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Abstract— The classical water filling problem is concerned
with optimally assigning powers over n independent channels
so as to maximize the total transmitted throughput. If each
channel is associated with another mobile then it is natural
to consider also the problem of fair assignment and to study
tradeoffs between fairness and optimality. The object which is
allocated is the transmission power, and we are interested in
assigning it so as to obtain fairness between either one of three
resulting performance measures: the signal to noise ratio, a
shifted version of it, or the Shannon capacity. We suggest the
generalized α-fairness concept. We obtain explicit solutions for
and insight on the fair assignment corresponding to the various
performance measures. For the case of a large number of users
we consider a variational formulation of the problem. The
variational formulation allows us to design distributed resource
allocation algorithms.

I. INTRODUCTION

Fairness concepts have been playing a central role in

networking. In the ATM standards [13], the maxmin fairness

and its weighted versions appear as the way to allocate

throughput to connections using the ABR (Available Bit

Rate) best effort service. The proportional fairness has

been introduced in [6], [7]. Later it was implemented in

wireless communications (e.g. in the Qualcomm High Data

Rate (HDR) scheduler) as a way to allocate throughputs

(through time slots); it has also been shown to correspond

to the way that some versions of the TCP Internet Protocol

share bottleneck capacities [10]. A unifying mathematical

formulation to fair throughput assignment (which we call

the “α-fairness”) has been proposed in [11]; the “degree” of

fairness is expressed by a parameter α defined on the whole

half line [0,∞); it controls the tradeoff between efficiency

(total throughput maximization) on one hand, and fairness,

on the other. In particular, the case α → ∞ corresponds to

the maxmin fairness (that can be considered to be the most

fair allocation), the case α = 2 corresponds to the delay

minimization, the case α → 1 corresponds to the proportional

fair assignment and the case α = 0 corresponds to the

throughput maximization (that can be considered to be the

most efficient).

The above notions have been defined in the telecommuni-

cation context for splitting a given available capacity between

connections. Fairness can, however, be defined with respect

to a utility function f of the resource that is allocated (e.g.
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throughput). Moreover, the set of possible allocations may

be more complex than those corresponding to the split of

a fixed quantity. As an example, if we split the throughput

of a CDMA link, then the sum of throughputs may itself

be a function of the allocation. Indeed, when more than one

mobile shares a radio link then the interference adds to the

noise at each terminal thus decreasing the SNR (Signal to

Noise Ratio) and hence the throughput. This more general

context of fair resource allocation has been introduced in the

game theory literature already in [12] as the Nash Bargaining

concept (of which the proportional fairness is a special case).

It was extended to the context of α-fairness in [14].

We investigate and compare in this paper generalized α-

fairness resource allocations in downlink cellular networks,

related to the α-fairness applied to the SNR, to the shifted

SNR and to the throughput. All three can be viewed as

utilities (of the power assignments) that we wish to assign

fairly. We study and compare the properties of the vari-

ous fairness criteria. We show that in all three cases the

fairness improves monotonously as α goes to infinity. The

generalized α-fairness applied to SNR and the shifted SNR

admit explicit solutions. The α-fair sharing of the shifted

SNR incorporates as particular cases: the SNR maximization

(α = 0), the Shannon capacity maximization (α = 1) and the

max-min fairness (α → 0).

The paper is organized in two parts. In the first part

we formulate the generalized α-fair resource allocations as

convex optimization problems. It turns out that many of

these optimization problems have explicit solutions. In the

second part, using the law of large numbers, we approximate

the generalized α-fair resource allocation problems for the

case of many users by variational problems. The variational

formulation allows us to design distributed power control

algorithms. The example of the Rayleigh fading is analyzed

in details.

II. DISCRETE MODEL

We consider the following allocation problem. There is a

single decision maker (the Base Station) that decides how

to allocate the power between n different users. We further

allow there to be a weight of πi related to the resource of

user i. There is a gain parameter hi related to the channel

gain to mobile i.

Possible interpretations:

(i) The Base Station (BS) transmits to the mobiles si-

multaneously using independent channels, e.g. different

directional antennas or frequency bands (e.g. as in

OFDM, where one should assign different power levels
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for different sub-carriers [16]). In that case we may take

πi = 1/n for all i.

