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Abstract— We state an approximate controllability result for
the bilinear Schrödinger equation in the case in which the
uncontrolled Hamiltonian has discrete non-resonant spectrum.
This result applies both to bounded or unbounded domains
and to the case in which the control potential is bounded or
unbounded. In addition we get some controllability properties
for the density matrix. Finally we show, by means of specific
examples, how these results can be applied.

I. INTRODUCTION

In this paper we study the controllability of the bilinear
Schrödinger equation. Its importance is due to applications to
modern technologies such as Nuclear Magnetic Resonance,
laser spectroscopy, and quantum information science (see for
instance [1], [2], [3], [4]).

Many controllability results are available when the state
space is finite dimensional, e.g., for spin systems or for
molecular dynamics when one neglects interactions with
highly excited levels (see for instance [5], [6]). When the
state space is infinite-dimensional the controllability problem
appears to be much more intricate.

We consider the controllability problem for the following
bilinear system representing the Schrödinger equation driven
by one external field

i
dψ

dt
(t) = (H0 + u(t)H1)ψ(t). (1)

Here the wave function ψ evolves in an infinite-dimensional
Hilbert space, H0 is a self-adjoint operator called drift
Hamiltonian (i.e. the Hamiltonian responsible for the evo-
lution when the external field is not active), u(t) is a scalar
control function, and H1 is a self-adjoint operator describing
the interrelation between the system and the external field.

The reference case is the one in which the Hilbert space
is L2(Ω) where Ω is either Rd or a bounded domain of Rd,
and equation (1) reads

i
∂ψ

∂t
(t, x) = (−∆ + V (x) + u(t)W (x))ψ(t, x), (2)

where ∆ is the Laplacian (with Dirichlet boundary condition
in the case in which Ω is bounded) and V and W are suitably
regular functions defined on Ω. However the setting of the
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paper covers more general cases (for instance Ω can be
a Riemannian manifold and ∆ the corresponding Laplace-
Beltrami operator).

Besides the fact that one cannot expect exact controlla-
bility on the whole Hilbert sphere (see [7], [8]) and some
negative result (in particular [9], [10]) only few approximate
controllability results are available and concern mainly spe-
cial situations. It should be mentioned, however, that several
results on efficient steering of the Schrödinger equation with-
out any controllability assumptions are available, e.g. [11],
[12], [13]. (For optimal control results for finite dimensional
quantum systems see, for instance, [14], [15], [16], [17].)

In [18], [19] Beauchard and Coron study the controllability
of a quantum particle in a 1D potential well with W (x) = x.
Their results are highly nontrivial and are based on Coron’s
return method (see [20]) and Nash–Moser’s theorem. In
particular, they prove that the system is exactly controllable
in the unit sphere of the Sobolev space H7 (implying in
particular approximate controllability in L2). One of the most
interesting corollaries of this result is exact controllability
between eigenstates.

A different result is given in [21], where adiabatic methods
are used to prove approximate controllability for systems
having conical eigenvalue crossings in the space of controls.

Another controllability result has been proved by Mir-
rahimi in [22] using Strichartz estimates and concerns ap-
proximate controllability for a certain class of systems such
that Ω = Rd and whose drift Hamiltonian has mixed
spectrum (discrete and continuous).

The aim of the present paper is to state a general ap-
proximate controllability result for a large class of systems
for which the drift Hamiltonian H0 has discrete spectrum
satisfying a non-resonance condition, while H1 couples
each pair of distinct eigenstates of H0. The proof of this
controllability result relies on finite-dimensional techniques
applied to the Galerkin approximations and it is presented in
[23].

A feature of our method is that the infinite-dimensional
system inherits, in a suitable sense, controllability results
for the group of unitary transformations from those of the
Galerkin approximations. This permits to extract controlla-
bility properties for the density matrix. Let us stress that, as
it happens in finite dimension, controllability properties for
the density matrix cannot in general be deduced from those
of the wave function (see for instance [24]).

The paper is organized as follows. In Section II we present
the general functional analysis setting and we state our main
result (Theorem 2.4) for the control system (1).We also show
how this result applies to the Schrödinger equation (2) when
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Ω is both bounded or unbounded. In Section III we give
a sketch of the proof of the main result. In Section IV we
extend Theorem 2.4 to the controlled evolution of the density
matrix (Theorem 4.2). Finally in Section V we show how
Theorem 2.4 and Theorem 4.2 can be applied to specific
cases, namely the harmonic oscillator and the 3D potential
well, for suitable controlled potentials. In particular, we show
how to get controllability results even in cases in which V
does not satisfy the required non-resonance hypothesis, using
perturbation arguments.

