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Abstract— Rigid planar space robot is represented as Caply-
gin system and its base attitude can be stabilized by means
of geometric phase. However, in cases when flexible arms are
used for control of base attitude, inherent resonance modes are
excited and instability is resulted. In this study we propose a
stabilized controller is synthesized as adaptive tracking control
system convined with sliding mode control to track to the arm
trajectories derived from the geometric phase of the Caplygin
system. Usefulness of the proposed controller is demonstrated
by numerical simulations and Laboratory experiments.

I. INTRODUCTION

In ’90s, many research articles about the attitude control of

the space robot have been published [1],[2],[3],[4]. However

in these studies both theoretical and experimental considera-

tion about stabilization of the planar space robot with flexible

arms have not been sufficiently developed.

In this paper the attitude control problem of planar space

robot with flexible dual arm is addressed. The proposed

control scheme is based on the geometric phase approach

[4] and the adaptive control scheme [6]. The adaptive control

compensates the system uncertainties and difficulties arising

from obtaining data for flexible dynamic co-ordinates. In this

adaptive control, sliding mode control with Hybrid Sliding

Surface (HSS) which is consisted of frequency shaped

optimal sliding mode (FSOSM ) and terminal sliding mode

(TMS) is employed. The proposed control scheme does not

directly guarantee the stability of the base satellite. However,

since elastic vibration caused by the flexibility is sufficiently

suppressed by the proposed control scheme, geometric phase

works effectively. As a result of this control, base attitude

can be regulated in a similar way to the case of rigid planar

space robot.

The usefulness and validity of this control scheme can be

demonstrated by hardware experiments. In our experiments

free flying planar space robot with flexible dual arms floated

by air on the horizontal plane has been employed.

II. MODELING OF A FLEXIBLE PLANAR SPACE

ROBOT

Fig.1 shows a schematic model of a planar space robot

consisting of two flexible arms connected with a base satellite

via revolute joints. Coordinate system Σ0 is global coordinate

system and Σ1 is moving coordinate system fixed on the
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center of gravity of the base satellite. Subscripts {1} or {l}
symbolizes the left arm and {2} or {r} symbolizes the right

arm. φi and τi denote the angle of rotation of the arm and

the torque supplied by the motor. Flexible arm of length L
has uniform mass density ml and uniform flexural rigidity

EI . Let Ji and Jh be the moment of motor inertia and the

moment of base inertia, respectively. Let mL be the mass

of the tip of arm and (Xi, Yi) be the position coordinate

of the tip. θ denotes the base attitude. For derivation of
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Fig. 1. Flexible planar space robot

equations of motion of the flexible planar space robot, the

elastic displacement yl(x, t) and yr(x, t) at position x of the

flexible arm is approximated by using assumed mode method

as follows:

yl(x, t) = ϕT (x)qfl(t), yr(x, t) = ϕT (x)qfr(t) (1)

where ϕ(x) = [ϕ1(x) ϕ2(x) ... ϕm(x)]T and qf∗(t) =
[qf∗1(t) qf∗2(t) ... qf∗m(t)]T , (∗ = l, r). x is any

point along the undeformed link. qf∗j(t) is the jth modal

displacement for the flexible arm, ϕj(x) is the jth assumed

mode shape for the flexible arm,j=1,...,m. By using these

parameters Lagrangian £ can be obtained as follows[5]:

£ =
Jh

2
θ̇2 +

ml

L

∫ L

0

d2θ̇2dx +
mL

2

(

Ẋ1

2

+ Ẏ1

2
)

+
mL

2

(

Ẋ2

2

+ Ẏ2

2
)

+
ml

2L

∫ L

0

(

x2 + y2

1

)

×
(

θ̇ + φ̇1

)2

dx +
ml

2L

∫ L

0

(

x2 + y2

2

)

