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Abstract— Given an initial set of a nonlinear system with
uncertain parameters and inputs, the set of states that can
possibly be reached is computed. The approach is based on
local linearizations of the nonlinear system, while linearization
errors are considered by Lagrange remainders. These errors are
added as uncertain inputs, such that the reachable set of the
locally linearized system encloses the one of the original system.
The linearization error is controlled by splitting of reachable
sets. Reachable sets are represented by zonotopes, allowing an
efficient computation in relatively high-dimensional space.

I. INTRODUCTION

In order to ensure reliability and safety of technical

systems, one has to ensure that the system works as specified

in all operating conditions. A possibility to find system

failures is given by numeric simulation with changing initial

conditions, inputs, and disturbances. The test by simulation

can be improved by a guided search for simulation runs that

violate the system, see e.g. [1], [2]. The sets of violating or

dangerous states are also referred to as the sets of unsafe

states. A disadvantage of the simulation based techniques is

that they can only conclude that a system (with continuous

or hybrid dynamics) is unsafe, but safety cannot be guar-

anteed. This is because the set of initial states, inputs and

disturbances is continuous, hence infinitely many executions

of the system exist, which cannot be completely checked.

In contrast to simulation techniques, reachability analysis

allows to guarantee safety. A reachable set is the set of

states that can be reached by a system for given sets of

initial states, inputs, and disturbances. If the reachable set

does not intersect with the set of unsafe states, safety can be

guaranteed. In this work, reachable sets are computed for

nonlinear continuous systems. The extension to nonlinear

hybrid systems (i.e. systems with combined discrete and

continuous dynamics, see e.g. [3]) can be accomplished by

methods presented in [4], [5].

It has not yet been shown that the computation of exact

reachable sets for nonlinear continuous systems is possible

[6]. Approximations of reachable sets for nonlinear systems

have been developed e.g. in [7], [8] - they only allow to

conclude safety if an over-approximation of the reachable set

can be guaranteed. This is because one can conclude, that

the exact reachable set does not intersect any unsafe set, if

the over-approximated reachable set does not. A method that

does not explicitly compute reachable sets but leads to over-

approximated bounds on reachable sets are barrier certificates
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[9]. The explicit computation of over-approximated reachable

sets has been performed for polynomial nonlinear systems

using Bézier control nets in [10] and for general nonlinear

systems using global optimization techniques and face lifting

in [11], [12] respectively. These approaches compute the

reachable sets based on the dynamics of the original non-

linear system.

Another research direction is the computation of reachable

sets based on abstracted models. The most common models

used to abstract nonlinear dynamics, are systems with con-

stant bounds on the derivative (ẋ ∈ [a, a], a ≤ a ∈ Rn) and

linear systems (ẋ ∈ Ax + U, A ∈ Rn×n, x ∈ Rn, U ⊂ Rn).

In order to abstract the nonlinear dynamics, the state space

of the system is usually partitioned into regions in which

the nonlinear system is locally abstracted. The partition of

the state space into regions can be performed on-the-fly

depending on the geometry of the reachable set or in advance

with elements of fixed structure (e.g. by hyperrectangles of

fixed size and orientation). The disadvantage of the fixed

partitioning is that it usually imposes stronger limits on

the dimension n of the state space which can be handled:

e.g., a partition of w segments for each dimension results

into wn regions. Basic work for the reachability analysis

using models of constant bounds on the derivatives has been

performed e.g. in [13], [14] which has been advanced in [15]

using on-the-fly partitioning. Abstraction to linear systems

using a fixed partition has been investigated in [16]. For the

abstraction to linear systems using on-the-fly partitioning, the

first approach known by the authors, is described in [17].

