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Abstract— We present a motion planning scheme for ground
vehicles operating in a partially known environment. Kinematic
constraints stemming from vehicle dynamics and from the
requirement that the path must remain inside a free channel
of a rectangular cell decomposition of the environment at all
times, are dealt with by constructing a time-parameterized path
using an appropriate combination of a finite number of path
and motion primitives. This simplifies considerably the motion
planning problem and, furthermore, reduces the computational
cost of replanning at each time instant. Our analysis also
provides closed-form expressions on the size of each cell so
that the ensuing cell decomposition is compatible to the vehicle
dynamics.

I. INTRODUCTION

The importance of taking into account limitations over
the steering capacity of typical ground vehicles, and es-
pecially car-like robots, is well known in the area of mo-
tion planning. One common approach typically employed
to account for this problem is the design of geometric
paths with bounded curvature. For the case of an obstacle-
free environment, curvature-constrained paths of minimal
length, and with prescribed initial and final positions and
tangents, have been characterized in [1] and [2] for the 2D
(planar) and the 3D case, respectively. In the presence of
obstacles, the problem of the shortest, curvature-constrained
path becomes extremely complicated. Actually, the planar,
shortest, curvature-constrained path problem is, in general,
NP hard [3]. The case of polygonal obstacles was investi-
gated for the first time by Jacobs and Canny [4], who proved
that the existence of a curvature-constrained planar path, with
prescribed initial and final positions and orientations, implies
the existence of a shortest-length curvature-constrained pla-
nar path, which satisfies the same boundary conditions. The
recent work in [5], [6] deals with the geometric construction
of curvature-constrained curves of “short” length inside
narrow corridors.

The aforementioned methods tend to construct paths or
trajectories that may be incompatible with the actual vehicle
dynamics. Feasible paths need to take into account the ve-
hicle dynamics. Algorithms based on optimal control theory
can be used to solve the motion planning problem in the
presence of input and path constraints, and are well known
to the motion planning community. Examples include refer-
ences [7], [8], [9], [10]. Unfortunately, these exact methods
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are computationally prohibitive for real-time implementation.
Another, also suboptimal, approach is the one developed
in [11], where the authors propose a hierarchical control
architecture for maneuvering helicopters operating at the
edge of their flight envelope, by discretizing the trajectory
space into a finite number of steady-state (trim) conditions
and (finite-time) maneuvers, the latter used to connect the
trim trajectories.

Our work in this paper borrows from the same ideas as
in [11], [12] in order to develop a kinodynamic planning
scheme that is compatible with cell-based discrete path
planning algorithms. This is achieved into two steps. At
the first step, we construct a path P(s) that lies inside the
narrow corridor defined by the channel of cells to the goal
destination, and which adheres to the kinematic and curvature
constraints imposed on the vehicle either by the mission
objective, engine characteristics, or the environment (i.e.,
surface friction). The path P(s) is composed of a suitable
combination of circular arcs and line segments, which are
the path primitives of our scheme. In the second step, we
impose a time parametrization along this path by selecting
the control inputs required for the vehicle to reach the goal
destination along the path P(s) in minimum-time. Again,
we do this for each path primitive (subject to the correct and
consistent boundary conditions) thus resulting in a family
of motion primitives, whose suitable combination via a
receding horizon scheme yields a nearly-optimal trajectory.
The approach is numerically efficient and suitable for on-
line implementation with limited computational resources.
Furthermore, the short horizon required implementing the
proposed strategy makes the whole planning scheme flexible
and responsive to environmental changes.