(

θ̇ + φ̇2

)2

dx

+
J1

2

(

θ̇ + φ̇1

)2

+
J2

2

(

θ̇ + φ̇2

)2

+
ml

2L

∫ L

0

ẏ1
2dx

+
ml

2L

∫ L

0

ẏ2
2dx +

ml

L

∫ L

0

xϕT (x) ˙qfldx
(

θ̇ + φ̇1

)

+
ml

L

∫ L

0

xϕT (x) ˙qfrdx
(

θ̇ + φ̇2

)
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+
ml

L

∫ L

0

xdxθ̇
(

θ̇ + φ̇1

)

d cos φ1

+
ml

L

∫ L

0

xdxθ̇
(

θ̇ + φ̇2

)

d cos φ2

−
ml

L

∫ L

0

ϕT (x)qfldxθ̇
(

θ̇ + φ̇1

)

d sinφ1

−
ml

L

∫ L

0

ϕT (x)qfrdxθ̇
(

θ̇ + φ̇2

)

d sinφ2

−
EI

2

∫ L

0

(

d2ϕ(x)

dx2

)T (

d2ϕ(x)

dx2

)

dxqT
flqfl

−
EI

2

∫ L

0

(

d2ϕ(x)

dx2

)T (

d2ϕ(x)

dx2

)

dxqT
frqfr (2)

For the simplicity we assume d = 0, distance between

center of the base and the arm joint, and truncate the

flexible mode on the 2nd mode, that is m = 1. From these

assumptions we can obtain the dynamic equations of motion

for the controller synthesis as follows:

M(q)q̈ + h(q, q̇)q̇ + K(q)q = τ (3)

where q = [φ1 φ2 qfl qfr]
T , τ = [τ1 τ2 0 0]T ,and

M(q) = {Mi,j(q)} , h(q, q̇) = {hi,j(q, q̇)} ,K(q) =
{Ki,j(q)} , i, j = 1, ..., 4. In this equation qfl and qfr are

used instead of qfl1 and qfr1, respectively.

Base attitude θ does not appear in (3), though it is

governed by the conservation law of angular momentum.

θ̇ =
1

λ

(

α̃φ̇1 + β̃φ̇2 + γ̃q̇fl + δ̃q̇fr

)

(4)

Where

λ = Jh + J1 + J2 + 2mLL2 +
ml

L

∫ L

0

x2dx

α̃ = −mLL2 −
ml

L

∫ L

0

x2dx − J1

β̃ = −mLL2 −
ml

L

∫ L

0

x2dx − J2

γ̃ = −mLLϕ1(x) −
ml

L

∫ L

0

xϕ1(x)dx

δ̃ = −mLLϕ1(x) −
ml

L

∫ L

0

xϕ1(x)dx

In equations (3) and (4), ml/L can be replaced by mass

density of the arms ρ.

By using these approximated model we consider the

following problem.

Problem Suppose the dynamic physical parameters writ-

ten in (3) is unknown. Synthesize the stabilizing controller of

the flexible dual arm space robot to stabilize the base attitude

and suppress the vibration caused by the arm flexibility.

III. CONTROLLER SYNTHESIS

A. Controller design for the rigid space robot

To solve this problem we turn back to the rigid space

robot. For the rigid dual arm space robot conservation law of

angular momentum can be written by the following Caplygin

form.

θ̇ = αrigidφ̇1 + βrigidφ̇2 (5)

Where αrigid and βrigid are similar form to the flexible

case except the flexible terms. Applying the concept of

the geometric phase to this Caplygin form, we can obtain

the desired trajectories of the arm motions. The desired

trajectories are synthesized as follows[4]:

Caplygin form (5) can be converted into

θ =

∮

C

αrigiddφ1 + βrigiddφ2 (6)

Suppose initial base attitude is θ0. Then we can design closed

contour C so that

−θ0 =

∮

C

αrigiddφ1 + βrigiddφ2 (7)

From this closed contour we can obtain the desired trajecto-

ries of φ1 and φ2 as follows:

