAP
|xℓ+1 = S(σℓ

AP
ω)xℓ

with lim
ℓ→∞

1

ℓ
ln ‖xℓ‖ < 0 ∀x0 ∈ R

n
}

.

If (19) holds for some t̂ ∈ N, then

HDρ(ΣAP
) ≥ HDρ(Σstab(p,P)) ≥ HDρ(µp,P). (20)

(21)

Remark 4: Criterion (19) for almost sure stability is an

extension of the Fang-Loparo-Feng condition [15]. In fact,

if t̂ = 1, then we have
∏

i∈A
‖Si‖pi < 1,

which coincides with the Fang-Loparo-Feng sufficient crite-

rion.

V. ILLUSTRATIVE EXAMPLES

In this section, we give two examples (with κ = 2) to

show how to apply the criteria obtained in this paper. In

what follows, we denote by µ2 the Parry measure of the full

shift system (Σ2, σ), and ‖ · ‖ stands for ‖ · ‖F , which is

defined in section 1.3.

Example 1: Consider the switched system (1) with A =
{1, 2}, and

H1 =

[
0.2 1
0 0.2

]

, H2 =

[
0.9 0.4
0.5 0.2

]

.

It is obvious that this system is not stable for all switching

sequences ω ∈ Σ2 since the spectral radius of H2 is greater
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than 1. However, it is µ2-almost surely stable, where µ2 is

the maximal entropy measure of (Σ2, σ), since

λ11 = ‖H1H1‖ = 0.4040, λ12 = ‖H1H2‖ = 0.7432,

λ21 = ‖H2H1‖ = 1.1377, λ22 = ‖H2H2‖ = 1.2545,

∏

(i0i1)∈{1,2}×{1,2}
λi0i1 = 0.4285 < 1.

Hence, this demonstrates that the system is µ2-almost surely

stable and the Hausdorff dimension of the set of all stable

sequences ω ∈ Σ2 equals 1 (under the metric constant ρ = 2)

by Corollary 1.

In [4], the system with stochastic Markov chains was

considered, where the transition probability distribution was

P =

[
0.6 0.4
0.1 0.9

]

.

The unique invariant distribution in this case is p =
(0.2, 0.8). It is not difficult to see that condition (19) holds

true for t̂ = 3. Hence, the system is µp,P-almost surely

stable by Corollary 2. However, one can directly verify that

the Hausdorff dimension of the set of all stable sequences in

the sense of µp,P-almost sure stability is strictly less than 1.

We have known that the system is both µ2-almost surely

stable and µp,P-almost surely stable. Nevertheless, to check

µp,P-almost surely stable, one needs to use Corollary 2

since it requires the information of transition probability

distribution. It is possible for a stochastic Markov jump

system to be µp,P-almost surely stable but not to be µ2-

almost surely stable since the maximal entropy measure µ2

and the ergodic invariant measureµp,P are mutually singular.

According to Theorem 1, we know that the almost sure

stability of (1) is robust; that is, there exists ε > 0 such that

whenever ‖H ′
i − Hi‖ ≤ ε, i = 1, 2, the switched system

xℓ+1 = H ′
ωℓ

xℓ, ωℓ ∈ {1, 2}, (22)

is also µ2-almost surely stable and the Hausdorff dimension

of the set of all stable sequences ω ∈ Σ2 equals 1, too. Now

as an example we estimate the upper bound of admissible

perturbation constant ε. Let

λij = ‖HiHj‖ ∀ i, j ∈ {1, 2}.
We first solve the inequality

(λ11 + δ)(λ12 + δ)(λ21 + δ)(λ22 + δ)

≤ λ11λ12λ21λ22 + |δ|(λ11λ12λ21 + λ11λ12λ22 + λ11λ21λ22

+λ12λ21λ22) + δ
2(λ11λ12 + λ11λ21 + λ11λ22 + λ12λ21

+λ12λ22 + λ21λ22)|δ|
3(λ11 + λ12 + λ21 + λ22) + δ

4

< 1.

Substituting the values of λij into the above inequality, one

can get approximately

|δ| < 0.1542.

Next, we denote Gi = H ′
i − Hi, i = 1, 2. A sufficient

condition for the µ2-almost sure stability of the perturbation

system (22) is
∏

(i0i1)∈{1,2}×{1,2}
‖(Hi0 + Gi0)(Hi1 + Gi1)‖

≤
[
‖H1H1‖ + 2ε‖H1‖ + ε2

][
‖H1H2‖ + ε(‖H1‖ + ‖H2‖)

+ε2
][
‖H2H1‖ + ε(‖H1‖ + ‖H2‖) + ε2

]

·
[
‖H2H2‖ + 2ε‖H2‖ + ε2

]
< 1,

where

ε = max{‖G1‖, ‖G2‖}.
Since

‖H1‖ = 1.0392, ‖H2‖ = 1.1225,

it follows that a sufficient condition for the inequality
∏

(i0i1)∈{1,2}2

‖(Hi0 + Gi0)(Hi1 + Gi1)‖

≤
∏

(i0i1)∈{1,2}2

(λi0i1 + 2.245ε + ε2) < 1

to hold is

2.245ε + ε2 = δ < 0.1542,

which yields

ε < 0.0667.

Example 2: Let us consider the system given in Exam-

ple 1 with the switching sequences ω belonging to the

topological Markov chain (ΣA, σA) with the topological

transition matrix A as

A =

[
1 1
1 0

]

.

This means that during the switching process the subsystem

H2 cannot be allowed to follow itself.

Direct computations show that the spectral radius of A is

given by

ρA =
1 +

√
5

2
,

and the Perron vectors are

vT = u =

(

1 +
√

5
√

10 + 2
√

5
,

√

2

5 +
√

5

)

.

Thus the Parry distribution is

pA = (0.7236, 0.2764),

and the transition probability matrix is given by

PA =

[ 2
1+

√
5

2
3+

√
5

1 0

]

=

[
0.6180 0.3820

1 0

]

.

So we have
∏

(i0i1)∈{1,2}2

λ
pi0

pi0i1

i0i1
= 0.6366 < 1.

This verifies that condition (13) holds for t̂ = 2. The system

thus is µA-almost surely stable, where µA is the Parry

measure of (ΣA, σA), and

HDρ(Σstab(S; A)) = HDρ(ΣA) =
ln(1 +

√
5)

ln 2
− 1 > 0,

where ρ = 2 (see (3)).
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VI. CONCLUDING REMARKS

By viewing switching sequences as the elements in sym-

bolic topology space, we have established a necessary and

sufficient condition for almost sure stability of discrete-time

switched linear system by using the multiplicative ergodic

theorem. Among all ergodic probability measures, Parry

measure has been shown to be able to capture the maximal

set of stable processes for linear switched systems in the

sense of Hausdorff dimension. The µA-almost sure stability

is unchanged under small linear perturbations of the system.

Furthermore, a connection between the switched system (1)

and its corresponding symbolic dynamical system (ΣA, σA)
is identified, that is, the more Li-Yorke chaotic (ΣA, σA)
behaves, the larger set of µA almost sure stable paths (1) has.

Some recent results for the stochastic Markov jump linear

systems can be adopted in our framework. Future research

will be concentrated on the continuous-time case as well as

nonlinear switched systems.
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