
 
 

 

  

Abstract— Nowadays model-based fault detection and 
isolation (FDI) systems have become a crucial step towards 
autonomy in aerospace engineering. However few publications 
consider FDI applications to unmanned air vehicles (UAV) 
where full-autonomy is obligatory. In this paper we 
demonstrate a sensor fault detection and accommodation 
(SFDA) system, which makes use of analytical redundancy 
between flight parameters, on a UAV model. A Radial-Basis 
Function (RBF) neural network (NN) trained online with 
Extended Minimum Resource Allocating Network (EMRAN) 
algorithms is chosen for modelling purposes due to its ability to 
adapt well to nonlinear environments while maintaining high 
computational speeds. Furthermore, in an attempt to reduce 
false alarms (FA) and missed faults (MF) in current SFDA 
systems, we introduce a novel residual generator. After 47 
minutes (CPU running time) of NN offline training, the SFDA 
scheme is able to detect additive and constant bias sensor faults 
with zero FA and MF. It also shows good global approximation 
capabilities, essential for fault accommodation, with an average 
pitch gyro estimation error of 0.0075 rad/s.  

I. INTRODUCTION 
AULT tolerant flight control systems (FTFCS) can be 
found in many air-vehicles nowadays. Their purpose is 

to detect, identify, and accommodate for any type of failure 
that may occur on-board the vehicle. In fact, studies on the 
causalities by the US Air Force during the Vietnam War 
have revealed that upto 70% of aircraft losses could have 
been avoided if FTFCS were properly designed and 
implemented [1]. The two recognized classes of critical 
faults are sensor and actuator failures. In this paper we focus 
on sensor failures in an unmanned air vehicle (UAV). 

Fault detection techniques have been applied to large 
manned aircrafts [1]-[5], underwater vehicles [6], and 
autonomous helicopters [7], while few have been extended 
to fixed wing UAVs. Nowadays, UAVs are used in 
applications deemed dangerous or unreachable by manned 
vehicles which can lead to high risks of failure. 
Furthermore, current trends in UAV design have shown that 
cheap and low-weight UAVs are more likely to be accepted 
by the civil aviation industry [8]. As a result, these factors 
become essential guidelines for control engineers designing 
any UAV FTFCS. 
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Reliable sensor fault detection and accommodation 
(SFDA) becomes even more critical when faulty 
measurements are used in control feedback loops. 
Traditionally, fault detection (FD) and fault accommodation 
(FAc) are accomplished via physical redundancy where 
identical sensors are used to measure the same parameter, 
and based on a voting-scheme, FD and FAc can be 
employed [9]. However, it is apparent that this method has 
serious weight, power and cost implications especially for 
UAVs. For this reason, over the past two decades analytical 
redundancy has become a more appealing approach for 
SFDA where a residual, which at its simplest form computes 
the difference between the model estimate and sensor 
measurement, is generated and a fault is then declared when 
it exceeds a predefined threshold.  

In the event of fault detection, FAc is implemented by 
simply replacing the faulty sensor with the model-estimate. 
However in the event of multiple sensor faults, model-
estimates can be inaccurate and so real-world applications 
tend to maintain a slight degree of physical redundancy. 

Over the past two decades many SFDA publications have 
targeted fixed model-based approaches, with parameter 
estimation and observer-based methods being the most 
popular [10].  While proving to be successful they generally 
are limited to linear time-invariant systems. Novel 
approaches include nonlinear online adaptive schemes 
where the model is continuously tuned to fit the time-
varying system. This is why the use of neural networks 
(NN) with online learning capabilities is steadily growing in 
the fault detection field [10].  

Chow and Willsky (1984) first defined model-based FDI 
to consist of two main stages; residual generation and 
residual evaluation [11]. Patton et al. (1989) also outlined 
the criteria for selecting a suitable FDI approach, two of 
which were low false alarm rates and fewer missed faults 
[12]. Ideally a residual is nonzero only when a fault is 
present. However in real applications, the residual will 
always be nonzero due to unknown inputs (e.g. 
measurement noise and disturbances etc.). This can increase 
the risk of false alarms especially if simple threshold logic is 
implemented for residual evaluation. Of course one can raise 
the threshold but this can also increase the number of missed 
faults. Ways to improve model-based FDI robustness to 
unknown inputs is a widely studied topic. Examples include 
adaptive thresholds, originally proposed in Emami-Naeini et 
al. (1988), or the application of alternative residual 
evaluation techniques which do not rely on simple threshold 
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logic, e.g. statistical tests on the Kalman filter innovation 
sequence [13]-[14]. Another famous approach is the 
unknown input observer which attempts to decouple the 
effects of unknown inputs on the residual [15]. 
Alternatively, we suggest a novel residual processing 
approach which will be referred to as residual padding.  

