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Abstract— In this paper we describe a stochastic model
for particle diffusion and binding within cell nuclei, and a
numerical approximation of it that is well suited for numerical
simulation and investigation of Fluorescence Recovery After
Photobleaching (FRAP) experiments. An overview of the theory
and of the implementation of the method is given. Simulation
results are reported and are used to analyze data from real
photobleaching experiments, mainly at a qualitative level.

Index Terms— Biological systems, Monte Carlo methods,
Numerical simulation, Stochastic approximation, Parameter
identification

I. INTRODUCTION

The genetic content of all eukaryotic cells must remain

unaltered during the cell’s life cycle and be accurately passed

down to the daughter cells. Nuclear proteins constantly scan

the genome to ensure that any damage on the DNA is quickly

identified and repaired. Similar protein assemblies ensure

that the complete genome is replicated once and only once

per cell cycle. Assessing the dynamic interactions which

lie at the heart of the maintenance of genomic stability

is pivotal for an understanding of the normal mechanisms

which keep the genome intact and how aberrations in these

mechanisms may lead tumorigenesis. The highly dynamic

nature of these interactions calls for methods which permit an

assessment of protein-protein and protein-DNA interactions

and modifications within the context of the living cells, and

for analytical tools which will enable the nature of these

interactions to be fully grasped.

Functional live cell imaging techniques, such as Fluo-

rescence Recovery After Photobleaching (FRAP), Photoac-

tivation and Fluorescence Correlation Spectroscopy (FCS),

track fluorescently labeled proteins of interest within living

cells [20], [9], [8]. Data analysis permits the dynamic behav-

ior of these proteins to be assessed [16], [18], [25]. Modelling

of the underlying molecule movements and interactions

permits quantitative information to be extracted from the data

collected, leading to an assessment of protein diffusion rates,

interactions, on-off rates and subunit composition under

different experimental conditions.These quantitative data can

then be used for modelling of the biological processes under

study. These techniques are increasingly used by cell biology
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Fig. 1. FRAP experiments in living cells. Above: Cdt1 tagged with Green
Fluorescent Protein (Cdt1GFP) from jellyfish Aequorea victoria. Below:
GFP-tagged Cdt1 mutant (Cdt1∆1−140GFP) with reduced binding affinity.
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Fig. 2. Non-normalized FRAP curve from experimental data.

laboratories, and developing robust methods for data analysis

and parameter identification will be of interest to a wide

community.

During Fluorescence Recovery After Photobleaching

analysis, naturally fluorescent proteins (tags) are attached to

one or more proteins of interest and possibly some carefully

chosen mutants, and laser microscopy is used to bleach

(high-intensity pulse) part of the tags and observe (low-

intensity scanning) fluorescence recovery in the region of

interest after the bleaching (see images in Figure 1 and the

computed recovery curve in Figure 2 – data are courtesy of

G. Xouri, EMBL Heidelberg).

Conventional analysis techniques, pioneered in [1], rely

heavily on model simplification to derive tractable mathe-

matical expressions or reference recovery curves that can

be fitted to the data analytically or at a low computational

cost. Several such models have been proposed in recent

years [17], [15], [16], [7], [3], [6] which make specific

assumptions to simplify analysis. However, this simplicity

comes at the cost of limited or no spatial resolution in

the description of the diffusion-binding processes and of an

incomplete exploitation of the data. In addition, it has been

realized that concentration-type approaches reach their limits

when the size of the particle population being considered

is not sufficient, which is often the case in the context of

our interest. On the other hand, computational technologies
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are becoming mature for the simulation of highly realistic

models of diffusion and binding reactions of macromolecules

within the cell nucleus [2], [21]. These can be used to

perform in silico FRAP experiments, whence to carry out

analysis and identification of protein diffusion and binding

mechanisms by way of qualitative or quantitative data match-

ing.

Molecule dynamics within cells show clear hybrid char-

acteristics with continuous molecule movement due to diffu-

sion, and changes in molecule states due to interactions. Our

aim is to model diffusion and binding at a particle level,

by taking into account explicitly the stochastic nature of

diffusion and binding interaction events. A similar approach

is taken in [23], [24] for the simulation of biochemical

networks. Based on the model, we wish to provide numerical

tools for the random execution and, possibly, for the theoret-

ical investigation of the model. Ultimate aim of our work is

to exploit model analysis and simulation to perform identifi-

cation of unknown parameters, such as binding propensities

and diffusion coefficients, and verification (model validation)

of biological hypotheses.