In this work, reachable sets of nonlinear systems are also

computed by on-the-fly abstraction to linear systems. How-

ever, this approach differs in the following points from [17]:

• Intervals of the linearization error are computed sepa-

rately for each dimension by evaluating the Lagrange

remainder of the linearized system. In [17], the infinity

norm of the linearization error is computed which has to

be applied to all dimensions equally, resulting in a more

conservative reachable set. The difference is evident for

systems where sensitive inputs1 have small linearization

errors compared to other insensitive inputs. Applying

the infinity norm also to the sensitive inputs, results in

significant over-approximations of the reachable sets.

• Reachable sets of the linearized system are represented

by zonotopes instead of polytopes. Zonotopes have

shown to be a more efficient representation for the

1Small perturbations of the input result in large perturbations of the state
derivatives.
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reachability analysis of linear systems, see [18]. Zono-

topes are not closed under intersection and convex hull

computation, resulting in a more conservative computa-

tions of reachable sets, particularly for hybrid systems.

However, it is believed that these disadvantages can

be overcompensated by the efficient representation of

zonotopes.

• Uncertain parameters in the system model are consid-

ered.

• The linearization error is limited by splitting reachable

sets.

II. OBJECTIVE

The objective is to compute the over-approximated reach-

able set of a nonlinear system with uncertain initial states,

parameters, and inputs. The initial state x(0) can take values

from a set X0 ⊂ Rn. The dynamics depends on a set of

model parameters pi(t), bounded by an interval I = [c, d]
with c < d and c, d ∈ R. A parameter pi(t) can vary over

time t within the specified intervals, such that a vector p
of all parameters stays within an interval hull P ∈ I o and

o is the number of parameters. Note that each parameter

may vary independently. The input u takes values from a

set U ⊂ Rm. The evolution of the state x is defined by the

following differential equation:

ẋ = f(x(t), u(t), p(t)), (1)

x(0) ∈ X0 ⊂ Rn, p(t) ∈ P ⊂ Io, u(t) ∈ U ⊂ Rm

where u(t) and p(t) are Lipschitz continuous. The set of

reachable states of (1) at a time point t = r is defined as:

Definition 1: The exact reachable set Re(r) that can be

reached starting from X0 (for t = 0) at time t = r for

p ∈ P and u ∈ U is:

Re(r) = {x|x(t) is a solution of (1), t = r}

An over-approximation of the reachable set at time r is

defined as R(r) ⊇ Re(r). The over-approximated set for

the complete time interval t ∈ [0, r] is defined as the union

of all R(t) for t ∈ [0, r]: R([0, r]) :=
⋃

t∈[0,r] R(t).

III. OVERVIEW OF REACHABLE SET COMPUTATIONS

A brief description of the overall concept of computing

R([0, i · r]) is shown in Fig. 1 where i ∈ N+ is the time

step and r ∈ R+ is the time increment. The reachable set is

iteratively computed for smaller time intervals t ∈ [(k − 1) ·
r, k · r] where k ∈ N+, such that R([0, i · r]) is obtained by

their union: R([0, i · r]) =
⋃

k=1...i R([(k − 1) · r, k · r]).
The reachable sets R(r) and R([0, r]) for the first time step

(k = 1) are computed based on the initial set R(0). First, the

nonlinear system ẋ = f(x, u, p) is linearized on-the-fly to a

system of the form ẋ ∈ flin(x, u, p) = A(p)∆x + B(p)u +
d(p) + L. The matrices A(p), B(p) are matrices of proper

dimension, depending on the parameter vector p, and d(p)
is a vector depending on p. The set L is the set of possible

linearization errors for t ∈ [(k − 1) · r, k · r], which has to

ensure f(x, u, p) ∈ flin(x, u, p), such that the reachable set

is enclosed by the approximation of the linearized system.

Initial set: R(0), time step: k = 1

Linearize System

Compute reachable set Rlin(k · r),
Rlin([(k − 1) · r, k · r]) without linearization error

Obtain set of admissible linearization errors L̄

Compute set of linearization errors L
based on Rlin([(k − 1) · r, k · r]) and L̄

L ⊆ L̄ ?