φ1d(s(t)) = −R cos(ks(t) + ψ) + R cos ψ

φ2d(s(t)) = −R sin(ks(t) + ψ) + R sin ψ (8)

Where R denotes a radius of the closed contour determined

by relation (7), k denotes the direction of the closed contour

and is assigned to 1 or -1. ψ is a constant arbitrarily

assigned[4]. s(t) is monotonically increasing function and

is given by

s(t) = Λt − sin(Λt). (9)

Λ > 0 indicates the angular velocity of the arm motion along

the closed contour and T = 2π/Λ defines the one cycle of

the contour trajectory Cd = (φ1d(s(t)), φ2d(s(t))). Then

ds

dt
= 0, t = nT, (n = 0, 1, 2, ...).

This property shows that the desired trajectory Cd =
(φ1d(s(t)), φ2d(s(t))) is at least once differentiable with

respect to t. Indeed it can be easily shown that Cd =
(φ1d(s(t)), φ2d(s(t))) is twice continuously differentiable

with respect to t.

B. Hybrid sliding surface (HSS)

Generally speaking, conventional sliding mode control is

considered to be hardly applicable to the control of the

flexible system because switching control input happens

to excite the inherent resonance mode of the system. To

overcome this problem FSOSM has been developed [7].

Recently, Shahravi et al [6] and Xu et al [9] proposed the

new sliding mode control method with hybrid sliding surface

(HSS) to apply to the control of the single arm flexible space

robot.

The HSS is written as

SH = αSFSOSM + (1 − α)STSM (10)

where subscripts FSOSM and TSM indicate frequency

shaped optimal sliding mode and terminal sliding mode

respectively. Weighting coefficient α should be chosen prop-

erly to obtain required performance and satisfy stability
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conditions. In this subsection subscripts {∗ = l, r} symbolize

left and right arm.

The FSOSM sliding surface is synthesized as

SFSOSM = e2∗ + cee1∗ + c1z1∗ + c2z2∗ = 0, (11)

where e1l = φ1 − φ1d, e2l = φ̇1 − ˙φ1d and e1r = φ2 −
φ2d, e2r = φ̇2 − ˙φ2d. z1∗, z2∗ are filter states and are given

by

ż∗ = Fz∗ + Ee2∗ (12)

where

z∗ =

[

z1∗

z2∗

]

, F =

[

0 1
−ω2

c −2ωc

]

, E =

[

0
1

]

.

ωc > 0 can be assigned arbitrarily. The main utilization of

a filter would be to assure that unmodelled vibration modes

in a given system are not excited in sliding mode[7]. ce, c1

and c2 are design parameters synthesized by some optimal

technique (see Appendix).

The TSM sliding surface is synthesized as

STSM = e2∗ + cpe
p
1∗

= 0 (13)

where cp > 0, 0 < p < 1. Substituting (11) and (13) into

(10), we can obtain the HSS as

SH∗ = e2∗ + αcee1∗ + (1−α)cpe
p
1∗

+ αc1z1∗ + αc2z2∗ = 0
(14)

C. Adaptive controller

The proposed controller consists of the reference controller

and adaptive controller. Desired trajectories are obtained

from the reference controller synthesized for the rigid space

robot. To track to these desired trajectories we synthesize the

adaptive controller as follows.

First we define the HSS(SH = [SHl SHr]
T ) as

SH =

[

e2l + αcee1l + (1 − α)cpe
p
1l + αc1z1l + αc2z2l

e2r + αcee1r + (1 − α)cpe
p
1r + αc1z1r + αc2z2r

]

.

Substituting (8) and (9) into the first derivative of e2l and

e2r, we obtain

ė2l = φ̈1 − k2RΛ2(1 − 2 cos Λt + cos2 Λt)

× cos(kτ + ψ) − kRΛ2 sin(kτ + ψ) sinΛt,

ė2r = φ̈2 − k2RΛ2(1 − 2 cos Λt + cos2 Λt)

× cos(kτ + ψ) + kRΛ2 sin(kτ + ψ) sinΛt.