In Section II we define the stochastic model of dif-

fusion and binding of proteins within the cell’s nucleus.

In Section III we describe the discrete approximation of

this model on a time-space grid. Numerical simulation of

FRAP experiments by way of this model approximation is

discussed in Section IV. In Section V, simulation results

are compared with real data from FRAP experiments on

living cells expressing the replication protein Cdt1. Cdt1 is

a crucial member of a multiprotein complex that regulates

when and where DNA replication takes place, ensuring that

DNA replication initiates from specific sites on chromatin

only once per cell cycle [4], [5], [13], [25]. Final comments

and perspectives of our work are reported in Section VI.

II. MODELLING OF PROTEIN DIFFUSION AND

BINDING

As a first step toward the analysis of DNA maintenance

processes, we wish to model protein diffusion within the

nucleus and binding to sites along the DNA. This is done

at a particle level. We begin by considering the following

setting:

• N copies of one protein are present within the nucleus

of one cell;

• the nucleus has a 3-dimensional ellipsoidal shape;

• protein molecules do not cross the boundaries of the

nucleus;

• when a molecule is not bound, it can move in a way that

is isotropic and independent from the location within the

nucleus; moreover, it has a probability of binding to a

DNA site that is uniform over the nucleus;

• when a molecule is bound, it does not move and it

has a probability of unbinding that is uniform over the

nucleus;

• molecules diffuse and bind independently of each other.

In particular, the assumption that the nuclear boundary is

impermeable is valid in the cell’s initial growth phase for

the protein that will be considered in Section V [14]. On the

other hand, it was observed that protein-protein interactions

that increase the mass of a protein cannot change its diffu-

sion significantly [22], [15]. These qualitative assumptions

are translated in the following mathematical model. Let

t ∈ R denote time and p = [x y z]T ∈ R
3 denote

spatial coordinates in a three-dimensional space. Let pi(t) =
[xi(t) yi(t) zi(t)]

T , with i = 1, . . . , N , denote the position of

the i-th molecule at time t. It is assumed that, at all t and for

all i, pi(t) ∈ N , where N = {p ∈ R
3 : (p−c)T S(p−c) ≤

1} is an ellipsoidal domain that describes the cell nucleus

(c ∈ R
3 is the center of the ellipsoid and S ∈ R

3×3 is

a positive definite matrix that describes the shape of the

ellipsoid). For i = 1, . . . , N , let qi(t) ∈ {0, 1} be the

mobility state of the molecule i at time t: qi(t) = 0 if the

molecule is unbound, qi(t) = 1 if the molecule is bound.

Whenever qi(t) = 1 molecule i cannot move, whence we

describe its dynamics by the following differential equation:

ṗi(t) = 0.

Conversely, when qi(t) = 0, molecule i is allowed to move.

In this case, as long as the molecule i is not hitting the

boundary of N , we assume that its position obeys the

driftless diffusion

dpi(t) = DdBi(t), (1)

where D is a diffusion matrix coefficient and stochastic

process Bi(t) is a standard (three dimensional) Wiener

process (Brownian motion), having mean zero and covari-

ance equal to the identity matrix I . Since the diffusion is

assumed to be isotropic, we assume that D = σI , for

some σ > 0. The effect of the boundary ∂N = {p ∈
R

3 : (p − c)T S(p − c) = 1} on the dynamics of molecule

i are formally accounted for by an additional “reflection”

process Ri that “counteracts” any attempt of process pi(t)
to leave domain N . Therefore, equation (1) is rewritten as

follows [10]:

dpi(t) = DdBi(t) + dRi(pi(t)),

where, loosely speaking, dRi = 0 if pi(t) ∈ N \ ∂N ,

and is a suitable nonzero vector along the inward normal

to ∂N at pi(t) if pi(t) ∈ ∂N . The effect of process Ri

is to convert variations of pi towards the outside of N

into a sliding of pi along ∂N . In a more compact form,

the dynamics of molecule i are expressed by the following

switching diffusion:

dpi(t) = σqi(t)IdBi(t) + dRi(pi(t)),

where σq = σ if q = 0, and σq = 0 otherwise. Finally,

the evolution of process qi(t), describing the binding events

of molecule i, follows the laws of a continuous-time binary

Markov chain. In particular, the probabilities that molecule

i binds to/unbinds from a DNA site in the infinitesimal time

interval [t, t + δt) is expressed by the relations:

P[q(t + δt) = 1|q(t) = 0] = λbindδt + o(δt),

P[q(t + δt) = 0|q(t) = 1] = λreleaseδt + o(δt),
(2)
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where λbind ≥ 0 and λrelease ≥ 0 quantify the bind and

release propensities, respectively, and o(δt) are higher order

terms. Let Timm be the expected immobilization time of

a particle, and Fimm be the expected fraction of immobile

population. It can be shown that, under stationary conditions,

Timm = 1/λrelease,

Fimm = λbind/(λbind + λrelease).