Split R((k − 1) · r) into two
sets and repeat reachable

set computation

Calculate reachable set Rerr due to
linearization error L

Compute R(k · r) = Rlin(k · r) + Rerr and
R([(k−1)·r, k·r]) = Rlin([(k−1)·r, k·r])+Rerr

Cancellation of redundant reachable sets

Next initial set: R(k · r), time step: k := k + 1

Yes

No

Fig. 1. Computation of reachable sets - overview.

In contrast to the reachable sets, the linearization error is

modeled as a multi-dimensional interval L ∈ In in analogy

to the set of parameters.

In order to compute L, the reachable set R lin(k · r) and

Rlin([(k − 1) · r, k · r]) of flin(x, u, p) without linearization

error (L = 0) is computed first. Due to the superposition

principle of linear systems, the reachable set Rerr due to

the set of linearization errors L can be computed separately

and added to Rlin later. In order to restrict the expansion of

the reachable set due to the linearization error, a set R̄err in

which Rerr has to be enclosed is defined. This set allows to

compute the set L̄ of admissible linearization errors obtained

from the linearized system dynamics flin(x, u, p).
Based on the admissible reachable set Radm([(k − 1) · r, k ·
r]) := Rlin([(k−1) ·r, k ·r])+R̄err, obtained by Minkowski

addition2 of Rlin and R̄err, the set of linearization errors L
can be computed. In case that L � L̄, the linearization error

is not admissible, requiring to split the initial reachable set

R((k−1) · r) of the current time interval into two reachable

sets. This implies to perform the reachable set computation

for both of the newly obtained sets once more. Hence, the

number of reachable set segments for this time interval has

increased by one. If L ⊆ L̄, the linearization error is accepted

and the reachable set is obtained by superposition of the

2Minkowski addition of two sets A, B: A+B = {a+ b|a ∈ A, b ∈ B}

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA08.5

4043



reachable set without linearization error and the one due to

the linearization error: R(k · r) = Rlin(k · r) + Rerr and

R([(k − 1) · r, k · r]) = Rlin([(k − 1) · r, k · r]) + Rerr.

It remains to increase the time step (k := k + 1) and

cancel redundant reachable sets that are already covered

by previously computed reachable sets, which decreases the

number of reachable sets that have to be considered in the

next time interval. The initial set for the next time step is

R(k · r).
Besides the splitting of the reachable set in the state space,

it is also possible to split the input and parameter sets in

an analogous way. However, splitting of the reachable set

is usually most effective as the linearization error is mostly

dominated by the uncertainty of the state, and not by input

or parameter uncertainties.

IV. REACHABLE SET COMPUTATION OF THE

LINEARIZED SYSTEM

This section describes the different steps of the lineariza-

tion procedure in more detail, and explains the basics for the

computation of reachable sets using zonotopes. The local

linearization of the nonlinear system (1) is performed by

a Taylor series. In order to introduce a concise notation,

the state and input vector are combined to a new vector

zT =
[
xT , uT

]
. This allows to formulate a Taylor series

of the nonlinear system dynamics (1) for a p ∈ P as:

ẋi = fi(z, p) =fi(z
∗, p) +

∂fi(z, p)

∂z

∣
∣
∣
z=z∗

(z − z∗)+

1

2
(z − z∗)T ∂2fi(z, p)

∂z2
)
∣
∣
∣
z=z∗

(z − z∗) + . . .

The infinite Taylor series can be over-approximated by a first

order Taylor series and its Lagrange remainder:

ẋi ∈ fi(z
∗, p) +

∂fi(z, p)

∂z

∣
∣
∣
z=z∗

(z − z∗)
︸ ︷︷ ︸

1st order Taylor series

+

1

2
(z − z∗)T ∂2fi(ξ, p)

∂z2
(z − z∗)

︸ ︷︷ ︸

Lagrange remainderLi

.