II. KINEMATIC MODEL

Let us consider the motion of a ground vehicle of unit
mass moving along a planar curve α : I �→ R

2, which is
acted upon by the force components ft = v̇ in the tangential
direction and fr = vω in the normal (radial) direction. The
motion of the vehicle is given by the equations

ẍ(t) = v̇(t) cos θ(t) − v(t)ω(t) sin θ(t), (1)

ÿ(t) = v̇(t) sin θ(t) + v(t)ω(t) cos θ(t), (2)

θ̇(t) = ω(t). (3)

In equations (1)-(3) x, y are the cartesian coordinates of
the vehicle, θ is the heading angle of the velocity vector
(always tangent to α), v is the vehicle’s speed and v̇, ω are
the control inputs. The set of admissible inputs U for the
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vehicle is given by

U
�
=

{
(v̇, ω) :

(
v̇

fmax
t

)2

+
(

vω

fmax
r

)2

≤ 1

}
. (4)

We also assume that the speed of the vehicle is bounded
both from above and below as follows

v(t) ∈ [vmin, vmax], t ≥ 0. (5)

Our objective is to derive constraints over the geomet-
ric characteristics of the curves the vehicle is capable of
tracking, so that later on we can propose a path generation
scheme that is compatible with the kinodynamic and input
constraints induced by the relations (4) and (5). In particular,
since |ω(t)| = κ(s(t))v(t), where κ(s) ≥ 0 and s are the
curvature and the arc length of the ensuing path respectively,
inequality (4) implies that v2(t)κ(s) ≤ fmax

r , t ≥ 0.

We can thus derive an upper bound over the speed of the
vehicle along the path as a function of the force envelope
and the curvature κ(s) of the path. We call this speed the
critical speed vc, defined by

vc(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

fmax
r

κ(s)
,

√
fmax

r

κ(s)
∈ [vmin, vmax],

vmax,

√
fmax

r

κ(s)
> vmax.

(6)

Alternatively, the set of path curves that can be tracked ex-
actly by the vehicle is restricted by the point-wise maximum
allowable curvature κmax , where κmax ≤ fmax

r /v2
min.

III. PATH PLANNING USING PATH PRIMITIVES

Any local path planning scheme that is based on combina-
tions of a finite number of path primitives, has to deal with
situations where the boundary and/or interior conditions of
the problem at different time instants may be incompatible
with one another. Thus, what we need is an efficient way to
generate, and smoothly join together, (time-parameterized)
path segments.

In the sequel, we assume that the agent has detailed
knowledge of the environment over an horizon of only three
cells. Let A denote the cell occupied by the vehicle at a
given time instant t. Any feasible channel M comprised of
three consecutive free cells, namely A, B and C, forms the
horizon of the continuous motion planning problem at the
given time instant t. We assume that this horizon is identical
to the exploration horizon of the vehicle on-board sensors;
hence the cells A, B and C are the only free cells at the
time instant t. All cells outside the horizon of the on-board
sensors are assumed to be mixed. We further assume that,
at each time t, a channel of cells Mg,t (comprised of free
and mixed cells) to the goal destination is known, such that
M ⊂ Mg,t. The channel Mg,t may be constructed by any
local discrete planning algorithm (e.g., [13], [14]) that solves
the geometric path planning problem at the cell level each
time the algorithm is executed.

A. Constructing the Path P(s) Inside the Free Cells of Cd

Let Cd denote a uniform square cell decomposition of
cell size � with a 4-connectivity scheme. We introduce the
parent local channels Mp

1, Mp
2 ⊂ R

2 that are shown in
Fig. 1. Any arbitrary 3-cell local channel M can be deduced
by either the parent local channel Mp

1 or Mp
2 by means of

plane isometries.

j

i

j

i

Parent Channel Mp
1

(0, 0)

(0, 0)

Parent Channel Mp
2

A

A B

B
C

C

Fig. 1. Parent channels of three cells.

In order to generate the route of the vehicle inside the
narrow corridor, which is represented by a channel of cells,
we concatenate locally shortest-length, curvature-constrained
paths, which, in turn, are composed of line segments and
circular arcs. Let us consider the case when the agent enters
a free cell A of M at some point along the West edge and
exits A from a point along either the East or South edge. To
the entrance and exit edges of A we associate two circles,
C1 and C2,a or C1 and C2,b, located at the midpoints of the
West and the East or South edge, respectively. The circles
C1 and C2,a or C1 and C2,b can be joined by either one of
the four common tangent line segments Y12 or a circle C12

or a composite path that is composed of a circle C12,a a line
segment Y12 and a second circle C12,b. See Fig. 2.