In an attempt to widen the scope of NN-based SFDA 
schemes we design and apply such a scheme to a nonlinear 
UAV model. The NN structure chosen is based on the 
Extended-Minimum Resource Allocating Network 
(EMRAN) Radial Basis Function (RBF), due to its good 
generalization ability and fast performance [16]. 
Comparisons of a conventional residual generator approach 
and our novel approach are carried out under different levels 
of sensor noise and fault classes in order to test their 
robustness and sensitivity respectively.  

II. UAV MODEL 
The UAV is based on the Eclipse class vehicle with 

conventional control surfaces (ailerons, elevators and a 
rudder) and is powered by a small gas turbine engine. Some 
of the flight characteristics are shown in Table 1. The model 
used to describe the UAV is an open-loop nonlinear 6DOF 
model. Aircraft dynamics are modeled as a set of twelve first 
order decoupled nonlinear differential equations with twelve 
states; linear velocities, angular rates, attitude, and position 
vectors. The input data consisted of preset manoeuvres in 
the pitch axis with the elevator demand following a 3-2-1-1 
input sequence. The model features both system and 
measurement noise where the system noise is modelled as 
zero mean, white, Gaussian gust disturbances on the angle 
of attack and sideslip with a 0.1 deg standard deviation. The 
sensor/measurement noise is also assumed to be Gaussian 
and white.  

 
TABLE 1.  UAV CHARACTERISTICS 

Characteristics Value 
Wing Span 2.20 m 
Fin Span 0.43 m 

Mass 39.7 kg 
Ground Velocity (max.) 44 m/s 
Flight Altitude (max.) 150 m 

Flight Time (max.) 30 mins 

III. NN STRUCURE 

A. NN Inputs  

Longitudinal motion of the UAV model is considered and 
sensor faults are introduced only in the pitch gyro. The NN 
input set must therefore include the longitudinal flight 
parameters of the aircraft. These include angle of attack (α), 
normal-acceleration (az), elevator demand (δe), throttle (τ), 
airspeed (Vt) and altitude (H). The analytical redundancy 
between these measurements and the pitch rate is ensured by 
the aircraft equations of motion [17]. The input az can be 

replaced by az/ Vt
 2 to smoothen the nonlinear estimations 

caused by the nonlinear aircraft dynamics [2]. 

B. Network Size Reduction 

Including all the longitudinal flight parameters in the NN 
input set ensures accurate pitch rate (q) estimations but can 
also result in a large network size. To avoid this we carried 
out a series of test runs to find out which flight parameters 
have the least effect on the NN output estimation error. The 
resulting NN can be described by the following input/output 
relation: 

[ ]2/,,,NN tizitieiii VaVq δα=                   (1) 

where NN is the NN model and i is the sampling instant. 
Note also that pitch rate is not included in the NN input set 
to avoid contaminating the NN structure when a fault is 
present. 

C. RBF NN Structure and Training 
The NN structure chosen is the EMRAN RBF proposed in 

[16]. It consists of a group of input signals, a hidden layer 
and an output layer (Fig 1). It starts with zero hidden units 
(neurons) and only adds hidden units if all of the following 
three criteria are met (for a single output NN): 
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where yi and ysi are the real sensor output and NN estimation 
at sample instant i respectively, and μir is the centre of the 
hidden unit closest to the current NN input vector xi. E1 
ensures that the NN estimation error is below a set threshold 
(i.e. good enough), E2 checks if the root mean square 
(RMS) of the past M errors is low enough and E3 checks if 
the minimum distance between the current input vector and 
the centres of the hidden units is significantly small.  

If less than three of the criteria (2)-(4) are met, then the 
NN training algorithm updates (i.e. tunes) the free 
parameters (centres, widths and weights) of only the most 
active (so called ‘winner’) neuron. This reduces the number 
of parameters to be updated which speeds up the training 
process. An additional reason why the EMRAN RBF NN is 
superior to many other NN designs is that it can 
automatically prune hidden units which contribute the least 
to the NN estimates [16].  

The training algorithm used to develop the NN is based 
on the popular gradient descent algorithm and is described 
as follows [18]: 
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whereΘ is the vector of NN free parameters and η is the NN 
learning rate. The differential in (5) is the gradient of the 
estimated output ys with respect to the free parameters, e is 
as in (2) but without the absolute operator, and σ is a 
positive constant known as the stabilizing factor. The second 
term on the right hand side of (5) is simply the delta rule 
while the third term is designed to counteract casual 
parameter drifting by slowly driving the free parameters 
towards zero.  