(ii) The BS transmits to the mobiles using a general periodic

polling order. The BS spends a fraction πi of a cycle to

transmit to mobile i. There is a hard constraint on the

total energy available during the cycle. The problem

is how to assign the available transmission energy per

cycle among the mobiles.

The strategy of the decision maker is x = (x1, . . . ,xn) such

that xi ≥ 0 for i ∈ [1,n] and ∑
n
i=1 πixi = x̄, where x̄ > 0 and

πi ≥ 0 for i ∈ [1,n]. The element xi corresponds to a power

level assigned to the i-th user.

As a payoff to the decision maker we take the generalized

α-fairness utility function (α ∈ [0,∞)):

v(x) =
1

1−α

n

∑
i=1

πi ( fi(xi))
1−α , for α 6= 1, (1)

and

v(x) :=
n

∑
i=1

πi log( fi(xi)), for α = 1, (2)

where fi is concave and increasing function in [0,∞).
Note that even though the optimal solution of (1) con-

verges to the optimal solution of (2) when α → 1, the

objective function is discontinuous at α = 1. If one wants to

deal with an objective function continuous in α , we suggest

to make the following small modification:

v(x) :=
1

1−α

n

∑
i=1

πi

(

( fi(xi))
1−α −1

)

.

There is the following interpretation to the above payoff:

the decision maker wants to share fairly (in the sense of

α-fairness) some function of the resource x. For example,

in the context of the downlink power allocation problem in

wireless networks, we could wish to share fairly the utility

of a throughput instead of sharing fairly the available power.

Is the theory that applies to sharing fairly x applicable to

sharing f (x)?
In [6], [7] and in [11], a fixed amount C of resource is

shared. The sum of shares does not depend on the way the

resource is shared. In contrast, unless f is linear, the sum

∑
N
n=1 fn(xn) will no more be constant.

If f is concave, then the set of f (x) obtained over all x

such that the sum of its components is C (or is less than or

equal to C) is a convex set. But, more generally, if x belongs

to a convex set X then the set F := { f (x) : x ∈X} is a convex

set. Thus we can view the fair allocation of the utility f (x)
over X as the fair allocation of f over F, if f is concave.

We note that if f is strictly concave and X is convex then

for each α , there is a unique α-fair assignment.

In the present work we shall consider the following three

assignments for fi(x):

log(1+hix/N0
i ), hix/N0

i , 1+hix/N0
i ,

where hi is the fading coefficient for the sub-carrier i and

N0
i is the level of the background noise in the sub-carrier i.

Usually it is supposed that the background noise in all the

sub-carriers is the same, so in that case N0
i = N0.

The first choice fi(x) = log(1 + hix/N0
i ) corresponds to

the α-fair assignment of throughputs in a downlink CDMA

system. The second choice fi(x) = hix/N0
i corresponds to the

α-fair assignment of SNRs. In the case fi(x) = 1 + hix/N0
i

we assign the shifted SNR according to the α-fairness. The

latter choice allows us to treat the SNR maximization, the

throughput maximization and the maxmin fairness as partic-

ular cases of a unified spectrum of optimization problems.

First we study each criterion separately and then we

discuss the relation among them.

A. General results

First we note that the first and second assignments cor-

respond to the maximization of the following objective

function

v(x) =
1

1−α

n

∑
i=1

πiU
1−α(xihi/Ni),

subject to
n

∑
i=1

πixi = x̄. (3)

and the third assignment corresponds to a shifted version

v(x) =
1

1−α

n

∑
i=1

πi(U
1−α(xihi/Ni)−1),

This change by shift influences only the payoff but not the

optimal strategy. For our three cases, we have U(τ) = log(1+
τ),τ,1+τ . So, U(τ) is either linear in τ; or U(τ) is strictly

increasing and positive in (0,∞), U ′(τ) is strictly decreasing,

U(0)=0, U(+∞) = +∞ and U ′(0+) < +∞.

Define the Lagrangian

Lω(x) :=
1

1−α

n

∑
i=1

πiU(xihi/Ni)
1−α +ω(x̄−

n

∑
i=1

πixi).