C1

C2

x

(0, y1) (L, y2)

y

Y1,2

ρ1 ρ2

L

Fig. 2. Geometric path generation problem. The problem is well
defined as long as ρ1 + ρ2 ≤ L.

The assumption here is that the agent enters each cell ei-
ther by performing a steady turn or moving along a rectilinear
path. The resulting path is a composite curve α, we write
α = C1 ◦K12 ◦C2 where K12 ∈ {Y12, C12, C12,a ◦Y12 ◦C12,b}
where ◦ denotes curve composition.
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For the rest of this paper we shall concentrate our analysis
for the case K12 = Y12 for simplicity. Figure 3 shows all
feasible paths inside the two parent local channels composed
of locally length-optimal paths. For the shake of clarity, all
the maneuvers depicted in Figure 3 involve circles whose
centers are located at the middle points of the corresponding
edges.

B. Path Generation Algorithm

Without loss of generality, assume that M ∼= Mp
1 as in

Fig. 4. Since the path inside the cell A is uniquely determined
by the entry velocity, the first part of the composite path is
constructed immediately. Note that neither the exit velocity
nor the exit edge from cell C is known at that point, since
not all of the neighbors of the cell C are expanded at that
point. When the vehicle enters the cell B, all the neighbors
of the cell C are expanded. Furthermore, a new channel of
three adjacent cells becomes available from the higher level
discrete local path planning algorithm. This new channel M̃
is comprised of the cells B and C of the channel M plus the
new cell A′, which is adjacent to the C cell. The exit edge
from cell C is now available. Thus, the exit velocity is Oi,j ,
where the index i is fixed but the j index is still unknown.
The knowledge of the exit edge form cell C suffices to
determine the path inside B uniquely. Finally, when the agent
enters the cell C the exit velocity from the channel M̃ finally
becomes available. The situation can be better understood
with the simple example depicted in Fig. 4. At the time the
vehicle enters the cell C, the two cells A′ and B′ within
the exploration horizon of the vehicle become available. The
local channel M̃ is composed of the cells C, A′ and B′ with
M̃ ∼= Mp

1. The path inside A′ is then specified in accordance
with Fig. 3. Hence, the path inside A′ is restricted to be one
of the dashed curves given in Fig. 4. Therefore, there exists
only one output orientation from the local channel M̃ that is
compatible with the allowable path switches. Consequently,
the path-planning inside M is completed. The exit velocity
from cell C will be the input orientation for the new local
channel M′, composed of the cells A′, B′ and the new cell
C′, which is adjacent to B′. This results in a new problem
similar to the class of problems depicted in Fig. 3. The same
procedure is applied repeatedly until the vehicle reaches
the goal destination. Using this scheme we can generate
the composite path P(s), which is a finite composition of
curves αj = Cj ◦ Yj,j+1 ◦ Cj+1, for j = 1, . . . , n where n.
Subsequently, we may write the overall generated path as
P(s) = α1(s) ◦ · · · ◦ αn(s).

C. Complexity Estimates

We assume that the free space in the vicinity of the vehicle
is represented via a cell decomposition which induces a grid
of mesh �2, where � is the size of each cell, whereas the rest
of the world is represented via a grid of mesh Λ2, where, typ-
ically, with � 
 Λ. Let us assume that the obstacle space of
our problem is composed of polygonal obstacles and let N be
the total number of corners of all these obstacles. The number
of free cells cannot be more than O(η2N2/�2) whereas the
number of mixed cells cannot exceed O(N2/Λ2), where

η ∼ O(�2/Λ2) is the ratio of the exploration horizon over the
total area of the world. We store the free cells in a balanced
binary tree and we lookup the four neighbors of each cell.
We put pointers to the neighbors that have been expanded.
The running time of this step is O (�2N2/Λ4