 
Fig. 1 RBF-NN structure example. x, λ, ys are inputs, weights and output 
respectively. 

IV. RESIDUAL GENERATION 

A. Conventional Residual Generator Approach 
In their simplest form, residuals are generally functions of 

the squared difference between model estimate ys and real 
sensor output y [7]. Averaging is generally applied to reduce 
the effects of noise, and the residual r can be described as 
the weighted (moving) average of the past M measurements: 
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where w is the weight deduced from experiments and i is the 
current measurement. Ideally residuals are only nonzero 
when a fault is introduced. In this case selecting a threshold 
is simple; a low threshold would be suitable. However, the 
presence of residual noise (caused by measurement 
disturbances, process disturbances and model uncertainties) 
also causes the residuals to become nonzero which can lead 
to false alarms. In current health management systems which 
employ SFDA schemes there is an average false alarm rate 
of 1 per 100 flight hours [19]. 

In low-weight UAV applications, the vehicle can be more 
susceptible to sudden deviations from its set flight envelope 
caused by random disturbances. This can result in high 

amounts of residual noise and consequently high false alarm 
rates. Therefore a more robust residual generation approach 
is needed. Here we demonstrate a novel residual processing 
technique which we will refer to as residual ‘padding’.  

B. Residual Padding 
We can think of the residual as n sets (S1, S2…Sn) with D 

data points in each set. With padding, we manage to extend 
each of the n sets with artificial data. Each data point is the 
squared difference between model estimate ys and real 
sensor output y. Padding maps a length D set to a length 
Dpad>D set, where Dpad-D artificial data are added. Each 
artificial point added is equal to the minimum magnitude 
(min {Sn}) in the nth set. The aim is to reduce the overall 
average of each residual set so as to minimize the effect of 
residual noise especially ones causing large spikes. ‘min 
{Sn}’ is chosen instead of ‘zeros’ because the latter will also 
damp the genuine fault peaks while ‘min{Sn}’ is more 
specific of the individual residual sets. In conclusion, the 
first step of the novel residual generator is padding and only 
then is (6) implemented.  

Consider this simple example where the following 
assumptions are made (no units are used):  
 
1) Residual threshold is of magnitude 5. 
2) Typical residual set is {0 0 0 0}. 
3) Faults result in a continuous residual magnitude of 6. 
4) Residual noise is large and sudden (i.e. resembling 

spikes) and results in a residual magnitude of 24. 
5) 2 padding points can be added to the residual set. 
6) Padding points have a magnitude equivalent to the 

minimum magnitude in the residual set. 
 
Let us consider three scenarios; scenario 1 is when faults 
and noise are not present, scenario 2 is when a fault occurs 
and scenario 3 is when residual noise is present. In the event 
of scenario 1 the residual set is {0 0 0 0} with an average of 
zero. Therefore the threshold is not exceeded as desired. In 
the event of scenario 2, the residual set becomes {6 6 6 6} 
and so the padding points would be of magnitude 6. The 
modified residual becomes {6 6 6 6 6 6} with an average of 
6 and so the threshold is exceeded and a fault is declared. In 
the event of scenario 3, the residual set is {24 0 0 0}. If 
padding is not applied and the simple average of this 
residual is taken, the average would be 6 and so the 
threshold is exceeded resulting in an undesired fault alarm, 
i.e. false alarm. However if instead we pad the residual set 
using the same technique as scenario 2, the modified 
residual set becomes {24 0 0 0 0 0}. The average is now 4 
and so the threshold is not exceeded.  

Obviously this is a simple example with no consideration 
to issues such as drifting faults or adjacent residual noise 
patterns; however the underlying concepts are the same. 
Residual padding can be seen as a way of damping only the 
residual noise and not the fault peaks.  

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB18.3

1239



 
 

 

It is generally understood that small and slow-drift faults 
(referred to as incipient faults) are hard to detect [1]–[4], [7]. 
The reason for this is that with residual noise being present, 
thresholds are generally set at a high level to avoid false 
alarms. Consequently, small magnitude faults do not exceed 
this threshold and pass by undetected. A common solution is 
to amplify the residual but this can also have the adverse 
effect of amplifying residual noise. However with our 
padding approach, amplification should be a feasible 
solution as residual noise is consistently damped. It is also 
crucial that excessive amounts of padding are avoided as this 
can increase the fault detection time or even completely 
damp the fault peaks. This is demonstrated and discussed in 
section VIII. 

V. FAULT SCENARIOS 

The pitch gyro sensor failures considered here are: 

1) Constant bias faults: The sensor output gets stuck and 
outputs a constant bias. 