φ̈1 and φ̈2 are derived from (3) and substituted into above

equations. Substituting ė2l and ė2r into the first derivative of

SH , we obtain

ṠH =

[

ṠHl

ṠHr

]

=

[

λ11 λ12

λ21 λ22

]([

τ1

τ2

]

+

[

W1l W2l · · · W12l

W1r W2r · · · W12r

]











Y1

Y2

...

Y12





















= λinv

(

τ + WT
Y

)

. (15)

Where

λinv =

[

λ11 λ12

λ21 λ22

]

,

λij is obtained from M−1(q) = {λij}. And

W =

[

WT
l

WT
r

]T

=

[

W1l W2l · · · W12l

W1r W2r · · · W12r

]T

Y = [Y1 Y2 · · · Y12]
T

,

where Y1 = φ̇1, Y2 = φ̇2, Y3 = ep−1

1l e2l, Y4 = ep−1

1r e2r, Y5 =
e2l, Y6 = e2r, Y7 = z1l, Y8 = z2l, Y9 = z1r, Y10 =
z2r, Y11 = φ̈1d, Y12 = φ̈2d. Since the filter states are

governed by (12) and the desired trajectories are twice

continuously differentiable, we can assume these parameters

are bounded.

Finally from these parametorizations we synthesize the

control laws and adaptive laws as follows:


























τ1 = −
(

aŴl

T
|Y | + ǫ

)

sat(SHl, δ)

τ2 = −
(

bŴr

T
|Y | + ǫ

)

sat(SHr, δ)

˙̂
Wl = βl1|Y ||SHl| + βl2|Y ||SHr|
˙̂

Wr = βr1|Y ||SHr| + βr2|Y ||SHl|

(16)

Where a, b, βl1, βl2, βr1, βr2 are synthesis parameters, ǫ >
0, Ŵ is estimation of W ∗, W ∗

i > |Wi|, i = 1, ..., 12. W ∗

i

means upper bound of |Wi| and is unknown constant. |Y |
and sat(SH∗, δ) are

|Y | = [|Y1|, |Y2|, · · · , |Y12|]
T ,

sat(SH∗, δ) =

{

sgn(SH∗) |SH∗| > δ
SH∗

δ
|SH∗| ≤ δ, (∗ = l, r)

where δ is the size of dead zone.

Remark Since p < 1, Y3 and Y4 may happen to be infinite.

To overcome this drawback we introduce small positive

number ǫ0. For sufficiently small ǫ0 we replace Y3, Y4, SHl

and SHr with followings.

Y3 = ǫp−1

0
e2l, (|e1l| < ǫ0)

Y4 = ǫp−1

0
e2r, (|e1r| < ǫ0) (17)

SHl = e2l + αc1z1l + αc2z2l + αcee1l

+cp(1 − α)ǫp−1

0
e1l, (|e1l| < ǫ0)

SHr = e2r + αc1z1r + αc2z2r + αcee1r

+cp(1 − α)ǫp−1

0
e1r, (|e1r| < ǫ0) (18)

Then the following Lemmas are holded.

Lemma 1: Suppose that the control laws (16) are applied

to a flexible dual arm space robot whose dynamic equation

model being described by (3) and (4). Consider the following

Lyapunov function.

V =
1

2
ST

HλSH +
1

2
W̃T W̃ (19)

Where

λ =

[

1

λ11

0

0 1

λ22

]

, W̃ =

[

W̃l

W̃r

]

=

[

Ŵl − W ∗

l

Ŵr − W ∗

r

]

.
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Then the first derivative of V is negative definite, V̇ < 0,

and SH → 0, W̃ → 0 as t → ∞.