II. MATHEMATICAL FRAMEWORK AND STATEMENT OF
THE MAIN RESULT

Hereafter N denotes the set of strictly positive integers.
Definition 2.1 below provides the abstract mathematical
framework that will be used to formulate the controllability
results later applied to the Schrödinger equation (2).

Definition 2.1: Let H be a complex Hilbert space and
U be a subset of R. Let A,B be two, possibly unbounded,
operators on H with values in H and denote by D(A) and
D(B) their domains. The control system (A,B,U) is the
formal controlled equation

dψ

dt
(t) = Aψ(t) + u(t)Bψ(t), u(t) ∈ U. (3)

We say that (A,B,U) is a skew-adjoint discrete-spectrum
control system if the following conditions are satisfied: (H1)
A and B are skew-adjoint, (H2) there exists an orthonormal
basis (φn)n∈N of H made of eigenvectors of A, (H3) φn ∈
D(B) for every n ∈ N.

In order to give a meaning to the evolution equation
(3), at least when u is constant, we should ensure that
the sum A + uB is well defined. The standard notion of
sum of operators seen as quadratic forms (see [25]) is not
always applicable under the sole hypotheses (H1), (H2),
(H3). An adapted definition of A+ uB can nevertheless be
given as follows: hypothesis (H3) guarantees that the sum
A + uB is well defined on V = span{φn | n ∈ N}. Any
skew-Hermitian operator C : V → H admits a unique
skew-adjoint extension E(C). We identify A + uB with
E(A|V + uB|V ).

Let us notice that when A + uB is well defined as
sum of quadratic forms and is skew-adjoint then the two
definitions of sum coincide. This happens in particular for
the Schrödinger equation (2) in most physically significant
situations.

A crucial consequence of what precedes is that for every
u ∈ U the skew-adjoint operator A+uB generates a group of
unitary transformations et(A+uB) : H → H . In particular,
the unit sphere S of H satisfies et(A+uB)(S) = S for every
u ∈ U and every t ≥ 0.

Due to the dependence of the domain D(A + uB) on u,
the solutions of (3) cannot in general be defined in classical
(strong, mild or weak) sense. Let us mention that, in some
relevant cases in which the spectrum of A has a nontrivial
continuous component the solution can be defined as in [26],
[27] by means of Strichartz estimates.

We will say that the solution of (3) with initial condition
ψ0 ∈H and corresponding to the piecewise constant control
u : [0, T ]→ U is the curve t 7→ ψ(t) defined by

ψ(t)=e(t−
Pj−1

l=1 tl)(A+ujB)◦· · ·◦et2(A+u2B)◦et1(A+u1B)(ψ0),
(4)

where
∑j−1
l=1 tl ≤ t <

∑j
l=1 tl and u(τ) = uj if

∑j−1
l=1 tl ≤

τ <
∑j
l=1 tl. Notice that such a ψ(·) satisfies, for every

n ∈ N and almost every t ∈ [0, T ], the differential equation
d

dt
〈ψ(t), φn〉 = −〈ψ(t), (A+ u(t)B)φn〉 . (5)

Remark 2.2: The notion of solution introduced above
makes sense in very degenerate situations and can be en-
hanced when B is bounded. Indeed, well-known results
assert that in this case if u ∈ L1([0, T ], U) then there exists
a unique weak (and mild) solution ψ ∈ C([0, T ],H ) which
coincides with the curve (4) when u is piecewise constant.
Moreover, if ψ0 ∈ D(A) and u ∈ C1([0, T ], U) then ψ is
differentiable and it is a strong solution of (3). (See [7] and
references therein.)

Definition 2.3: Let (A,B,U) be a skew-adjoint discrete-
spectrum control system. We say that (A,B,U) is approxi-
mately controllable if for every ψ0, ψ1 ∈ S and every ε > 0
there exist k ∈ N, t1, . . . , tk > 0 and u1, . . . , uk ∈ U such
that

‖ψ1 − etk(A+ukB) ◦ · · · ◦ et1(A+u1B)(ψ0)‖ < ε.
Let, for every n ∈ N, iλn denote the eigenvalue of A

corresponding to φn (λn ∈ R). Our general result is the
following.