Since the optimization problem is convex, the α-fair as-

signment is obtained by taking the derivative of the La-

grangian Lω . Thus, the optimal strategy has the form xi(ω) =
T (ω,hi/N0

i ):
(a) if U is nonlinear and α > 0 then T (ω,ξ ) with ξ > 0 is

the positive root of the equation F(x,ξ ) = ω where F(x,ξ ) =
ξU ′(xξ )/Uα(xξ ) which exists and unique since F(0+,ξ ) =
+∞, F(+∞,ξ ) = 0 and F(·,ξ ) is strictly decreasing. So,

T (ω,ξ ) =
1

ξ
(U ′/Uα)(−1)(ω/ξ ). (4)

The case α = 0 is a particular one since F(0+,ξ ) < ∞. In

this case, we have

T (ω,ξ ) =
1

ξ

[

(U ′)(−1)(ω/ξ )
]

+
.

(b) if U is linear then for U(0) > 0, T (ω,ξ ) has the form:

T (ω,ξ ) =
1

ξ

[

(U ′/Uα)(−1)(ω/ξ )
]

+
. (5)

If U(0) = 0 then T (ω,ξ ) is given by (4).
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The Lagrangian multiplier ω can be found as the unique

positive root of the following equation

H(ω) :=
n

∑
i=1

πiT (ω,hi/N0
i ) = x̄.

B. Alpha-fair sharing of throughput

The α-fair sharing of the throughput corresponds to the

maximization of the following objective function

v(x) =
1

1−α

n

∑
i=1

πi log1−α(1+hixi/N0
i ),

subject to (3). Thus, the optimal strategy has the form

xi(ω) = T (ω,hi/N0
i ) where T (ω,ξ ) with ξ > 0 is the unique

positive root of the equation:

F(x,ξ ) :=
ξ

1+ xξ

1

logα(1+ xξ )
= ω,

where ω can be found as the unique positive root of the

following equation

H(ω) :=
n

∑
i=1

πiT (ω,hi/N0
i ) = x̄.

The case α = 0 corresponds to the water filling problem.

Namely, the optimal strategy takes the form xi(ω) = [1/ω −
N0

i /hi]+ and the optimal ω = ω∗ is defined as the unique

root of the equation

n

∑
i=1

πi[1/ω −N0
i /hi]+ = x̄.

C. Alpha-fair sharing of SNR

The SNR α-fair sharing corresponds to the maximization

of the following objective function

v(x) =
1

1−α

n

∑
i=1

πi(hixi/N0
i )1−α ,

subject to (3). Thus, the optimal strategy is given as follows:

xi = x̄
(hi/N0

i )1/α−1

∑
n
j=1 π j(h j/N0

j )
1/α−1

.

For α → 1 we get xi = x̄. It is interesting to note that in the

case of the proportional fair assignment of SNR the optimal

solution does not depend on the ratios hi/N0
i . The α-fair

assignment gives strictly positive power for all α > 0. For

α = 0, only mobiles with maximum hi/N0
i receive positive

assignment. For α → ∞ we obtain

xi = x̄
N0

i /hi

∑
n
j=1(π jN

0
j /h j)

,

so that for all i the same value of SNR is obtained:

SNRi =
x̄

∑
n
j=1(π jN

0
j /h j)

.

We note that the ratio

SNRi

SNR j

= a1/α with a :=
hi/N0

i

h j/N0
j

,

is monotonuously decreasing to one if a > 1 and it is

monotonuously increasing to one if a < 1. Therefore, we can

say that there is monotone improvement of fairness when α
increases to infinity.

D. Alpha-fair sharing of shifted SNR

In the case of the shifted SNR α-fair sharing, we maximize

the following objective function

v(x) =
1

1−α

n

∑
i=1

πi

(

(

1+
hixi

N0
i

)1−α

−1

)

subject to (3). In two important particular subcases the

objective corresponds to the SNR maximization, α = 0, and

the throughput (Shannon capacity) maximization, α = 1.

Namely, we have

v(x) =
n

∑
i=1

πi ln

(

1+
hixi

N0
i

)

for α = 1

and

v(x) =
n

∑
i=1

πi

hixi

N0
i

for α = 0.

In addition to the above observation note that the definition

of v(·) is closely related to the definition of Tsallis entropy

[15]. The Tsallis entropy is defined for α > 0 as follows

H(x) =
1

1−α

(

n

∑
i=1

x1−α
i −1

)

and H(x) reduces to Shannon entropy for α → 1.