Proof: Taking the time derivative of V and using

equations (15) and (16) yield

V̇ =
1

λ11

SHlṠHl +
1

λ22

SHrṠHr + W̃l

T ˙̃Wl + W̃r

T ˙̃Wr

= −a|SHl|Ŵl

T
|Y | − |SHl|ǫ + SHlW

T
l Y

−
λ12

λ11

bSHlŴr

T
|Y |sat(SHr, δ)

−
λ12

λ11

SHlǫsat(SHr, δ)

+
λ12

λ11

SHlW
T
r Y −

λ21

λ22

aSHrŴl

T
|Y |sat(SHl, δ)

−
λ21

λ22

SHrǫsat(SHl, δ) +
λ21

λ22

SHrW
T
l Y

−b|SHr|Ŵr

T
|Y | − βl2W

T∗

l |Y ||SHr|

−|SHr|ǫ + SHrW
T
r Y + βl1Ŵl

T
|Y ||SHl|

−βl1W
∗T
l |Y ||SHl| + βl2Ŵl

T
|Y ||SHr|

+βr1Ŵr

T
|Y ||SHr| − βr1W

∗T
r |Y ||SHr|

+βr2Ŵr

T
|Y ||SHl| − βr2W

∗T
r |Y ||SHl|. (20)

For the simplicity we set a = 1, b = 1, βl1 = 1, βr1 =
1, βl2 = 1, βr2 = 1. Then V̇ is

V̇ < −

(

1 −
|λ12|

λ11

)

|SHl|ǫ +
2|λ12|

λ11

Ŵr

T
|Y ||SHl|

−

(

1 −
|λ21|

λ22

)

|SHr|ǫ +
2|λ21|

λ22

Ŵl

T
|Y ||SHr|.(21)

From the definition of λinv , we can show λ11 =
λ22 > 0, λ11 > |λ12|, λ22 > |λ21|. And we set ǫ >

max
(

λ∗

1
Ŵr

T
|Y |, λ∗

2
Ŵl

T
|Y |

)

. Where

λ∗

1
=

2|λ12|

λ11 − |λ12|
, λ∗

2
=

2|λ21|

λ22 − |λ21|
.

Substituting these parameters into (21), we can obtain V̇ < 0.

Then, SH → 0, W̃ → 0 as t → ∞.

Lemma 2: Suppose SH → 0 as t → ∞. Then

{e1l, e1r} → 0 and {ė1l, ė1r} → 0 as t → ∞.

Proof: Since SH → 0, SHl → 0 and SHr → 0. This

leads us

e2l = −αcee1l − (1 − α)cpe
p
1l − αc1z1l − αc2z2l

e2r = −αcee1r − (1 − α)cpe
p
1r − αc1z1r − αc2z2r. (22)

Since following discussion is satisfied in both the l′s case

and r′s case, we omit the subscript {∗}. Substituting (22)

into (12), we obtain the following state equation.

ẋe = Acxe − bcu(y)

y = ccxe (23)

Where

Ac =





0 1 0
−ω2

c − αc1 −2ωc − αc2 −αce

−αc1 −αc2 −αce



 ,

bc = [0 1 1]T , cc = [0 0 1], xe = [z1 z2 e1]
T , u(e1) =

w(y) = cp(1 − α)ep
1
.

Stability of the system (23) is shown by the Popov’s Sta-

bility Criterion[8]. If following three conditions are satisfied

for an arbitrarily small ǫ0, then the origin of the system (23)

is globally asymptotically stable.

1)Ac is Hurwitz and [Ac, bc] is controllable.

2)The nonlinearity u(y) belongs to the sector [0, k0].
3)There exists a strictly positive number η such that

Re [(1 + jηω)G(jω)] ≥ ǫ0 −
1

k0

, ∀ω ≥ 0. (24)

Where G(s) = cc(sI − Ac)
−1bc.

The first condition can be checked by Routh-Hurwitz

method. In order to check the stability of Ac we have

following conditions.