)
. The channel

of free and mixed cells to the goal destination is constructed
every time by performing a search using A∗ or Dijkstra’s
algorithm. This search typically requires a running time
of order O(�2N2/Λ4 log(�2N2/Λ4)). The selection of the
maneuver to execute each time a new cell becomes available
is unique and of constant time, that is, of order O(1). If
we now assume that the total number of the cells that the
vehicle visits during its route to the goal destination is n, the
previous steps are executed O(n) number of times. On the
other hand, it can be easily shown that a brute force method,
which at each step checks every route comprised of curves
made up from the available path primitives in the library,
would require running time O(n) instead of O(1). Hence,
a brute force method would normally require an additional
running time overhead of order O(n2) instead of O(n).
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I1
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I2,b
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I3

I3

O1,a

O1,a

O1,b

O1,bO1,bO1,b

O2,a

O2,a

O2,b

O2,b

O3,a

O3,a

O3,b

O3,b

Fig. 3. Feasible maneuvers inside the parent cell channels Mp
1 and

Mp
2 .

IV. FROM PATHS TO TRAJECTORIES: TIME OPTIMAL

CONTROL

In this section we solve the time optimal control problem
for the system (1)-(3) along the composite path P(s) =
α1(s) ◦ · · · ◦ αn(s) under the constraints (4) and (5). Along
the given path P(s), both the equations of motion and the
constraints are significantly simplified. In particular, while
the agent moves along one of the straight line segments
Yj,j+1 of P(s), the equations of motion are given by

s̈(t) = u(t) θ̇(t) ≡ 0, (7)

where u(t) = v̇(t) is the control input, along with the
constraints (5) and

|u(t)| ≤ fmax
t . (8)

Additionally, when the agent traverses a circular arc of Cj

with radius ρj , the simplified equations of motion are given
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ρA′,B′

Fig. 4. The construction of the trajectory inside the channel M.

by

θ̇(t) = ω(t), (9)

along with the constraint(
ω̇(t)ρj

fmax
t

)2

+
(

ω2(t)ρj

fmax
r

)2

≤ 1. (10)

Furthermore, the critical speed is constant, and is defined
by

v
Cj
c =

√
fmax

r ρj , j = 1, 2, . . . , n + 1. (11)

The constraints in (8) and (10) specify the set of admis-
sible control inputs Uj ⊂ U, j = 1, 2, associated to the
motion of the vehicle along any line segment and circular
arc of the path P(s) respectively with U1

⋂U2 = ∅. Let
U = U1

⋃U2 = U ⊂ R
2 be the set of admissible inputs

associated to the motion of the vehicle along the path P(s).

We consider the following optimal control problem for the
motion of a particle that tracks exactly the composite path
P(s) at minimum time.

Problem 1: Given the system described by equations (7)
along any line segment Yj,j+1 ∈ P(s) and by equation (9)
along any circular arc Cj ∈ P(s), and the cost functional

J(u) =
∫ Sf

0

ds

v(s)
= Tf , (12)

determine the control input u∗[0,Tf ] =
(
u∗

[0,Tf ], ω
∗
[0,Tf ]

)T

,
such that

1) The control u∗[0,Tf ] belongs to the set of admissible
inputs U2.

2) The trajectory (s∗(t), v∗(t), θ∗(t))T generated by the
control u∗[0,Tf ] satisfies

a) The boundary conditions s∗(0) = 0, v∗(0) =
vC1
c =

√
fmax

r ρ1, θ∗(0) =
{
−π

2
, 0,

π

2
, π
}

,

s∗(Tf ) = Sf .
b) The global point-wise inequality constraint (5).

3) The control u∗[0,Tf ] minimizes the cost functional J(u)
given in (12).

The following assumption allows us to work with ex-
tremely short execution horizons (just three cells) for the
minimum-time Problem 1.

Assumption 1. The vehicle reaches each circular arc Cj ∈
P(s) of radius ρj with the corresponding critical speed v

Cj
c =√

fmax
r ρj .

Under Assumption 1, the minimum-time problem along
the circular arcs of the path P(s) can be solved explicitly.
In particular, the vehicle tracks the circular arc of radius
ρj with constant speed, which is equal to the critical speed
v
Cj
c . Hence the speed of the vehicle is point-wise maximized

along the circular arcs of the composite path P(s). By
Bellman’s principle of optimality, the trajectory generated
by applying v̇ = 0 and ω =

√
fmax

r /ρj along the circular
arc Cj , where j = 1, . . . , n + 1, is optimal. Therefore, we
only need to solve the minimum-time problem on each line
segment Yj,j+1 connecting two successive circles Cj and
Cj+1 of radii ρj and ρj+1, with the appropriate bound-
ary conditions. To this end, we formulate the following
minimum-time problem along the line segment Yj,j+1 that
connects the circles Cj and Cj+1.