2) Additive faults: Additive faults are very common. A 
term is added to the normal sensor value as a result of 
temperature changes or calibration problems.  

Additive faults can be described by ramp functions (drift) 
and can be of soft or hard nature depending on the duration 
of the ramp TR. Typically TR is 1s for hard additive faults, 
and 4 seconds for soft additive faults [1].  

VI. SFDA OUTLINE 

A. Offline Training 
Prior to any SFDA tests, the NN structure must be 

initialised. This is done through offline training where one 
data set from the UAV model is used to build the NN 
structure. However one must be careful not to overtrain the 
NN or else it will perform poorly when exposed to novel 
data. To avoid overtraining the NN, two sets of flight data of 
225s each were collected from the UAV model: 

 
1) Train set: This is used to train the NN 
2) Test set: This is used to query the NN, i.e. with learning 

switched off.  
 

Offline training continues until the point where the NN 
RMS estimation error from the test set reaches a minimum 
(Fig 2). 

B. SFDA Application to the UAV Model  
Once the NN is initialised via offline training it can then 

be used in the SFDA tests. Three sets of flight data of 800s 
each were used for the SFDA tests, where each set had 
different sensor noise configurations. Configuration 1 
models zero mean, white Gaussian sensor noise. 
Configuration 2 and configuration 3 include the same sensor 

noise model but with twice and ten times greater noise 
standard deviations respectively. This allowed us to test the 
robustness of the residual ‘padding’ approach, mentioned 
earlier, to the different sensor noise levels. In all cases, a NN 
learning rate of 0.0007 was found most suitable and the data 
was filtered using a 1st order Butterworth low pass filter, 
before being used in the NN. The fault classes tested 
include; constant bias, hard additive and soft additive faults. 
The fault magnitudes included; 20% and 5% (percentage of 
sensor range; 30deg/s). 

VII. RESULTS 
The mean detection time (MT) and number of undetected 

faults (UD) were recorded for each test.  Additionally the 
percentage of time that the residual remains above the set 
threshold prior to a fault being introduced is recorded. This 
is an indication of the false alarm characteristics, and will be 
referred to as ‘false alarm’ (FA). A careful analysis of the 
results reveals the following: 

 
1) Fig. 2 shows the NN RMS estimation error history 

during offline training where 1 epoch represents one pass 
through the entire data set. After 1981 epochs (47 mins 
CPU time) offline training was stopped to avoid 
overtraining the NN structure. 

2) From Table 2 we notice that the conventional residual 
generation approach (‘no padding’) struggles to detect all 
faults, with 2 UDs. The two undetected faults were found 
to be the hard and soft additive faults of sensor range 
magnitude 5%. Furthermore regardless of the noise 
configurations implemented, false alarms remain present 
with an average FA of 0.11 %. On the other hand, 
residual padding has managed to remove false alarms 
completely as well as allowing the detection of all faults 
tested. However it has also caused an increase in MT by 
almost 55%.  

3) Fig. 3 shows an example plot for each residual 
generation approach. The top plot is when the residual is 
generated with no padding (i.e. conventional approach) 
and the bottom plot is when residual padding is applied. 
The first thing we notice is the higher set threshold when 
padding is applied (0.006 rad2/s2) in comparison to the 
conventional approach (0.001 rad2/s2). This is because 
residual amplification is possible when padding is 
applied, as noise is successfully damped. Consequently 
small faults are easier to detect and false alarms are 
avoided. On the other hand we can see that false alarms 
are present in the top plot and therefore further residual 
amplification is not advisable. 

4) From Table 3, we see a breakdown of the fault detection 
properties of our SFDA scheme using the novel residual 
generator approach. Small magnitude and slow-drift 
faults generally take longer to detect in comparison to 
constant bias faults. 

5) From Fig. 4 and 5, a FAc plot can be seen.  Note that NN 
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training was stopped when the fault was detected to 
avoid learning faulty data. Here we observe the good 
global approximation capability of the RBF-NN. Overall 
an average RMS pitch rate estimation error of 0.39 deg/s, 
0.42 deg/s and 0.47 deg/s were achieved for sensor noise 
configurations 1, 2 and 3 respectively.  
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Fig. 2 Offline training error history.  
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Fig. 3 Example residual plots. Top: No padding, Bottom: With padding. 
Fault type 20% hard additive; noise configuration 1. 
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Fig. 4 Simulation of pitch gyro failure. Failure type 20% hard additive; 
noise configuration 1. Plot shows nominal pitch rate (no fault), failed pitch 
gyro, and RBF-NN estimation. 
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Fig. 5 Simulation of pitch gyro failure. Failure type 5% constant bias; noise 
configuration 1. Plot shows nominal pitch rate (no fault), failed pitch gyro, 
and RBF-NN estimation. 
 