ω̄c = 2ωc + c2α + ceα > 0

ω̄c(ω
2

c + c1α + 2ωcceα) − ω2

cceα > 0

ω2

cceα > 0

Since ce > 0 is guaranteed by the synthesis method of the

FSOSM sliding surface, if α is chosen as

0 < α < min

{

1,
2ωc

|c2 + ce|

}

, (25)

then Ac is Hurwitz. Furthermore transfer function G(s) =
cc(sI − Ac)

−1bc is given by

G(s) =
s2 + 2ωcs + ω2

c

s3 + ω̄cs2 + (ω2
c + c1α + 2ωcceα)s + ω2

cceα
.

There is no pole-zero cancellation except on the hyper plane

c1 − (c2 + ce)ωc = 0 in the parameter space. Therefore

[Ac, bc] is controllable almost everywhere in the parameter

space.

From the definition of u(y) the 2nd condition can be easily

checked. Since 0 < α < 1, cp > 0 and 0 < p < 1, then

w(y)y > 0. Furthermore

∂w

∂y
= (1 − α)pcpe

p−1

1
∈ (0, +∞).

Then 0 ≤ w(y)y ≤ ky2. This means the 2nd condition is

satisfied.

The last condition can be checked as follows. Letting Θ =
Re(G(jω)) and Ξ = ωIm(G(jω)), (24) can be rewritten as

Ξ ≤
1

η

(

Θ +
1

k0

)

−
ǫ0
η

<
1

η

(

Θ +
1

k0

)

(26)

Where

Ξ =
−ω6 − (2ω2

c + 2ωcc2α − c1α)ω4

[ω2
cceα − (2ωc + c2α + ceα)ω2]2

−(ω4

c + ω2

cc1α)ω2

+(ω2
c + c1α + 2ωcceα − ω2)2ω2

.

If

α <
8ω2

cc1 − 8ω3

cc2

4ω2
cc2

2
+ c2

1
− 4ωcc1c2

= αbound,
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then Ξ < 0,∀ω. Therefore, if α is selected as 0 < α <
min(1, αbound), there exist η and k0 such that (24) is

satisfied. From Popov’s criterion origin of (23) is globally

asymptotically stable, xe → 0 as t → ∞. This completes

the proof.

Lemma 1 and Lemma 2 are summerized to the following

theorem.

Theorem 1: Suppose that the control laws (16) are applied

to the flexible dual arm planar space robot described by (3)

and (4). Then {e1l, e1r} → 0 as t → ∞ and { ˙e1l, ˙e1r} → 0
as t → ∞.

IV. SIMULATIONS

TABLE I

PHYSICAL PARAMETERS
�

Arm length £ ��� �w ²Ä´w

Arm rigidity � ����w ²¥ Ä´w

Mass density of the arms ]�����w ²Â ¾ w Ä

��

´w

Mass of the arms Ä

Ã

��� �w ²Â ¾ ´w

Mass of the tip of the arms Ä

£

��� �w ²Â ¾ ´w

Base moment of inertia  ¡

�

��� ��
��

��w

²Â ¾ w Ä

�

´w

Arm moment of inertia ¡

�

�¡

�

��� �w ²Â ¾ wÄ�´w

Distance between the center of the base and the joint »��� �w ²Ä´w

Dumping coefficient X��� �w

� � �� �� �� ��

��

����

�

���

�

���
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Fig. 2. Time histories of base angle
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Fig. 3. Trajectory errors

Fig. 4. Arm deflection(conventional)

Fig. 5. Arm deflection(proposed)

In this section, results of the numerical simulations for

the closed loop system are presented. Parameters used for

simulations are shown in Table 1. Conservation law of

angular momentum for the rigid planar space robot is written

by (5), that is

αrigid = −
mLL2 + mLdL cos φ1

Jarm + 2mLdL(cos φ1 + cos φ2)