Problem 2: Let s̄j,1 and s̄j+1,2 be the s-coordinates of the
point of departure from Cj and the point of arrival at Cj+1,2

and t̄j,1,1 and t̄j,2 be the corresponding time instants. Deter-
mine the control input u∗[t̄j,1,t̄j+1,2]

that solves the minimum-
time Problem 1 along P(s) for s ∈ [s̄j,1, s̄j+1,2] with the
boundary conditions v∗(t̄j,1) = v

Cj
c and v∗(t̄j+1,2) = v

Cj+1
c .

In order to derive candidate solutions for this minimum-
time problem, we use an argument based on the point-
wise maximization of the speed along the path [7], [10]. In
particular, a vehicle travelling initially with speed v

Cj
c begins

to accelerate at s = s̄j,1 with maximum acceleration fmax
t

until it reaches the maximum speed vmax at s = sγj
, at time

t = tγj
, where sγj

and tγj
are given by

sγj
= s̄j,1 +

v2
max −

(
v
Cj
c

)2

2fmax
t

, tγj
=

vmax − v
Cj
c

fmax
t

. (13)

The vehicle then maintains maximum speed vmax until
s = sδj

, at time t = tδj
, when it starts to decelerate with

maximum deceleration −fmax
t so that it reaches the circle

Cj+1 with the corresponding critical speed v
Cj+1
c . It follows

readily that

sδj
= s̄j+1,2 −

v2
max −

(
v
Cj
c

)2

2fmax
t

, (14)

tδj
=

−2vmaxv
Cj
c +

(
v
Cj+1
c

)2

+
(
v
Cj
c

)2

2fmax
t vmax

+
(s̄j+1,2 − s̄j,1)

vmax
.

(15)
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After some calculations, we find that the total time T ∗
Yj,j+1

is given by

T ∗
Yj,j+1

=

(
vmax − v

Cj
c

)2

+
(
vmax − v

Cj+1
c

)2

2fmax
t vmax

+
(s̄j+1,2 − s̄j,1)

vmax
. (16)

The elapsed time TYj,j+1 that corresponds to the motion of
the vehicle along the line segment Yj,j+1 can also be given as
a function of the speed v and the path length s. In particular,

TYj,j+1(s, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v(s) − v
Cj
c

fmax
t

, s ∈ [s̄j,1, sγj
),

tγj
+

s − sγj

vmax
, s ∈ [sγj

, sδj
),

tδj
+

vmax − v(s)
fmax

t

, s ∈ [sδj
, s̄j+1,2],

The following proposition formalizes the previous discus-
sion.

Proposition 1: The feedback control law

u∗(s) =

⎧⎪⎨⎪⎩
fmax

t , s ∈ [s̄1, sγj
)

0, s ∈ [sγ1 , sδj
)

−fmax
t , s ∈ [sδj

, s̄2].
(17)

is the minimum time control for Problem 2. Furthermore, the
minimum time T ∗

Yj,j+1
is given by (16).

Proof: The proof follows easily by observing that
the continuously differentiable cost function defined by
J ∗(s, v∗) = T ∗

Yj,j+1
−TYj,j+1(s, v

∗), satisfies the Hamilton-
Jacobi-Bellman equation along the trajectory generated by
the control (17) and also satisfies the HJB boundary condition
on (s̄j+1,2, v

Cj+1
c ).

We can now present the main result of this section.

Proposition 2: The feedback control law

u∗C(s) =

(
0, sign(θ′(s))

√
fmax

r

ρj

)T

, s ∈ [s̄j,2, s̄j,1], (18)

u∗Y(s) = (u∗(s), 0)T , s ∈ [s̄j,1, s̄j+1,2], (19)

for j = 1, . . . , n, where u∗(s) is defined in (17), is the
minimum-time control for the Problem 2 under Assumption
1.