(2)

Let z be restricted to a convex set and let z, z∗ be fixed,

then the Lagrange remainder L can take any value that

results from ξ ∈ {z∗ + α(z − z∗)|α ∈ [0, 1]}, see [19]. The

computation of the set L resulting from the set of possible

values of z and ξ is presented in Sec. V. In order to obtain

the standard notation of the linearized system, the z vector

is separated into the state vector x and the input vector u.

ẋ ∈ f(z∗, p) +
∂f(z, p)

∂z

∣
∣
∣
z=z∗

(z − z∗) + L

= A∆x + B∆u + f(x∗, u∗, p) + L
(3)

with

∆x = x − x∗, ∆u = u − u∗

A =
∂f(x, u, p)

∂x

∣
∣
∣
x=x∗

, B =
∂f(x, u, p)

∂u

∣
∣
∣
u=u∗

In case there are no uncertain parameters p, one obtains

matrices A ∈ Rn×n and B ∈ Rn×m where the elements are

real numbers. If the system contains uncertain parameters,

the elements of the matrices are intervals such that A ∈ In×n

and B ∈ In×m.

A. Reachable Set Computations for the Linear System

Reachable sets of linear systems with uncertain parameters

and inputs have been computed in an earlier work of the

authors [20]. The basic steps that are undertaken in order to

compute the reachable set of the linearized system in (3), are

recalled in the following. The reachable set of a time interval

t ∈ [(k − 1) · r, k · r] is obtained by

1) computation of the reachable set R̂ without input at

the time points t = (k − 1) · r and t = k · r,

2) generation of the convex hull of the time point solu-

tions,

3) enlarging of the convex hulls to ensure enclosure of

all trajectories for the current time interval t ∈ [(k −
1) · r, k · r] under all possible inputs.

These basic steps are illustrated in Fig. 2. The same concept

is applied for many algorithms (e.g. [18], [11], [21]) that

compute over-approximated reachable sets.

R̂((k − 1) · r)

R̂(k · r)
Convex
Hull of
R̂((k−1)·r),

R̂(k · r)

R([(k − 1) · r, k · r])

� � �

enlarging

Fig. 2. Computation of reachable sets for a linear system.

In a first step, this procedure is applied to the linearized

system (3) without considering the linearization error (L =
0) as described in Sec. III. After obtaining the linearization

error L, the reachable set Rerr(t) of the linearized system

(3) resulting from the additional input L is computed. Due

to the applicability of the superposition principle, the overall

reachable set can be obtained by the Minkowski addition of

Rlin(t) and Rerr(t):

R(t) = Rlin(t) + Rerr(t)

Note that R(t) is the over-approximated reachable set of

the original nonlinear system since the Lagrange remainder

contains all possible linearization errors.

B. Representation of Reachable Sets

In this work, reachable sets are represented by zono-

topes. They are chosen because linear transformations and

Minkowski sums can be computed efficiently, allowing to

compute reachable sets for large scale linear systems in

continuous space [18], [20]. In addition, the axis-aligned

bounding box, or so-called interval hull of zonotopes, can

be computed in an efficient way what is advantageous for

the computation of the Lagrange remainder. A zonotope is

defined as follows:
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Definition 2 (Zonotope): A zonotope is a set

Z =
{

x ∈ Rn : x = c +

p
∑

i=1

β(i) · g(i), −1 ≤ β(i) ≤ 1
}

with c, g(1), . . . , g(p) ∈ Rn. The vectors g(1), . . . , g(p) are

referred to as the generators and c as the center of the

zonotope. The order of a zonotope is q = p
n

and the notation

is (c, g(1...p)), where the first element in the parentheses

always refers to the center of the zonotope.