= −
10000(10 + cos φ1)

202323 + 20000(cos φ1 + cos φ2)
,

βrigid = −
mLL2 + mLdL cos φ2

Jarm + 2mLdL(cos φ1 + cos φ2)

= −
10000(10 + cos φ2)

202323 + 20000(cos φ1 + cos φ2)
,

where Jarm = JH +2mLd2 +2mLL2. In these calculations

we assume that rigid arm link does not have mass and mass

mL is concentrated on the tip of the arm. For this system

we can obtain the desired trajectories φ1d(t), φ2d(t). Where

R = −1.818k|θ|
1

3 , k = sgn(θ).

Control torques are calculated from the dynamic model

whose arm is rigid without mass distribution and has point

mass concentrated at the tip of arm.

On the other hand control parameters of the control

laws (16) are given as a = 1, b = 1, βl1 = 1, βr1 =
1, ǫ = 30[Nm], δ = 0.3[rad], ǫ0 = 0.000001[rad], ωc =
2[rad/sec], a′ = 10, ce = 0.01, c1 = −3.7879, c2 =
−3.2456, cp = 2, p = 3/5, α = 0.6. a′ assigns corner

frequency of the FSOSM .

Fig.2,3, 4 and 5 show the simulation results. In these

simulations parameter Λ = 2 representing the angular

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA18.4

600



velocity of the arm motion is set 2[rad/sec]. Fig.2 shows the

time histories of the base attitude θ. Solid line denotes the

performance of the conventional controller which is proposed

for the control of the rigid planar space robot[4]. Dashed line

denotes the performance of the proposed controller. Base

attitude controlled by the proposed controller converges to

the origin. On the other hand base attitude controlled by

the conventional controller cannot be converged and it is

still remained vibration. Fig.3 shows the trajectory errors

{el, er}. Both errors are asymptotically converged to the

origin. Fig.4 and Fig.5 show the elastic deflections of the

arm as a function of two independent variables {t, x}. In

both figures the arm deflection is enlarged at the beginning of

performance. However as shown in these figures, the elastic

deflection caused by the proposed controller is vanished

faster than that caused by the conventional controller.

V. EXPERIMENTS

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Fig. 6. Prototype of the planar space robot

In order to investigate real mechanical dynamics and also

to demonstrate the validity and effectiveness of the proposed

control laws in a practical system, the prototype of the planar

space robot floated by air on the horizontal table with air

is employed. Fig.6 shows a photograph of the prototype of

the space robot with symmetric two arms connected to the

base satellite with revolute joints. Two arms are made from

aluminum beam and physical parameters of these arms are

same, 450[mm] length, 2[mm] thickness and 40[mm] width.

On the tips of two arms and center of the base air pads are

equipped separately. Through these air pads, compressed air

is exhausted on the horizontal table covered with smooth

glass to float the prototype robot. Control parameters are

same as those used for simulations except Λ = 0.1.

Fig.7 and 8 show the experimental results. Controller

parameters are same as those in the simulations except Λ =
0.1. Fig.7 shows the time history of the trajectory tracking

error er. From this result it can be said that the tracking

error is sufficiently reduced. Fig.8 shows the deflection of

the tip coordinate. These experimental results demonstrate

the usefulness and validity of the proposed controller.

VI. CONCLUSION

A new method for attitude control of flexible dual arm

planar space robot has been proposed. It is based on the

geometric phase and adaptive sliding mode control with

a synthesized hybrid sliding surface. The hybrid sliding

surface makes it posible to minimize excitation of flexible

modes caused by the conventional sliding mode control. The

� � � � � � � � � � � � � � �
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Fig. 7. Trajectory errors

proposed controller has been applied to the experimental

system of the flexible planar robot floated on the flat plane by

the air. By simulation and experimental results it has been

demonstrated that the proposed control laws and adaptive

laws overcome the problems caused by the arm flexibility

and parameter uncertainty.
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