Similar formulas are found in the literature for different

models of particle diffusion and binding (see e.g. [6], [25]).

Several extensions of this model are rather straightforward.

In particular, we have already considered the following:

• Diffusion coefficients and probabilities of bind-

ing/unbinding that depend on the position within

the nucleus (e.g. being different within a nucleolus).

This amounts to consider space-dependent diffusion

coefficients σq(p) and transition rates λbind(p) and

λrelease(p), with p ∈ N ;

• Several different proteins that do not interact. This

can be implemented by defining different diffusion

coefficients, transition rates and number of molecules

for different protein species.

Other extensions can be promptly implemented. On the

other hand, interaction between proteins of the same or

different species, and specific recruitment mechanisms onto

DNA, are nontrivial from the modelling viewpoint, and need

further investigation. A convenient approximation of the

above model that is well suited to include such extensions

is described below.

III. APPROXIMATION ON A GRID

Numerical approximation is needed in order to simulate

and study the model presented above. Out of several reason-

able approximations, we chose to follow the approximation

method introduced in [10] for jump diffusion processes and

revisited in [19] in the context of stochastic hybrid systems.

The method is based on the idea of gridding both the state-

space and time according to a gridding parameter h > 0,

the meaning of which will be clarified below, and to build a

discrete-state discrete-time Markov chain that converges in

distribution to the original continuous-time, continuous-state

stochastic process as h → 0. Contrary to the implementations

in [10], [19], that would require to grid the whole 3 × N -

dimensional continuous state-space of the model, here we

grid the “physical” 3-dimensional space and approximate the

diffusion of particles on the same space grid. This choice

does not impair the approximation accuracy and yields a

great complexity reduction. In perspective, it will facilitate

the implementation of particle interactions (e.g. two particles

will be candidates for interaction if they happen to meet at

the same point of the grid, or within a convenient set of

neighboring points) and possibly the analytic investigation

of the discretized model.

Without going into too much technical detail (interested

readers are deferred to [19]), one starts by defining the space

grid as h × Z
3 (where Z is the set of integers) and discrete

(a) (b)

Fig. 3. (a) Approximation of particle diffusion on a three-dimensional space
grid. Arrows represent the possible moves of a particle i from point pi to
neighboring points pi + z at distance h. (b) Alternative choices (left and
right drawings) for the approximate reflection of a particle at the boundaries.
The blue shaded region and the blue thick curve represent the domain N

and its boundary ∂N . The thick black arrows represent possible moves
R(pi) inside N of particle i that lies at a point pi outside N . The thin
gray arrow represents the desired direction of reflection v, which is normal
to the tangent (thin black line) of ∂N at a point close to pi. Moves R(pi)
must be chosen so that the enclosed (gray shaded) region contains v.

time instants tk such that the tk+1 − tk are independent

exponentially distributed random variables with mean T =
ρh2. Constant ρ must satisfy 0 < ρ ≤ ρ̄, where the upper

bound ρ̄ depends on the maximum value taken on by σ over

the space of interest. The choice of sampling the dynamics

at random times facilitates the proof of convergence of the

numerical approximation, however it is not essential [10]. To

fix the ideas, we shall assume from now on that tk = kT .