When α > 0, the optimal solution has the form x(ω∗) =
(x1(ω

∗), . . . ,xn(ω
∗)) where

xi(ω) =
N0

i

hi

[

(

hi

ωN0
i

)1/α

−1

]

+

for i ∈ [1,n]

and ω∗ is the unique root of the equation

H(ω) :=
n

∑
i=1

πixi(ω) = x̄.

When α = 0, the utility function is linear in x, and then the

problem has the solution as in the case of the SNR α-fair

sharing with α = 0. Namely, only mobiles with maximal

hi/N0
i receive positive assignment. It is worthy to note that

the solution is not unique if there are a few users with the

same maximal ratios hi/N0
i .

Now we investigate the case when α > 0. Without loss of

generality, we can assume that the users are arranged by the

following ratios in the decreasing order:

h1/N0
1 ≤ h2/N0

2 ≤ . . . ≤ hn/N0
n .

Intuitively, we expect that the decision maker gives a higher

power level to a user with a larger index. We also note that

some users for some values of α can be assigned zero power

level. In particular, this can happen if the decision maker

uses the Shannon capacity (α = 1) as the objective function.

This provides a further motivation to use the generalized

α-fairness criterion with larger values of α . Thus, we are
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interested to determine which users obtain zero power level

for a given value of α . For this purpose developing approach

suggested in [1] we provide an explicit solution to the shifted

SNR α-fair sharing problem. Namely, we can prove that the

solution to the shifted SNR α-fair sharing problem is given

by

x∗i =































x̄+
n

∑
t=k

πt

N0
t

ht

(

1−

(

N0
i ht

hiN
0
t

)1/α
)

n

∑
t=k

πt

(

N0
i ht

hiN
0
t

)1/α−1
, i ∈ [k,n],

0, otherwise,

(6)

where k can be found from the conditions

ϕk < x̄ ≤ ϕk−1, (7)

where

ϕt =
n

∑
i=t

πi

N0
i

hi

[

(

N0
t ht

N0
i hi

)1/α

−1

]

for t ∈ [1,n], ϕ0 = ∞. (8)

We can consider ϕt as a function ϕt(α) on α . It is clear

that ϕt(α) is decreasing on α and

ϕt(0) = ∞ and ϕt(∞) = 0.

Thus, for each t ∈ [1,n] there is unique positive αt such

that ϕt(αt) = x̄ and 0 = α1 < α2 < .. . . Then, we have

the following result establishing when the optimal strategy

assigns non-zero power level to k users.

Proposition 1: For α-utility function with α ∈ [αk,αk+1),
k ∈ [1,n−1] there are k users with non-zero power level. If

α > αn all users obtain non-zero power levels.

The next proposition describes the limiting case when α →
∞.

Proposition 2: If α → ∞ then the optimal strategy tends

to (x∗1, . . . ,x
∗
n) where

x∗i =
x̄N0

i

∑
n
t=1 πtN

0
t

for i ∈ [1,n].

Proposition 2 implies that the SNRs x∗i /N0
i have the same

value for each user i. In turn the latter implies that the

Shannon capacities of the users are equal. Besides, since

the users are arranged in increasing order, the components

of the optimal strategy are also arranged in increasing order.

Recall that when α tends to zero the elements of the optimal

solution are all zero except the elements corresponding to the

minimal noise level and for small α the components of the

optimal strategy are arranged in decreasing order. Therefore

by changing parameter α we can tune the α-utility function

to represent a large variety of criteria from complete fairness

to pure efficiency maximization (which results in complete

unfairness).

E. Numerical example for discrete model

Let us demonstrate the closed form approach by a numer-

ical example. Suppose that hi = i for i = 1, ...,n and N0
i = 1.

And let πi = Cκ i−1 with κ > 0 and C = (κ − 1)/(κn − 1).
Assume that x̄ = 5, n = 5, κ = 0.7 and α = 0.5. Then,

as the first step we calculate ϕt for t ∈ [1,5]. In our case

we get (13.298, 1.979, 0.422, 0.075, 0). Then, by (7),

k = 2. Thus, by (6), the optimal water-filling strategy is

x∗ = (0,0.400,1.017,1.551,2.051) with payoff 10.419.