Theorem 2.4: Let δ > 0 and (A,B, (0, δ)) be a skew-
adjoint discrete-spectrum control system. If the elements of
the sequence (λn+1 − λn)n∈N are Q-linearly independent
and if 〈Bφn, φn+1〉 6= 0 for every n ∈ N, then (A,B, (0, δ))
is approximately controllable.

Recall that the elements of the sequence (λn+1−λn)n∈N
are said to be Q-linearly independent if for every N ∈ N and
(q1, . . . , qN ) ∈ QNr{0} one has

∑N
n=1 qn(λn+1−λn) 6= 0.

Under suitable assumptions on the domain Ω and on the
potentials V,W it turns out that the Schrödinger equation (2)
falls into the previous abstract setting (see for instance [28,
Theorem 1.2.2] and [29, Theorems XIII.69 and XIII.70]).

In particular we have the following result.
Corollary 2.5: Let Ω be an open subset of Rd, V,W be

two real-valued functions defined on Ω, and U be a subset
of R. Assume either that (i) Ω is bounded, V,W belong to
L∞(Ω,R) or that (ii) Ω = Rd, V,W belong to L1

loc(Rd,R),
the growth of W at infinity is at most exponential and,
for every u ∈ U , lim‖x‖→+∞(V (x) + uW (x)) = +∞
and infx∈Rd(V (x) + uW (x)) > −∞. Denote by (λk)k∈N
the sequence of eigenvalues of −∆ + V and by (φk)k∈N
an orthonormal basis of L2(Ω,C) of corresponding real-
valued eigenfunctions. Assume, in addition to (i) or (ii),
that U contains the interval (0, δ) for some δ > 0, that the
elements of (λk+1 − λk)k∈N are Q-linearly independent,
and that

∫
Ω
W (x)φkφk+1 dx 6= 0 for every k ∈ N. Then the

controlled Schrödinger equation (2) associated with Ω, V, W
and U is approximately controllable.
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III. SCHEME OF THE PROOF

In this section we briefly outline the main steps leading
to the proof of Theorem 2.4 (details can be found in [23]).

First step. First remark that, if u 6= 0, et(A+uB) =
etu((1/u)A+B). Theorem 2.4 is therefore equivalent to the
following property: if the terms (λn+1 − λn)n∈N are Q-
linearly independent and if 〈Bφn, φn+1〉 6= 0 for every
n ∈ N, then for every δ, ε > 0 and every ψ0, ψ1 ∈ S there
exist k ∈ N, t1, . . . , tk > 0 and u1, . . . , uk > δ such that

‖ψ1 − etk(ukA+B) ◦ · · · ◦ et1(u1A+B)(ψ0)‖ < ε. (6)

In other words, the system for which the roles of A and B
as drift and controlled field are inverted, namely,

dψ

dt
(t) = u(t)Aψ(t) +Bψ(t), u(t) ∈ U, (7)

is approximately controllable provided that the control set
U contains a half-line. The notion of solution of (7) corre-
sponding to a piecewise constant control function is defined
as in (4).

Second step. Let, for every j, k ∈ N, bjk = 〈Bφj , φk〉
and ajk = 〈Aφj , φk〉 = iλjδjk. Define, for every n ∈ N,
the two complex-valued n×n matrices A(n) = (ajk)1≤j,k≤n
and B(n) = (bjk)1≤j,k≤n. These two matrices give rise to the
Galerkin approximations of (7). To these finite-dimensional
systems we can apply the following controllability result.

Proposition 3.1: Let A = (αjk)nj,k=1, B = (βjk)nj,k=1 be
two skew-symmetric n × n matrices and assume that A is
diagonal and B is connected (i.e. for every pair of indices
j, k ∈ {1, . . . , n} there exists a finite sequence r1, . . . , rl ∈
{1, . . . , n} such that βjr1βr1r2 · · ·βrl−1rl

βrlk 6= 0). Assume
moreover that |αjj−αkk| 6= |αll−αmm| if {j, k} 6= {l,m}.
Then the control system (Σ) : ẋ = uAx+Bx is controllable
in Sn with piecewise constant controls with values in U ⊂
R, provided that U contains at least two points.