In other words, a zonotope is defined by a center c to which

line segments li = β(i) · g(i), −1 ≤ β(i) ≤ 1 are added

via Minkowski sum. This is illustrated in Fig. 3, where the

final zonotope is generated step by step from left to right

by adding three two-dimensional line segments l1 . . . l3 via

Minkowski addition to the center of the zonotope. Zonotopes

are always centrally symmetric to its center.

0 1 2

0

1

2

c

l1

(a) c + l1

−1 0 1 2 3

−1

0

1

2

3

c

l1 l2

(b) c + l1 + l2

−2 0 2 4

−1

0

1

2

3

c

l1 l2

l3

(c) c + l1 + l2 + l3

Fig. 3. Step-by-step construction of a zonotope from left to right via
Minkowski addition of line segments.

The interval hull η that encloses a zonotope can be

computed as follows (see e.g. [18]):

η = IH(Z) = [η, η] ∈ In

η = c −

p
∑

i=1

|g(i)|, η = c +

p
∑

i=1

|g(i)|
(4)

where IH(Z) is the interval hull operator.

V. COMPUTATION OF THE LINEARIZATION ERROR

As described in the previous section, the linearization

error is obtained by evaluation of the Lagrange remainder.

After defining Ji(ξ, p) := ∂2fi(ξ,p)
∂z2 , where i is the system

dimension of f , one can write the Lagrange remainder in

(2) as

Li =
1

2
(z − z∗)T Ji(ξ, p)(z − z∗),

ξ(z) ∈ {z∗ + α(z − z∗)|α ∈ [0, 1]}
(5)

In order to determine the set Li for the time interval t ∈
[0, r], one has to consider the possible values of z within this

time interval. The values of z are within Z([0, r]) which is

the Cartesian product Z([0, r]) := R([0, r])×U as the state

vector is restricted to x([0, r]) ∈ R([0, r]) and the input u
is restricted to u ∈ U . In order to determine the maximum

absolute values of the Li for z ∈ Z([0, r]) in an efficient

way, the following over-approximation is computed:

Proposition 1: The absolute values of the Lagrange re-

mainder can be over-approximated for z ∈ Z by the

following computations:

|Li| ⊆ [0, L̂i]

with L̂i =
1

2
γT max(|Ji(ξ(z), p)|)γ, z ∈ Z, p ∈ P

and γ = |c − z∗| +

p
∑

i=1

|g(i)|

where c is the center and g(i) are the generators of the

zonotope Z . The max-operator and the absolute values are

applied elementwise.

Proof: The following over-approximations apply for the

absolute value of Li:

|Li| =
{1

2
|(z − z∗)T Ji(ξ(z), p)(z − z∗)|

∣
∣z ∈ Z, p ∈ P

}

⊆
1

2
[0, max

(
|(z − z∗)T Ji(ξ(z), p)(z − z∗)|

)
]

⊆
1

2
[0, max

(
|z − z∗|T |Ji(ξ(z), p)||z − z∗|

)
]

⊆
1

2
[0, max(|z − z∗|)T max(|Ji(ξ(z), p)|)max(|z − z∗|)]

The expression max(|z − z∗|) can be further rewritten since

z ∈ Z is within a zonotope with center c and generators g (i):

z ∈ Z, x(i) ∈ [−1, 1] : max(|z − z∗|) =

max(|c − z∗ +

p
∑

i=1

x(i)g(i)|) ≤ |c − z∗| +

p
∑

i=1

|g(i)| = γ

such that the expression of proposition 1 is obtained.

The expression max(|Ji(ξ(z), p|) in proposition 1 is com-

puted via interval arithmetics [22]. To do so, the values of

z have to be over-approximated by an interval vector as

shown in (4): z ∈ IH(Z). From this follows that ξ(z) ∈
{z∗ + α(z − z∗)|α ∈ [0, 1]} also becomes an interval vector

and the values of p are intervals by definition.

The result of proposition 1 also allows to find a linearization

point z∗ that minimizes the values L̂i and thus the set of

Lagrange remainders.