 

TABLE 2. SUMMARY OF FD RESULTS.  
No padding With padding  

MT 
(s) 

UD FA 
(%) 

MT 
(s) 

UD FA 
(%) 

Confg 1 0.72 2 0.10 1.30 0 0 
Confg 2 0.77 2 0.09 1.32 0 0 
Confg 3 0.79 2 0.14 1.53 0 0 

 
TABLE 3. FD RESULTS (WITH PADDING). TIME IN SECONDS 

Hard 
Additive 

Soft 
Additive 

Constant 
Bias 

 

20% 5% 20% 5% 20% 5% 

Confg 1 1.17 1.42 1.52 1.70 1.00 1.00 
Confg 2 1.20 1.42 1.58 1.71 1.00 1.00 
Confg 3 1.36 1.58 2.06 2.18 1.00 1.00 

 

VIII. SUMMARY OF RESULTS 
Two residual generator approaches were compared. One 

considered the conventional approach which included 
residual averaging and weight tuning (6). The other was 
based on a novel ‘padding’ approach (refer to section IV). It 
was found that the conventional residual generator approach 
performed best for constant bias faults. It also performed 
well for hard and soft additive faults which had a sensor 
range magnitude greater than 5%. However, it failed to 
detect hard and soft additive faults which had a sensor range 
magnitude of less than or equal to 5%. This is because small 
faults resulted in small residuals which did not exceed the 
set threshold. Lowering the threshold or amplifying the 
residual as a solution would also result in the increase in 
false alarms (Fig 3; top plot). Instead, a novel residual 
generation approach was implemented with the aim of 
damping residual noise (caused by measurement 
disturbances, process disturbances and model uncertainties). 
As a result it was possible to amplify the residual and 
consequently detect small faults. Also notice from Fig. 3 that 
the fault detection peak is higher in the bottom plot, as a 
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result of residual amplification. This is desirable as it 
provides a more robust fault detection scheme. 

From Table 2 we also find that the novel approach 
manages to remove false alarms regardless of the amount of 
sensor noise present in the system, while the conventional 
approach struggles to do so. The main drawback of the 
padding approach was the increase in the fault detection 
time. In comparison to the conventional residual generator 
approach, padding caused an average increase of 55% in the 
fault detection time. However, with reference to other SFDA 
work, the detection times remain within acceptable limits 
[1]–[4], [7].  

From the tests we found that false alarms were removed 
by padding each residual set with same number of residual 
points. So if we assume that for a residual set S1 there are D 
data points, an artificial data set of size D would be added to 
the residual set S1, where each artificial data point added 
would have magnitude ‘min{S1}’. The weighted average of 
the modified residual set S1pad can then be taken as in (6).   

The ability to detect slow-drift faults is also dependant on 
the NN learning rate implemented. A high learning rate 
results in learning of slow-drift faults, whereas a low 
learning rate prevents the learning of new aircraft operating 
conditions. A trade-off is therefore needed, and in our 
application an offline and online learning rate of 0.04 and 
0.0007 were found most suitable respectively.  

In real-time implementation, it is important that the NN 
learning time (ts) for one sample of data is lower than the 
sampling time (T). For our tests, the NN (maximum of 9 
hidden neurons) was run on a 1.6GHz Pentium processor 
with T equal to 20ms. It was found that the maximum ts was 
equal to 0.2 ms which is desirably lower than T.  

As a general remark, it must be noted that the test 
conditions (e.g. thresholds, amount of padding, etc.) were 
heuristically selected and are not intended to give optimum 
SFDA performance. They are chosen to facilitate the 
analysis of the results. If the test conditions are to be 
changed, the results would naturally change, however the 
general conclusions drawn would be the same.  

IX. CONCLUSION 
We have managed to demonstrate a SFDA scheme on a 

nonlinear UAV model using an EMRAN-RBF NN in an 
attempt to widen the scope of NN-based SFDA schemes to 
fixed-wing UAVs. A novel residual generator approach was 
presented and shown to outperform the conventional 
method, with fewer false alarms and missed faults. The NN 
designed showed good global approximation characteristics 
with an average pitch rate estimation error of 0.43 deg/s. 
Further work must explore the SFDA properties under 
different levels of process noise, and simultaneous faults. 
The fault accommodating system must also be tested for 
closed loop stability when used in feedback control. Real 
flight data and different flight input sequences can help to 
generalize the results obtained here. 
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