Next one defines the probability that a molecule i sitting

at a point pi ∈ hZ
3 at time kT , with k ∈ Z, will jump

to a neighboring point pi + z at time (k + 1)T , for all

z ∈ {[0 0 0], [±h 0 0]T , [0 ± h 0]T , [0 0 ± h]T } (see

Fig. 3(a)). These probabilities depend on σ, on the mobility

status qi(kT ) and on the constant ρ. For σ independent of

pi and qi(kT ) = 0, the case ρ = ρ̄ corresponds to the case

where P[z = [0 0 0]T ] = 0, i.e. particles must move at all

discrete time instants. Then, one defines the probabilities of

transition P[qi((k + 1)T ) = 1|qi(kT ) = 0] and P[qi((k +
1)T ) = 0|qi(kT ) = 1] as a function of the propensities

λbind and λrelease and of T (by way of equation (2), with

T in place of δt and o(δt) ≃ 0). Contrary to what suggested

in [10], in our setting a particle of the discretized model is

allowed to both move and bind in the transition from time

kT to time (k + 1)T . This ensures that the approximation

is better behaved for non-infinitesimal values of h. A formal

proof of the asymptotic convergence of this modified discrete

approximation to the original continuous model is being

developed. Finally, the reflection process that guarantees that

particles are confined within boundaries is approximated as

follows. If, in a move from time kT to time (k + 1)T , a

particle falls into a grid point pi outside of the boundaries,

it is instantaneously reflected back into the {hZ
3} ∩ N

domain along the normal v to ∂N at a point p∗ ∈ ∂N

“close enough to” pi. In general, though, the intersection

{pi + αv : α ∈ R} ∩ (h×Z
3 ∩N ) is empty (no grid point

internal to N is found along direction v from pi). The way

to circumvent this is to define a set of candidate reflection

points R(pi) ⊂ hZ
3 ∩ N and reflection probabilities P[p],
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with p ∈ R(pi), so that

E[pi((k + 1)T )] =
∑

p∈R(pi)

p · P[p] ∈ {pi + αv : α ∈ R}

(see Fig. 3(b)). This states that, on average, the particle

violating the constraint is reflected back into N along the

normal to ∂N at p∗. In practice, this is implemented by

extracting the reflection point at random according to the

probability distribution P[p], p ∈ R(pi). For asymptotic

consistency, it is sufficient to ensure that, when h → 0,

p∗ → pi and all points p ∈ R(pi) approach the boundary

∂N .

IV. MODELLING OF FRAP EXPERIMENTS

GFP fusion proteins are ideal for use in FRAP studies

because they can be photobleached without damaging the

molecule or the cell [12], suggesting that also the dynamics

of diffusion and the binding properties of the bleached

molecules are not affected. Therefore, in our model we make

the standard assumption that either tagging and bleaching

do not affect the dynamics of diffusion and binding of the

molecules of interest [11]. To account for the labelling of

protein molecules with fluorescent tags, for each molecule i,
we consider a binary variable fi(t), which takes value 1 if

the tag at time t is fluorescent, and 0 if it is not. One may

assume that, at the beginning of an experiment, all tags are

fluorescent, i.e. fi = 1 for all i. Photobleaching experiments

are modelled as follows. A three-dimensional region B

within nucleus N is defined to describe the volume that

is bleached by the high intensity laser pulse. This volume

is currently described as a sphere, but it could easily be

generalized to more accurate (e.g. conical [20]) descriptions

of the bleaching profile. A time interval [tb, tb+τb) is defined

to represent the activation of the bleaching pulse. In the time

course of a simulation experiment, random execution of the

discrete-time discrete-space model simulates the diffusion of

the particles within the cell nucleus. All particles that enter

the bleaching region when bleaching is active get bleached

with a probability that is proportional to the time spent in the

bleaching region. This is captured in the model by assuming

that the evolution of fi is governed by a Markov chain with

transition probability laws that depend on t and on pi and

are independent of qi. More specifically, let rbleach(pi, t) be

the rate of transition from 1 to 0. We define

rbleach(pi, t) =

{

0, if t /∈ [tb, tb + τb) or pi /∈ B,

beff , if t ∈ [tb, tb + τb) and pi ∈ B,

where beff > 0 is the bleaching efficiency. On the other

hand, we currently assume that, once bleached, a tag does not

recover fluorescence. This is modelled by setting the rate of

transition from 0 to 1 equal to zero. In future developments,

phenomena such as temporary tag bleaching could be taken

into account by a suitable modification of these laws. In

practice, this model is cast in the discrete-time simulation

scheme of Section III by ensuring that, if pi(t) ∈ B at a

time tk ∈ [tb, tb + τb) then fi(t) is set to 0 with probability

T × beff .

Fig. 4. Simulation of diffusion and binding of 10000 particles within a
3D ellypsoidal domain (2D view). Simulation of a 27.3-seconds experiment
(350 FRAP images) currently takes 1–5 hours depending on the system
parameters. Time step is 0.008 seconds, space resolution is 0.1µm.