Proposition 2: The bound of the Lagrange remainder L̂
is minimized by choosing z∗ = c as the linearization point.

Proof: The value of γ is minimized by z ∗ = c which

can be directly checked from its computation in proposition

1. By choosing z∗ = c, it follows that {ξ(z)|z ∈ Z} = Z
(which is independent of z∗) , such that max(|Ji(ξ(z), p)|) is

not affected by the linearization point z ∗. From this follows

that z∗ = c minimizes L̂i.

After choosing z∗ = c, it remains to solve the problem that

the center c of Z([0, r]) is not known, since Z([0, r]) is

computed after linearization. As a solution, c is approximated

based on the center ĉ of Z(0):

z∗ = ĉ +
r

2
f(ĉ, mid(p)) ≈ c

The operator mid() returns the center of an interval vector.
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VI. RESTRICTION OF THE LINEARIZATION ERROR

It is clear, that the Lagrange remainder strongly depends

on the size and the center of a reachable set of a partial time

interval. In order to deal with the increase of the linearization

error with the size of the reachable set, the linearization

error Rerr is restricted to a multidimensional interval R̄err.

The rate of growth of the admissible expansion of R̄err is

restricted by the expansion vector θ ∈ Rn which has to be

set as a parameter of the reachability computations:

R̄err(r)
!
⊆ [−θ · r, θ · r] (6)

The reachable set of the linearized system due to the lin-

earization error L = [−L̂, L̂] is as shown in [20]:

R̄err(r) = A−1(eAr − I)[−L̂, L̂].

After the left multiplication of (eAr−I)−1A and the insertion

of (6), one obtains

(eAr − I)−1A[−θ · r, θ · r] ⊇ [−L̂, L̂],

which is fulfilled if

|(eAr − I)−1A| θ · r =: L̄ ≥ L̂. (7)

The absolute value in the above inequality is obtained

elementwise. In case the constraint L̄ ≥ L̂ is not fulfilled

for the time interval t ∈ [k · r, (k + 1) · r], the reachable set

R(k · r) is split up, as explained below.

A. Splitting of Reachable Sets

One can split a zonotope Z into two zonotopes Z1 and

Z2 by splitting the jth generator of Z:

Proposition 3: A zonotope Z = (c, g (1...p)) is split into

two zonotopes Z1 and Z2 such that Z1 ∪ Z2 = Z and Z1 ∩
Z2 = Z∗ where

Z1 = (c −
1

2
g(j), g(1...j−1),

1

2
g(j), g(j+1...p))

Z2 = (c +
1

2
g(j), g(1...j−1),

1

2
g(j), g(j+1...p))

Z∗ = (c, g(1...j−1), g(j+1...p))

Proof: First, a zonotope (0, g(j)) that consists of the

jth generator only, is generated. This generator can be split

up into two generators:

(0, g(j)) = (−
1

2
g(j),

1

2
g(j)) ∪ (

1

2
g(j),

1

2
g(j))

Adding Z∗ to both sides of the above statement yields

Z∗ + (0, g(j)) = Z∗ +

(

(−
1

2
g(j),

1

2
g(j)) ∪ (

1

2
g(j),

1

2
g(j))

)

=

(

Z∗ + (−
1

2
g(j),

1

2
g(j))

)

∪

(

Z∗ + (
1

2
g(j),

1

2
g(j))

)

as A+(B∪C) = (A+B)∪ (A+C). The addition of zono-

topes is performed by adding the centers and concatenating

the generators (see, e.g. [18]), such that Z = Z ∗ + (0, g(j)),
Z1 = Z∗ + (− 1

2g(j), 1
2g(j)) and Z2 = Z∗ + (1

2g(j), 1
2g(j)),

resulting in Z = Z1 ∪ Z2.