Now, we will demonstrate how the optimal strategy de-

pends on α . Namely, let α = 0,0.5, ...,2.5,3. Then, the

optimal strategies are given in Figure 1. Thus, the optimal

strategies with change of α continuously changes from (0,0,

0, 0, 7.510) with payoff equals 25 for α = 0 through (0.491,

0.723, 0.756, 0.753, 0.741) with payoff equals 5.546 for

α = 1.4 to (1.095, 0.547, 0.365, 0.274, 0.219) with zero

payoff for α = ∞. For the Shannon capacity the optimal

strategy is (0.244, 0.744, 0.911, 0.994, 1.044) with payoff

5.952.

Also, we calculate that α1 = 0, α2 = 0.312, α3 = 0.519,

α4 = 0.684, α5 = 0.821. Thus, if we prefer that all the sub-

carriers were in use we have to set α to a value larger than

0.821.

Fig. 1. Dependence of the optimal strategies on α

F. Relation among different alpha-fair allocations

Let us discuss the relation among different α-fair allo-

cations. In the next proposition we discuss the important

particular cases: α = 0, α → 1, α = 2 and α → ∞.

Proposition 3: (i) For α = 0, with the function fi(x) =
log(1+hix/N0

i ), the throughput (Shannon capacity) is max-

imized. With the the functions fi(x) = hix/N0
i and fi(x) =

1+hix/N0
i , SNR is maximized.

(ii) For α → 1, with the function fi(x) = log(1+hix/N0
i ),

the throughputs are assigned according to the proportional

fair paradigm. With the function fi(x) = hix/N0
i , the SNRs
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are assigned proportionally fair. And with fi(x) = 1+hix/N0
i ,

the throughput is maximized.

(iii) For α = 2, with the function fi(x) = log(1+hix/N0
i )

the delay is minimized.

(iv) For α → ∞, the allocation under all three utilities is

the same and corresponds to the maxmin fair assignment of

SNRs.

We note that

log(x) < log(1+ x) < x.

Moreover, for the left hand bound becomes tight for large

x and the right hand side becomes tight for small x. This

suggests that maximizing the sum of the Shannon capacity is

equivalent to maximizing the sum of SNR at a regime of low

SNRs, and is equivalent to the proportional fair assignment

of the SNRs at the regime of large SNRs.

Curiously enough, in the case of the SNR proportional fair

sharing the optimal allocation does not depend on the ratios

hi/N0
i .

Next, for each α-fair allocation we plot Jain’s fairness

index

J =
(∑n

i=1 SNRi)
2

n(∑n
i=1 SNR2

i )

as a function of α (see Figure 2). We calculate the Jain’s

index with respect to SNRs.

Fig. 2. Jain’s fairness index as a function of α .

We can see that the Jain’s fairness index improves

monotonously in the all three cases of the generalized α-

fair resource allocation.

Both SNR α-fair sharing and the shifted SNR α-fair shar-

ing have the same limiting cases. If α → 0, they correspond

to the SNR maximization, and if α → ∞ they correspond to

maxmin fair sharing. However, as one can see from Figure 2,

the shifted SNR α-fair sharing provides a finer tuned scale

of the resource allocations.

III. VARIATIONAL MODEL

Consider the case when πi = 1/n for i = 1, ...,n, the gain

coefficients hi are i.i.d. random variables distributed with the

density function σ(·), N0
i = N0 (without loss of generality,

we take N0 = 1), and the number of users is large. Then,

according to the law of large numbers, the objective

v(x) =
1

1−α

n

∑
i=1

πi

(

( fi(xi))
1−α −1

)

,

can be replaced by the expectation

1

1−α
E{( fi(xi))

1−α −1} =

1

1−α

∫ ∞

0
σ(h)[( f (hx(h)))1−α −1]dh.

The constraint
n

∑
i=1

πnxn = x̄

can be respectively replaced by
∫ ∞

0
σ(h)x(h)dh = x̄. (9)

Now the optimal strategy depends on the gain coefficient

h. This allows us to design distributed algorithms that do not

require the knowledge of the gains for all the users. We also

do not need anymore to know the number of mobiles.

A. Alpha-fair sharing of throughput

In the case of the variational version of the throughput α-

fair sharing, we maximize the following objective function

v(x) =
1

1−α

∫ ∞

0
σ(h) log1−α(1+hx(h))dh,

subject to (9).

The problem has the unique optimal solution for positive

α and it is of the form x(h,ω∗) where x(h,ω) is the unique

positive root of the equation:

F(x,h) :=
h

1+ xh

1

logα(1+ xh)
= ω, (10)

and ω∗ is the unique root of the equation
∫ ∞

0
σ(h)x(h,ω) = x̄.