Proof: Under Assumption 1, the result follows imme-
diately by Bellman’s Principle of Optimality.

V. COMPATIBLE SELECTION OF CELL SIZE FOR GIVEN

VEHICLE DYNAMICS

The optimal control law of Proposition 2 is well defined
only if the vehicle can reach any of the circular arcs Cj and
Cj+1 of the total composite path P(s) with the corresponding
critical speed. For the sake of simplicity, in the sequel we
shall investigate only curves that correspond to the boundary
problem where the centers of the circles Cj and Cj+1, are
located at the midpoints of two different cell edges with a
common vertex. This situation corresponds to the case when

the length ΣYj,j+1 = s̄j+1,2− s̄j,1 of the line segment Yj,j+1

is minimum. To this end, and without loss of generality, let
us assume that ρj ≥ ρj+1.

Proposition 3: The optimal feedback control of Proposi-
tion 2 is well defined only if the size � of each cell and the
radii of the circles Cj and Cj+1, for j = 1, . . . , n, satisfy the
following conditions

(i) ρj+1 + Δρj ≤
√

2/4�, (20)

(ii)

√
1
2
�2 − (Δρj)

2 ≥ 1
2fmax

t

(
2v2

max− (21)

fmax
r (2ρj+1 + Δρj)

)
, if tγj

∈ [t̄j , t̄j+1], (22)

(iii)

√
1
2
�2 − (Δρj)

2 ≥ fmax
r Δρj

2fmax
t

(23)

if v(t) < vmax for all t ∈ [t̄j , t̄j+1],

where Δρj = ρj − ρj+1.

Proof: Condition (20) is a well-posedness requirement
for the path planning scheme introduced in Section III so
that Cj and Cj+1 do not overlap. Additionally, the boundary
condition v(s = s̄j+1,2) = v

Cj+1
c , for j = 1, . . . , n is

satisfied for the case when tγj
∈ [t̄j,1, t̄j+1,2] only if sδj

∈
[sγj

, s̄j+1,2]. It follows that

ΣYj,j+1 ≥ 1
2fmax

t

(
2v2

max − fmax
r (2ρj+1 + Δρj)

)
. (24)

Similarly, for the case when v(t) < vmax for all t ∈
[t̄j , t̄j+1] the boundary condition v(s = s̄j+1,2) = v

Cj+1
c

is satisfied only if

ΣYj,j+1 ≥ 1
2fmax

t

((
v
Cj
c

)2

−
(
v
Cj+1
c

)2
)

=
fmax

r Δρj

2fmax
t

.

(25)
With the aid of Fig. 5, we deduce that ΣYj,j+1 =√

1
2�2 − (Δρj)

2
. The desired results follow immediately.

We observe that by increasing the difference Δρj between
two successive circular arcs, the constraints (24) and (25)
become more stringent, in the sense that the cell has to be
sufficiently large.

VI. SIMULATION RESULTS

In order to demonstrate the efficiency of the proposed path
planning scheme, we present simulation results for a non-
trivial planning problem. We assume that the agent operates
inside a supercell comprised of sixteen cells. In each figure
the white cells correspond to free cells and the black ones
to full cells. The grey cells are cells which are not inside the
vehicle’s sensors horizon at the particular time instant. The
exact obstacle distribution inside the supercell is not known
a priori. Instead, it becomes available as the agent proceeds
to the desired configuration. As mentioned in the analysis
of Section III-B, the exploration horizon is just three cells.
In Figs. 6(a)-6(f) we see the path evolution (solid blue line)
as the agent approaches the exit point with the appropriate
orientation. Once a cell is visited by the agent, its color will
remain white for a clearer demonstration of the path followed
by the agent. For simplicity, the size of the circles used in
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�
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2

Fig. 5. By adjusting the radii of the circles Cj and Cj+1 and by
keeping the size of the cell fixed, it may be possible to satisfy the
well-posedness requirement for the optimal policy of Proposition
2.

the simulation results is fixed for all maneuvers. Furthermore,
in order to demonstrate a possible variation of the maneuver
scheme depicted in Fig. 3 we have chosen to place the centers
of the circles at one of the common vertices for any two
adjacent, free cells.