Furthermore, it can be clearly seen that

Z1 ∩ Z2 =
(

Z∗ + (−
1

2
g(j),

1

2
g(j))

)

∩

(

Z∗ + (
1

2
g(j),

1

2
g(j))

)

= Z∗

as (− 1
2g(j), 1

2g(j)) ∩ (1
2g(j), 1

2g(j)) = {0}.

The higher the order of a zonotope Z is, the bigger is the

overlapping zonotope Z ∗ and consequently, the less effective

is a split. For this reason, zonotopes should be reduced to

a certain order with, e.g., the methods presented in [5].

The order reduction of zonotopes is performed in an over-

approximated way, such that for the reduced zonotope Z red

holds: Zred ⊃ Z . The advantages and disadvantages of

the order reduction are illustrated for a zonotope Z in a

two-dimensional space with 4 generators according to Fig.

4(a). The splitted zonotopes of the original zonotope Z are

denoted Z1, Z2 and the ones of the reduced zonotope Zred

are denoted Z1
red, Z2

red and can be found in Fig 4(b) and Fig.

4(c). The advantage of the split of the unreduced zonotope is

that the splitted zonotopes cover a smaller region: Z 1∪Z2 =
Z ⊂ Zred = Z1

red∪Z2
red. However, Z1 and Z2 overlap more

than Z1
red and Z2

red: Z1 ∩ Z2 = Z∗ ⊃ Z∗

red = Z1
red ∩ Z2

red

and Z∗, Z∗

red are the zonotopes where the splitted generator

is removed as shown in proposition 3. In order to obtain an

optimal result, one has to find a compromise between the

overlapping and the over-approximation of reachable sets.

Z Zred

g(j)

g
(j)
red

(a) Z , Zred

Z1Z2

1
2
g(j)

(b) Z1, Z2

Z1
redZ2

red

1
2
g
(j)
red

(c) Z1
red

, Z2
red

Fig. 4. Split of a zonotope and the corresponding reduced zonotope.

It remains to find the j th generator that splits the reachable

set R(k · r) into R1,j(k · r) and R2,j(k · r) in an optimal

way. The indices 1, 2 distinguish the two reachable sets

that result after splitting the j th generator. This requires

a performance index for each split which is based on the

Lagrange remainder. Therefore, the reachable sets R 1,j([k ·
r, (k + 1) · r]) and R2,j([k · r, (k + 1) · r])) for the time

interval are computed based on the corresponding initial sets

R1,j(k · r) and R2,j(k · r). The reachable sets for the time

interval allow to obtain the corresponding linearization error

bounds L̂1,j and L̂2,j . The performance index ρj for the split

of the jth generator is computed as:

ρj = max(L̂1,j/L̄j) · max(L̂2,j/L̄j)

where L̂1,j/L̄j and L̂2,j/L̄j are divided elementwise and

max() returns the maximum value of the resulting vectors.

The component j with the lowest value in the performance
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vector ρ returns the generator that has to be split. In case the

lowest performance value is greater than one, the obtained

split sets have to be split again recursively. If the performance

index is less than one, the linearization error limit (7) is

fulfilled, such that the reachable sets for the next time step

can be calculated.

B. Cancellation of Redundant Reachable Sets

After a total number of i splits in the time interval [0, k ·r],
i reachable sets have to be computed for the next time

interval [k·r, (k+1)·r]. Hence, the computational complexity

of reachable sets grows linearly with the number of splits.

This effect can be reduced by cancelling reachable sets that

already have been reached. In order to check if a computed

reachable set has been reached before, the set difference

operation is used. As the set difference of two zonotopes is

no zonotope anymore, the zonotopes are over-approximated

by polytopes as presented in [5]. The over-approximation

is performed for the reachable set segments of the past ζ
time steps, where ζ can be freely chosen. If a polytope of

the current time interval is empty after the set difference

computation with the polytopes of the past ζ time steps, this

reachable set segment is cancelled. After the cancellation,

the remaining polytopes are transformed back to zonotope

representation. As the cancellation of reachable sets leads to

an over-approximation of the reachable set, and in addition is

computationally expensive, the described procedure is only

applied every δ ∈ N+ time steps, which is set by the user.