Observation of the evolution of fluorescence during the

time course of the experiment is defined as follows. A

sequence of imaging time instants Tsample × Z is defined,

where Tsample > 0 is the time between observations (note

that in general Tsample 6= T ). At every time t ∈ Tsample×Z,

the number of fluorescent particles (i.e. such that fi(t) = 1)

within one or multiple three dimensional regions (e.g. a

spherical region of interest and the whole N ) are counted

separately. This count is taken as a measure of the flu-

orescence intensity. In practice, given that the simulation

times are discrete, the fluorescence state of molecules at the

simulation time tk closest to t is considered. In order to

guarantee an accurate approximation, of course, it must hold

that T << Tsample. In fact, the current implementation of

the simulator records the complete status of the simulation

at all observation times, so that information such as fluores-

cence intensity profiles in arbitrary regions of the nucleus

can be inferred by data post-processing. On the other hand,

at present, bleaching of the region of interest is part of the

simulation, and cannot be modified by postprocessing.

V. SIMULATION RESULTS

In this section we shall describe the results obtained by

simulating FRAP experiments with a realistic experimental

setting derived from [25]. In the following, unless specified

otherwise, lengths are measured in microns (µm) and time

in seconds (s). We considered the dynamics of nuclear-

localized protein Cdt1 in a nucleus modelled as an ellipsoid

with x, y, and z axis diameters equal to 10, 8 and 8µm,

respectively. Observations of fluorescence are taken every

Tsample = 0.078s, for a total of 351 measurements over

the time span [0, 27.3]s. Unless otherwise stated, the Region

Of Interest (ROI), where fluorescence recovery is observed,

and the beaching region coincide and are modelled as a

sphere with diameter 4µm. As explained above, fluorescence

at time t is measured by counting the number of particles

such that fi(t) = 1. This is done for both the ROI and the

total nuclear volume scanned by the low-intensity laser. The

latter is, in first approximation, the whole cell nucleus. A

pictorial example of the simulation of a FRAP experiment

is given in Fig.4, where one pre-bleaching and several post-

bleaching 2-dimensional views of fluorescent (green spots)

vs. bleached (black spots) particles are reported. Population

size is fixed to N = 10000. As will be evident below, this

leads to a noise level for the fluorescence recovery curves

that is comparable to what observed experimentally on a

single cell. The gridding parameter is fixed to h = 0.1µm in

all experiments, leading to a dynamics sampling time T in

the order of 10−3s. At this stage, due to the computational
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burden of the method (at the given level of accuracy, one

simulation takes between 1 and 5 hours, depending on the

diffusion coefficients – the faster the diffusion, the longer

the simulation time), the conclusions we are able to draw

are mainly qualitative. Yet the flexibility and the spatial

resolution of the method already enable us to investigate

certain aspects of FRAP experiments that cannot be studied

by conventional analytic or numerical methods.

A. FRAP experiments on Cdt1

In this experiment we replicate part of the simulation

experiments described in [25] (see Figure 2 thereof and the

section Materials and Methods, subsections FRAP experi-

ments and FRAP data analysis). We first simulated diffusion

and binding with coefficients λbind and λrelease such that

Fimm = 20% and Timm = 64s, and a diffusion coefficient

σ = 1.9µm/s. Next we repeated the simulation with parame-

ters such that Fimm = 0% (in this case Timm is irrelevant)

and with σ = 4.8µm/s. According to [25], these two

parameterizations are those that best explain the observed

data for Cdt1 and its non-binding mutant Cdt1∆1 − 140.

Results are reported in Figure 5. Cdt1 recovery is plotted

in blue (simulated) and black (experimental data), whereas

Cdt1∆1 − 140 recovery is plotted in red (simulated) and

green (experimental data). Experimental data were provided

to us by G. Xouri, EMBL Heidelberg. In both cases, we

plotted the Normalized Recovery Curves (NRI), which were

computed as explained in [25]. It can be seen that, according

to our simulator, the velocity of recovery of Cdt1∆1 − 140
is overestimated in [25], whereas the mobility of Cdt1 is

underestimated. In addition, the simulated NRI curve for

Cdt1 does not recover the value 1 by the end of the

experiment. This means that the fluorescence in the ROI is

still lower than the average fluoresce of the cell nucleus.