B. Alpha-fair sharing of SNR

In the case of the variational version of SNR α-fair

sharing, we maximize the following objective function

v(x) =
1

1−α

∫ ∞

0
σ(h)(hx(h))1−α

dh.

The problem has the unique optimal solution for positive

α given as follows:

x(h) = h1/α−1 x̄
∫ ∞

0
σ(t)t1/α−1 dt

. (11)

In the important particular case when h is distributed accord-

ing to the Rayleigh’s law σ(t) = κ exp(−κt) with κ > 0, we

have

x(h) = h1−1/α x̄κ1−1/α

Γ(1/α)
.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA16.4

2418



C. Alpha-fair sharing of shifted SNR

In the case of the variational version of α-fair sharing of

shifted SNR, we maximize the following objective function

v(x) =
1

1−α

∫ ∞

0
σ(h)

(

(1+hx(h))1−α −1
)

dh,

The problem has the unique optimal solution for positive α
and it is of the form x(h,ω∗) where

x(h,ω∗) =
1

h

[

(

h

ω∗

)1/α

−1

]

+

for h ∈ [0,∞) (12)

and ω∗ is the unique root of the equation

H(ω) :=
∫ ∞

ω

σ(h)

h

[

(

h

ω

)1/α

−1

]

dh = x̄. (13)

Let us now establish some properties of the optimal

solution. We will show that the optimal strategy has some

monotonous property, namely, that for small α it is increas-

ing function, but for large α there is a switching point

between increasing and decreasing branches of the optimal

strategy and this switching point is very closely related to

the base of the natural logarithm.

Proposition 4: The optimal strategy has the following mo-

notonous properties:

(a) if α ≤ 1 then the optimal strategy x(h,ω) is increasing

on h in [ω,∞),
(b) α > 1 then the optimal strategy x(h,ω) is increasing

on h in [ω,zα ω) and strictly decreasing in [ωzα ,∞), where

zα = (α/(α −1))α .

This optimal strategy has the following very nice property

connecting limit switching point and the base of the natural

logarithm. Namely, zα → e as α → ∞.

Proposition 5: For any positive ω one can find an α(ω)
utility function such that the optimal strategy will employ all

the sub-carries from the interval (ω,∞) and will not employ

any the sub-carries from the interval [0,ω].

D. Distributed approach for alpha-fair sharing allocations

We note that in the variational model the optimal strategy

depends only on the parameter α , the gain coefficient h,

the level of the background noise N0 and the total available

power resource x̄. This observation allows us to design

distributed algorithms for the implementation of the general-

ized α-fair resource allocation. There is a particular need

for distributed algorithms in Ad Hoc, Sensor and Mesh

networks, see e.g. [2], [4], [9], [8]. We suggest here two

variants of the distributed algorithm. In the first variant, we

assume that the nodes are capable of arithmetic operation

and the Base Station trusts them so that it conveys them the

total available power resource x̄ and the parameter α . In this

variant the nodes themselves compute the optimal strategy

either by solving equation (10) or by using formula (11) or

(12) depending on the choice of the objective function. In

the second variant, the Base Station computes the optimal

strategy as a function of the gain coefficient and distributes

this strategy to all nodes. The advantages of the second

variant is that the Base Station is not obliged to disclose

the value of the parameter α and the total available power

resource and the nodes do not need to perform arithmetic

operations for the computation of the optimal strategy.

IV. CONCLUSIONS

The classical water filling problem is concerned with

optimally assigning powers over n independent channels so

as to maximize the total transmitted throughput. If each

channel is associated with another mobile then it is natural

to consider also the problem of fair assignment and study

tradeoffs between fairness and optimality. The object which

is allocated is the transmission power, and we are interested

in assigning it so as to obtain fairness between either one

of three resulting performance measures: the signal to noise

ratio, a shifted version of it, or the Shannon capacity.

We suggest the generalized α-fairness concept. By means

of parameter α it is possible to perform a spectrum of

fair allocations resolving the tradeoff between fairness and

efficiency. Furthermore, we obtain explicit solutions for and

insight on the fair assignment corresponding to the various

performance measures. For the case of large number of users

we suggest variational formulations, which lead to the design

of distributed algorithms.
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