Third step. Given u : [0, T ] → R let us represent the
matrix M(t) = e−v(t)A(N)

B(N)ev(t)A(N)
, where v(t) =∫ t

0
u(τ)dτ , in block form as follows

M(t) =
(

M (n,n)(t) M (n,N−n)(t)
M (N−n,n)(t) M (N−n,N−n)(t)

)
, (8)

where the superscripts indicate the dimensions of each block.
Claim 3.2: There exists a sequence of piecewise constant

control functions uk : [0, T ]→ (δ,∞) such that the sequence
of matrix-valued curves

t 7→Mk(t) = e−vk(t)A(N)
B(N)evk(t)A(N)

,

where vk(t) =
∫ t

0
uk(τ)dτ , converges uniformly w.r.t. t to

t 7→ M̄(t) =
(
M (n,n)(t) 0n×(N−n)

0(N−n)×n M (N−n,N−n)(t)

)
in the integral sense

∫ t
0
Mk(τ)dτ k→∞→

∫ t
0
M̄(τ)dτ .

Fourth step. Let us fix two states ψ0, ψ1 ∈H . Our aim is
to approximately steer the system between ψ0 and ψ1. Let
ε > 0. Let Πn be the projection on the space generated by
the first n eigenvectors of A. Then, if we take n large enough

and we apply Proposition 3.1 and Claim 3.2 with a suitable
N it is possible to prove the following.

Claim 3.3: For k large enough,

‖Πn(e−vk(T )Aψk(T ))−Πn(e−v(T )Aψ1)‖ < ε (9)

where u(·) is a control connecting Πn(ψ0) to Πn(ψ1) in
the Galerkin approximation, v(t) =

∫ t
0
u(τ)dτ , vk(t) =∫ t

0
uk(τ)dτ and ψk(·) is the trajectory associated to uk(·)

starting from ψ0.
Fifth step. The last step of the proof consists in showing

that it is possible to get rid of the differences of phase in an
arbitrary short time so that

‖Πn(ψk(T ))−Πn(ψ1)‖ < ε.

Finally the proof of Theorem 2.4 can be completed showing
that the “queues” ‖ψ1−Πn(ψ1)‖ and ‖ψk(T )−Πn(ψk(T ))‖
can be made arbitrary small by choosing a suitably large n
and a suitably small ε.

IV. CONTROLLABILITY FOR DENSITY MATRICES

A. Physical motivations

A density matrix (sometimes called density operator) is a
non-negative, self-adjoint operator of trace class [29, Vol. I]
on a Hilbert space. The trace of a density matrix is normal-
ized to one. As a consequence of the definition a density
matrix is a compact operator (hence with discrete spectrum)
and can always be written as a weighted sum of projectors,

ρ =
∞∑
j=1

Pjϕjϕ
∗
j , (10)

where Pj ∈ [0, 1],
∑
j Pj = 1, and ϕjϕ

∗
j is the orthogonal

projector on the space spanned by ϕj with ϕ∗j (·) = 〈ϕj , ·〉.
Here {ϕj}j∈N is a set of normalized vectors not necessarily
orthogonal.

The density matrix is used to describe the evolution of sys-
tems whose initial wave function is not known precisely, but
only with a certain probability, or when one is dealing with
an ensemble of identical systems that cannot be prepared
precisely in the same state. More precisely (10) describes a
system whose state is known to be ϕj with probability Pj ,
j ∈ N.

The time evolution of the density matrix is determined by
the evolutions of the states ϕj , namely

ρ(t) = U(t)ρ(0)U∗(t) (11)

where U(t) is the operator of temporal evolution (the resol-
vent) and U∗(t) its adjoint. Notice that the spectrum of ρ(t)
is constant along the motion.

B. Statement of the result

Fix δ > 0 and let (A,B, (0, δ)) be a skew-adjoint discrete-
spectrum control system on a Hilbert space H , (ϕj)j∈N an
orthonormal basis of H (not necessarily of eigenvectors of
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A), {Pj}j∈N a sequence of non-negative numbers such that∑∞
j=1 Pj = 1, and denote by ρ the density matrix

ρ =
∞∑
j=1

Pjϕjϕj
∗.

Definition 4.1: Two density matrices ρ0 and ρ1 are said to
be unitarily equivalent if there exists a unitary transformation
U of H such that ρ1 = Uρ0U∗.
Obviously the controllability question for the evolution of the
density matrix makes sense only for pairs (ρ0, ρ1) of initial
and final density matrices that are unitarily equivalent. Notice
that this is a quite strong assumption, since it implies that
the eigenvalues of ρ0 and ρ1 are the same. Controllability
results in the case of density matrices that are not unitarily
equivalent have been obtained in the case of open systems
(i.e. systems evolving under a suitable nonunitary evolution)
in the finite-dimensional case. See for instance [30].