VII. NUMERICAL EXAMPLES

The approach is demonstrated for two examples. The Van-

der-Pol oscillator is a standard example for nonlinear systems

that have a limit cycle:

ẋ1 = x2

ẋ2 = (1 − x2
1)x2 − x1

The reachable sets are computed with a time step of r =
0.02 and are visualized in Fig. 5(a). The expansion vector

is set to θ = [0.05, 0.05]T and the cancellation of reachable

sets is performed every δ = 100 time steps. The number of

reachable sets that have to be computed for a single time

step is shown in Fig. 5(b). It can be seen that reachable sets

are rejected after 4 and 6 time units. Further, one observes

that the limit cycle is stable as the reachable set after one

cycle is enclosed by the initial reachable set. This example

is implemented in Matlab and the computation time is 76
seconds on a desktop computer with 3.7 GHz.

As a second example, a water tank system with uncertain

inputs and parameters as illustrated in Fig. 5 is considered.

The states xi are the water levels of each tank and u is the

water flow into the system that is controlled by measuring

the water level of the last tank. This example is chosen as it

can be easily formulated for different numbers of states by

adding additional water tanks. The differential equation for

the water level of the first tank is given by Toricelli’s law:

ẋ1 =
1

A1
(u + v − k1

√

2gx1)

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

x
1

x
2

Initial set

(a) Van-der-Pol oscillator: reachable set.
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Fig. 5. Water tank system.

where A1 and k1 are tank specific parameters, g is the gravity

constant, u is the inflow and v is a disturbance. The inflow

u is chosen as u = 0.1+κ(4−xn) and xn is the water level

of the last tank. The differential equation for the i th tank is

ẋi =
1

Ai

(ki−1

√

2gxi−1 − ki

√

2gxi)

and for simplicity, all Ai are set to Ai = 1. The reachable set

for t ∈ [0, 400] with v ∈ [−0.005, 0.005] and the uncertain

parameters ki ∈ [0.0149, 0.015] for 6 tanks is shown in

Fig. 6 together with exemplary trajectories starting from

the vertices of the initial set 3. The time step is chosen to

r = 4 and the expansion vector is set to θi = 0.001 for

all i. Computational times for different system dimensions

using the same parameters and settings than for the 6-tank

system are presented in Tab. I for the case of uncertain and

certain parameters ki. The values are chosen as ki = 0.015
in the case of certain parameters and ki ∈ [0.0149, 0.015] in

the uncertain case. All computations have been performed

using Matlab on a desktop computer with 3.7 GHz. It can be

observed from Tab. I that the computation time moderately

increases with the system dimension due to the efficient

computation of reachable sets using zonotopes.

3The exemplary trajectories are only computed for constant v and ki
values although the values may be time varying.
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Fig. 6. Reachable sets of the tank system.

TABLE I

COMPUTATIONAL TIMES.

Dimension n 6 12 18 24 30

CPU-time [sec] (no uncer-
tain parameters)

18.1 64.9 170 367 704

CPU-time [sec] (with un-
certain parameters)

26.3 82.6 201 417 796

VIII. CONCLUSIONS

An approach for the efficient computation of reachable sets

of high dimensional nonlinear systems has been presented.

The method performs well, especially for systems with lower

nonlinearity measure. In case of highly nonlinear systems,

such as chaotic systems, the implementation may get stuck

due to numerical problems, which is a challenge for other

algorithms, too. Special characteristics are the consideration

of uncertain parameters, the linearization error evaluation

using the Lagrange remainder, and the possibility of split-

ting reachable sets represented by zonotopes. The presented

approach can be included in algorithms for the reachability

analysis of hybrid systems with nonlinear dynamics.
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