Indeed, this should be expected since, for Timm = 64s, a

large portion of the bleached molecules is likely to be still

immobilized within the bleaching region at the final time of

the experiment (27.3s), and suggests that a Timm = 64s may

be too large for Cdt1. On the other hand, for Cdt1∆1−140,

the effective diffusion may be slower than estimated, which

would suggest lower values of σ or more binding affinity

(larger λbind or smaller λrelease). We note however that

normalized experimental data have been used for our com-

parisons, and over-normalization could partly account for the

loss of an obvious immobile fraction. In addition the effect

of the shape of the bleached region used for simulations

(here simplified as a sphere) should be investigated. Further

analysis using our model will hopefully allow for an accurate

estimation of binding and diffusion parameters for Cdt1.

B. Diffusion and binding in nucleoli

In this experiment we studied the recovery of fluorescence

within nucleoli. We conducted experiments on mammalian

cancerous cells (breast cancer MCF7 cells). Cells seeded on

MatTek dishes were grown in DMEM/high glucose with 10%
(v/v) fetal bovine serum and were transfected with a plasmid

expressing Cdt1 tagged with GFP using Fugene 6 (Roche)
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Fig. 5. FRAP curves of Cdt1 (black=true, blue=simulated) and its mutant
Cdt1∆1 − 140 with reduced binding affinity (green=true, red=simulated).
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(a) Experimental data.
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(b) Simulation.

Fig. 6. FRAP curves inside (blue) and outside (red) a bleached nucleolus.

according to manufacturer instructions. 22 hours following

transfection FRAP experiments were performed on a Leica

SP5 confocal microscope equipped with an X 63/1.4NA oil

immersion lens. First, the observation of steady state fluores-

cence levels revealed larger concentration of Cdt1 (i.e. higher

fluorescence intensity) within nucleoli than in the rest of the

nucleus. This suggests higher binding affinity or an increased

number of binding sites within nucleoli. Then fluorescence

recovery after bleaching was recorded. Fifty pre-bleaching

images were obtained every 0.066s followed by single bleach

in a circular ROI covering most of a nucleolus (diameter

≃ 4µm) and by 300 post-bleach images recorded at 0.066s

intervals. The fluorescence recovery curve in a bleached

nucleolus is reported (without normalization) in Figure 6(a)

(blue) along with the variation of intensity outside of the

nucleolus (red). To assess whether an increased binding

affinity within nucleoli can explain the experimental curves

of Figure 6(a) we simulated an experiment where a spherical

nucleolus of diameter 4µm is bleached and variations of

fluorescence intensity are observed inside and outside of the
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nucleolus. Binding/unbinding propensities are assigned so

that, outside of the nucleolus, Timm = 1 and Fimm = 0.1,

whereas the binding propensity λbind is doubled within the

nucleolus. The resulting curves of fluorescence intensity are

reported (without normalization) in Figure 6(b). Note that,

in simulation, a longer pre-bleaching period is considered, to

allow the distribution of fluorescent molecules to approach

stationarity (in the initialization of the simulation, molecules

are equally distributed throughout the nucleus; since λbind

is location-dependent, this is not a stationary condition for

the system). This is reflected in the variations of intensity

prior to bleaching. Qualitative comparison of Figures 6(a)

and 6(b) suggests that larger binding propensities within

the nucleolus may explain the larger fluorescence and the

observed recovery curves. However, more experimentation

is needed to exclude that the effect is a consequence of

smaller diffusion coefficients or smaller release propensities

within the nucleolus. In particular, observation of recovery

curves for a mutant with reduced binding affinity would help

establish that the observed behavior is not due to slower

diffusion (if larger fluorescence intensity in nucleoli was due

to slower diffusion, the same effect should be observed for

mutants with reduced binding affinity).

VI. CONCLUSIONS

This paper discussed stochastic modelling and simulation

of protein diffusion and binding within cell nuclei, and their

applications to the study of FRAP experiments. A continuous

stochastic model was proposed along with a suitable discrete

approximation that is well suited for numerical implementa-

tion. Based on the discrete approximation, which is supported

by theoretical convergence guarantees, we plan to extend

the model as to include interactions among particles and

specific recruitment mechanisms onto DNA. The current

implementation of the method allowed us to carry out a qual-

itative analysis of FRAP experimental data from mammalian

cancerous cells. In the future, computational speed-up will be

pursued so as to turn our simulator into a tool for systematic

quantitative data analysis. In addition, theoretical analysis of

our simulation method will be performed in the attempt of

establishing statistical approximation error bounds.
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