For density matrices the following generalization of The-
orem 2.4, proved in [23], holds.

Theorem 4.2: Let ρ0 and ρ1 be two unitarily equivalent
density matrices. Then, under the hypotheses of Theorem
2.4, for every ε > 0 there exists a piecewise constant control
steering the density matrix from ρ0 ε-approximately to ρ1 i.e.
there exist k ∈ N, t1, . . . , tk > 0 and u1, . . . , uk ∈ (0, δ)
such that setting V = etk(A+ukB) ◦ · · · ◦et1(A+u1B), one has
‖ρ1 −Vρ0V∗‖ < ε, where ‖ · ‖ denotes the operator norm
on H .

Remark 4.3: As Corollary 2.5 is a particularization of
Theorem 2.4 to the controlled Schrödinger equation, the hy-
potheses of Corollary 2.5 imply ε-approximate controllability
of the corresponding density matrix.

V. EXAMPLES

A. Perturbation of the spectrum

The scope of Section V is to show how the general
controllability results obtained in the previous sections can be
applied in specific cases. In particular, we want to show how
the conditions on the spectrum of the Schrödinger operator
appearing in the hypotheses of Corollary 2.5 can be checked
in practice.

Throughout this section we assume that one of the
hypotheses (i) or (ii) of Corollary 2.5 holds true. Thus,
(A,B,U) is a well-defined controlled Schrödinger equation,
where A = −i(−∆ + V ) and B = −iW .

The study of the examples below is based on the simple
idea that, even if the hypotheses of Corollary 2.5 are not
satisfied by the operators A and B, one can anyway ensure
that they hold true for Aµ = −i(−∆ + V + µW ) and
Bµ = −iW for some µ in the interior of U . This is
enough to conclude that the system ψ̇ = Aψ + uBψ,
u ∈ U , is approximately controllable, since the replacement
of (A,B) by (Aµ, Bµ) corresponds to a reparameterization
of U that sends u into a new control u − µ ∈ U − µ
and V into V + µW . Although the spectrum of Aµ is
not in general explicitly computable, we can nevertheless
deduce some crucial properties about it by applying standard

perturbation arguments. Theorem 5.1 recalls, in a simplified
version suitable for our purposes, some classical perturbation
results describing the dependence on µ of the spectrum of
−∆ + V + µW . (See [31, Chapter VII, Remark 4.22], [32,
§II.10, Theorem 1] and also [33].)

Theorem 5.1: Let U be an open interval containing zero.
Assume either that (i) Ω is bounded, V,W belong to L∞(Ω)
or that (ii) Ω = Rd, V belongs to L1

loc(Rd), W belongs to
L∞(Rd), lim‖x‖→+∞ V (x) = +∞ and infx∈Rd V (x) >
−∞. In both cases (i) and (ii) assume that each eigenvalue
of the Schrödinger operator −∆ + V is simple. Denote by
(λk)k∈N the sequence of eigenvalues of −∆ + V and by
(φk)k∈N the corresponding eigenfunctions. Then, for any k
in N, there exist two analytic curves Λk : U → C and
Φk : U → L2(Ω) such that:
• Λk(0) = λk and Φk(0) = φk;
• for any µ in U , (Λk(µ))k∈N is the family of eigenvalues

of ∆−V +µW counted according to their multiplicities
and (Φk(µ))k∈N is an orthonormal basis of correspond-
ing eigenfunctions;

• Λ′k(0) =
∫

Ω
W (x)|φk(x)|2dx.

We check below that if the derivatives Λ′k(0) are Q-
linearly independent then for almost every µ ∈ U the
eigenvalues of −∆ + V + µW are Q-linearly independent.
This fact is used in the following to apply Corollary 2.5
to situations in which the uncontrolled Schrödinger operator
has a resonant spectrum.

Setting bjk = 〈Bφj , φk〉 for any pair of integers j, k ∈ N,
one has

bjk =
∫

Ω

W (x)φj(x)φk(x)dx. (12)

In particular, Λ′k(0) =
∫

Ω
W (x)|φk(x)|2dx is equal to bkk.

From the analitic dependence of the eigenvalues with
respect to µ it is possible to show the following result.