(a) t = t1 (b) t = t2

(c) t = t3 (d) t = t4

(e) t = t8 (f) t = t9

Fig. 6. Path evolution using the appropriate maneuvers.

VII. CONCLUSIONS

In this paper we have presented an on-line trajectory gener-
ation scheme using path and motion primitives, which works

with any rectangular cell-based path planning algorithm.
We showed how the vehicle dynamics affect the geometric
characteristics of the path and vice versa. We have proposed
a geometric scheme that generates a composite path P(s) that
is compatible to the given kinodynamic constraints. Subse-
quently, we solved analytically the minimum-time problem
on this path, thus inducing a suitable time parameterization
along the path P(s) that is compatible with the kinodynamic
constraints. The resulting trajectory can be generated with
minimal effort and can be tracked exactly by the vehicle.

Acknowledgement: This work has been supported in part
by NSF (award no. CMS-0510259) and ARO (award no.
W911NF-05-1-0331). The first author would like to thank
Efstathios Velenis for his valuable comments concerning the
minimum time trajectory generation.

REFERENCES

[1] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, 1957.

[2] H. J. Sussman, “Shortest 3-dimensional path with a prescribed cur-
vature bound,” in Proceedings of 34th IEEE Conference on Decision
and Control, pp. 3306 – 3312, 1995.

[3] J. Reif and H. Wang, “The complexity of the two dimensional
curvature-constrained shortest-path problem,” in Third International
Workshop on Algorithmic Foundation of Robotics (WARF 98), (Hous-
ton, Texas), pp. 49–57, 1998.

[4] P. Jacobs and J. Canny, “Planning smooth paths for mobile robots,”
Nonholonomic Motion Planning, pp. 271–342, 1992.

[5] S. Bereg and D. Kirkpatrick, “Curvature-bounded traversals of narrow
corridors,” in Proceedings of the twenty-first Annual Symposium on
Computational Geometry, (Pisa, Italy), pp. 278–287, 2005.

[6] J. Backer and D. Kirkpatrick, “Finding curvature-constrained paths
that avoid polygonal obstacles,” in SCG ’07, (Gyeongju, South Korea),
pp. 66–73, June 2007.

[7] K. G. Shin and N. D. McKay, “Minimum-time control of robotic
manipulators with geometric path constraints,” IEEE Transactions on
Automatic Control, vol. 30, no. 6, pp. 531–541, 1985.

[8] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control
of robotic manipulators along specified paths,” International Journal
of Robotics Research, vol. 4, no. 3, pp. 3–17, 1985.

[9] J. Canny, A. Rege, and J. Reif, “An exact algorithm for kinody-
namic planning in the plane,” Discrete and Computational Geometry,
pp. 461–482, 1991.

[10] E. Velenis and P. Tsiotras, “Minimum-time travel for a vehicle
with acceleration limits: Theoretical analysis and receding horizon
implementation,” Journal of Optimization Theory and Applications,
vol. 138, no. 2, pp. 275–296, 2008.

[11] E. Frazzoli, M. A. Dahleh, and E. Feron, “A hybrid control architecture
for aggressive maneuvering of autonomous helicopters,” in Proceed-
ings of 38th IEEE Conference on Decision and Control, (Phoenix,
Arizona), pp. 2471–2476, December 7-10 1999.

[12] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE Transactions
on Robotics, vol. 21, pp. 1077–1091, December 2005.

[13] P. Tsiotras and E. Bakolas, “A hierarchical on-line path-planning
scheme using wavelets,” in Proceedings of the European Control
Conference, (Kos, Greece), pp. 2806–2812, July 2–5 2007.

[14] E. Bakolas and P. Tsiotras, “Multiresolution path planning using sector
decompositions compatible to on-board sensor data,” in Proceedings of
the AIAA Guidance, Navigation and Control Conference and Exhibit,
(Honolulu, HI), Aug. 18–21 2008. AIAA Paper 2008-7238.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC17.4

3730