Proposition 5.2: Let U be an open interval containing
zero and assume that Ω, V and W satisfy one of the hy-
potheses (i) or (ii) of Theorem 5.1 and that the eigenvalues of
−∆+V are simple. If the elements of the sequence (bkk)k∈N
are Q-linearly independent, then for almost every µ in U the
elements of (Λk(µ))k∈N are Q-linearly independent.

The other crucial hypothesis of Corollary 2.5 is that
bj,j+1 6= 0 for every j ∈ N. Still by an analyticity argument
one checks that either such hypothesis is always false or it
is true for almost every µ ∈ U .

Corollary 5.3: Let U be an open interval containing zero
and assume that Ω, V and W satisfy one of the hypotheses (i)
or (ii) of Theorem 5.1 and that the eigenvalues of −∆+V are
simple. Assume moreover that the elements of the sequence
(bkk)k∈N are Q-linearly independent and that bj,j+1 6= 0
for every j ∈ N. Then the controlled Schrödinger equation
associated with Ω, V , W and Ũ is approximately controllable
for every Ũ ⊂ U with nonempty interior.

B. 1D harmonic oscillator

In this section we study the Schrödinger equation describ-
ing the evolution of the controlled one-dimensional harmonic
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oscillator,

i
∂ψ

∂t
(t, x) = −∂

2ψ

∂x2
(t, x) +

(
x2 − u(t)W (x)

)
ψ(t, x), (13)

where ψ is the wave function depending on the time t
and on a space variable x ∈ R = Ω. Recall that u(·)
is a piecewise-continuous function with values in a subset
U of R. Notice that the potential corresponding to the
uncontrolled Schrödinger operator is V (x) = x2. The control
system (13) has been studied, among others, by Mirrahimi
and Rouchon who proved its non-controllability in the case
where W is the identity function (see [9]).

From classical results we know that the spectrum of −∆+
V is discrete. Its explicit expression is

{λk = 2k + 1 | k ≥ 0} ,

and therefore λk+1 − λk are Q-linearly dependent. Each λk
is a simple eigenvalue whose corresponding eigenfunction is

φk(x) = σke
− x2

2 Hk(x) (14)

where σl = 1/
√
l!2l
√
π and Hk(x) = (−1)kex

2 dk

dxk e
−x2

is
the kth Hermite polynomial.

In order to apply Corollary 5.3 we would like first of all
to ensure that the elements

bkk = (−1)kσ2
k

∫
R

W (x)Hk(x)
dk

dxk
e−x

2
dx, k ≥ 0,

(15)
are Q-linearly independent. Notice that for W (x) = x
(i.e., the non-controllable case pointed out by Mirrahimi and
Rouchon), since each function φ2

k is even, bkk =
∫
Wφ2

k =
0.

The existence of controlled potentials W for which the
elements of (bkk)k∈N are Q-linearly independent can be
easily inferred from the linear independence of the functions
φ2
k. The proposition below provides some explicit W with

such a property (and such that the corresponding Schrödinger
equation is controllable). The potentials W will be chosen
in L∞(R) and it turns out that the corresponding solutions
in the sense (4) coincide with mild or strong solutions,
depending on the regularity of the initial condition.

Proposition 5.4: (1) If W is even, then system (13) is not
approximately controllable. (2) If W has the form W : x 7→
eax

2+bx+c, with a, b, c ∈ R such that a < 0 and the two
numbers

√
1− a and b are algebraically independent, then

system (13) is approximately controllable, provided that U
has nonempty interior.

Proof: Since each function φk has the same parity as
the integer k, then φkφj has the same parity as the integer
j + k. If W is even, then (12) shows that for every (j, k)
such that j + k is odd, bjk = 0. It turns out that the spaces
spanned by the sets {φk | k even} and {φk | k odd} are
invariant by the dynamics of system (13). In particular, there
is no way to steer system (13) from φ1 to a point ε-close to
φ2 if ε is smaller than

√
2. This proves (1).

In order to prove (2) one needs to apply Corollary 5.3
(with U playing the role of Ũ and R the role of U ) with W
having the special form W : x 7→ eax

2+bx+c.

After rather standard computations (see [23] for the de-
tails) it is possible to prove, if j + k is even, that

bjk = σjσk
√
πec−

b2
4 a−4Sj,k(b)

where Sj,k is a nonzero polynomial with coefficients in
Q(
√

1− a) of degree exactly j + k.
Since b is transcendental over Q(

√
1− a) then bjk 6= 0

as soon as j and k have the same parity. Moreover, the
elements of the sequence (Λ′k(0))k≥0 = (bkk)k≥0 are Q-
linearly independent.

To conclude the proof let us check that each matrix
(bjk)nj,k=0 is connected. Fix j, k ∈ {0, . . . , n}. We should
prove the existence of a sequence r1, . . . , rl ∈ {0, . . . , n}
such that bjr1br1r2 · · · brl−1rl

brlk 6= 0. If j and k have the
same parity then we are done since bjk 6= 0. Otherwise, a
simple computation shows that

b01 =
bec−

b2
4 a−4

√
2 (1− a)

3
2
6= 0

and we can conclude by taking {r1, r2} = {0, 1}.

C. 3D potential well

Consider the Schrödinger equation

i
∂ψ

∂t
(t, x) = −∆ψ(t, x) + u(t)W (x)ψ(t, x), (16)

where ψ depends on the time t and on the space variable
x = (x1, x2, x3) ∈ Ω = (0, l1)× (0, l2)× (0, l3) and satisfies
the Dirichlet boundary condition ψ|∂Ω = 0. Notice that
the potential corresponding to the uncontrolled Schrödinger
operator is V (x) = 0. For every W measurable bounded,
solutions in the sense (4) coincide with mild or strong
solutions, depending on the regularity of the initial condition.

The spectrum of the Schrödinger operator is{
λk1,k2,k3 = π2

(
k2

1

l21
+
k2

2

l22
+
k2

3

l23

)
| k1, k2, k3 ≥ 1

}
.

For the sake of simplicity, assume that (l1l2)2, (l1l3)2, and
(l2l3)2 are Q-linearly independent, so that all the eigenvalues
are simple and the perturbation result appearing in Theo-
rem 5.1 can be applied. (The case of multiple eigenvalues can
be treated similarly, applying a refined perturbation argument
as the one used in [33].)

The normalized eigenfunction corresponding to λk1,k2,k3
is given, up to sign, by

φk1,k2,k3(x1, x2, x3) =

=
2

3
2

√
l1l2l3

sin
(
k1x1π

l1

)
sin
(
k2x2π

l2

)
sin
(
k3x3π

l3

)
.

(17)

Proposition 5.5: Let (l1l2)2, (l1l3)2, and (l2l3)2 be Q-
linearly independent and define W (x) = eα·x with α =
(α1, α2, α3) ∈ R3. Assume that α1, α2, α3 are nonzero
and that (π/α1l1)2, (π/α2l2)2, (π/α3l3)2 are algebraically
independent. Then the control system (16) is approximately
controllable.
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In order to prove Proposition 5.5 we will need the following
technical result (whose proof can be found in [23]).

Lemma 5.6: Let β be a real number transcendental over
a field F with Q ⊂ F ⊂ R. Then the elements of the family(

1
1+qβ

)
q∈Q

are F-linearly independent.

Proof of Proposition 5.5. Theorem 5.1 and Fubini’s theorem
imply that the eigenvalues Λk1,k2,k3(µ) of −∆ + µW on Ω
for the Dirichlet boundary value problem satisfy

Λ′k1,k2,k3(0) =

= Ck2
1k

2
2k

2
3

1(
4π2

α2
1l

2
1
k2

1 + 1
)(

4π2

α2
2l

2
2
k2

2 + 1
)(

4π2

α2
3l

2
3
k2

3 + 1
) ,
(18)

where

C =
64(eα1l1 − 1)(eα2l2 − 1)(eα3l3 − 1)π6

(α1l1α2l2α3l3)3
.

Let βj = 4π2/(α2
j l

2
j ), j = 1, 2, 3. The Q-linear indepen-

dence of the elements of (Λ′k1,k2,k3(0))k1,k2,k3∈N is obtained
from the expression above thanks to three nested applications
of Lemma 5.6 with F = Q(β1, β2) and β = β3, F = Q(β1)
and β = β2, and F = Q and β = β1. In order to
complete the proof, let us check that every matrix B(n) is
connected. (The conclusion then follows from Corollary 5.3.)
A straightforward computation shows that for every triples
of positive integers (k1, k2, k3) and (h1, h2, h3) the integral∫

Ω

eα·xφk1,k2,k3(x)φh1,h2,h3(x)dx

is different from zero, i.e., every element of B(n) is nonzero.
�
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