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Abstract— Local L2 gain analysis of a class of stabilizing
controllers for nonlinear systems with Hopf bifurcations is
studied. In particular, a family of Lyapunov functions is first
constructed for the corresponding critical system, and simplified
sufficient conditions to compute the L2 gain are derived by
solving the Hamilton-Jacobi-Bellman (HJB) inequality. Local
robust analysis can then be conducted through computing the
local L2 gain achieved by the stabilizing controllers at the
critical situation. The theoretical results obtained in this paper
provide useful guidance for selecting a robust controller from
a given class of stabilizing controllers under Hopf bifurcation.
As an example, application to a modified Van der Pol oscillator
is presented.

I. INTRODUCTION

Hopf bifurcation has been found or synthesized in various

systems [2], [3], [5], [11], [12]. For the past two decades,

stabilizing control of Hopf bifurcated systems has drawn a

lot of attention from the control community [1], [7], [8], [10],

[14]. Regarding these progresses, an interesting question

raised further is: to what extent, can these stabilizing control

designs be deemed as robust? In [4], local robust analysis

methods are presented based on the projection method [9]

for a class of stationary and Hopf bifurcation stabilizing

controllers [7]. The results show that the local admissible

uncertainty set can be characterized using the coefficients in

the Taylor series expansion. It is pointed out that, since the

characterizing conditions depend explicitly on the stabilizing

control gain, one can numerically compute and compare

the ‘size’ of the uncertainty set that can be tolerated by

each controller, which, in other words, provides an effective

approach to conduct the so-called ‘robust design’. The reason

that we use the ‘robust analysis’ approach to conduct the

‘robust design’ is due to the fact that, for a nonlinear system,

one usually does not know how to characterize all stabilizing

controllers but just a subset of them.

In [15], L2 gain method is applied to characterize the

robustness of stationary bifurcation stabilization. It has been

shown that the advantage provided by the L2 approach is

that the robustness can be explicitly measured by the L2

gain values achieved by different controllers. It is known

[11], [13] that the key issue for a successful L2 gain analysis

and design is whether one could find a Lyapunov function

to solve the famous Hamilton-Jacobi-Bellman equation or

inequality. Therefore, in principle, if one could obtain a class

of stabilizing controllers and a feasible Lyapunov function
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candidate, then the L2 gain, which is an indication of

robustness in the norm bound form, could be calculated

out for every stabilizing controller and hence the controller

achieving the smallest L2 gain would be deemed as the

most robust one in that given class. For bifurcation systems,

since a parameter is involved, at the first glimpse, one would

think that a Lyapunov function to facilitate the L2 gain

analysis should be also parameterized which may cause extra

analytic complexity. However, when one takes a closer look

at the stabilized bifurcation system [7], even if there still

exists equilibrium point bifurcation, the system behavior

will not change significantly around the critical position.

Observation of this fact motivates us to conduct local L2 gain

analysis for bifurcation stabilizing controllers when applied

to the corresponding critical system and to predict that the

L2 performance of the stabilizing controller at the critical

situation would reasonably indicate similarity with that at

bifurcated situation.

In this paper, we shall present the detailed results on L2

gain method to characterize the local robustness of Hopf

bifurcation stabilization, which complements the results of

[15]. The theoretical results provide useful guidance for

selecting a robust controller from a given class of Hopf

bifurcation stabilizing controllers.

II. PROBLEM FORMULATION

The system under consideration is the following nonlinear

control system F with bifurcation parameter γ, subject to

uncertainty ∆ as a smooth mapping as shown in Fig. 1:

ẋ = f(γ, x) + g(x)u + bw
z = cx

(1)

where γ has a critical value 0; x∈Rn; b and c are real valued

vectors; z ∈ Rq is the desired output signal for performance

evaluation; u is a scalar feedback control; w ∈ R is a scalar

disturbance signal; f(·, ·) : R×Rn→Rn and g(·) : Rn→Rn

are all smooth functions with f(γ, 0) = 0. In this paper, the

system (1) is assumed to satisfy the Hypothesis H:

(i) L(γ) =
df(γ, x)

dx

∣

∣

∣

∣

x=0

possesses a pair of complex

eigenvalues λ(γ) = α(γ)+jβ(γ), λ̄(γ) = α(γ)−jβ(γ)
(called ‘critical modes’) with α(0) = 0, β(0) = ωc 6=
0, α′(0) 6= 0 while all other eigenvalues are stable in

a neighborhood of γ = 0.

(ii) This pair of critical modes are not observable, nor

linearly controllable by u in the sense that, for any

row vector ℓ and its conjugate ℓ̄ that satisfy ℓ 6= 0,

ℓL(0) = jωc and ℓ̄L(0) = −jωc, we have ℓg(0) = 0,

ℓ̄g(0) = 0.
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Fig. 1. Nonlinear Control System in Robust Consideration

(iii) This pair of critical modes are not linearly affectable by

w in the sense that, for all ℓ 6= 0 with ℓL(0) = jωc and

ℓ̄L(0) = −jωc, we have ℓb(0) = 0 and ℓ̄b(0) = 0.

The corresponding critical system is then taken as γ = 0:

ẋ = f(0, x) + g(x)u + bw = f(x) + g(x)u + bw
z = cx

(2)

Definition 2.1: Assume u = 0 and w = 0. The nonlinear

system in (1) is said to have local bifurcation stability if the

origin is locally asymptotically stable in a sufficiently small

neighborhood around the origin and a small neighborhood

of γ = 0. �

In [11], the L2 gain of an input-output mapping and the

applications to robust nonlinear control have been discussed

in details. By Small Gain Theorem [11], the L2 gain can be

actually interpreted as the measurement of control robustness

when the uncertainty signal w is in norm-bounded form. In

particular, the following theorem can be applied to find the

upper bound of the L2 gain of a nonlinear mapping (system).

Theorem 2.2: [11] Consider the time-invariant nonlinear

mapping (system) from w to z as defined in

ẋ = f∗(x) + b(x)w, x(0) = x0

z = h(x)
(3)

where f∗(x) is locally Lipschitz, and b(x), h(x) are contin-

uous over Rn with compatible dimensions. Both f∗(x) and

h(x) vanish at the origin. Let D ⊂ Rn be a subset in Rn

that contains the origin. Suppose that there are an η > 0 and

a continuously differentiable positive semi-definite function

V (x) satisfying the inequality

HJB := H(V, f∗, h, b, η) =
∂V

∂x

∣

∣

∣

∣

f∗(x)

+
1

2η2

∂V

∂x
b(x)bT (x)(

∂V

∂x
)T +

1

2
hT (x)h(x)≤0 (4)

for all x∈D, and that the origin is a stable equilibrium point

of ẋ = f∗(x). Then the system is small-signal finite-gain L2

stable and its L2 gain, measuring
‖z‖2

‖w‖2

, is less than or equal

to η. �

This theorem guarantees that, for any disturbance signal

‖w‖2 < 1
η
‖z‖2+δ1 for some δ1 > 0, the perturbed nonlinear

system will remain stable and, besides, ‖z‖2 ≤ η‖w‖2 + δ2

for some δ2 > 0. We have the following definition for the

L2 gain of a stabilizing bifurcation control.

Definition 2.3: A feedback control u(x) is called local

stabilizing bifurcation control if, for w = 0, the closed-loop

nonlinear system in (1) ẋ = f(γ, x) + g(x)u(x) has local

bifurcation stability. The local L2 gain achieved by u(x) with

respect to a norm-bounded uncertainty signal w is defined

as the local L2 gain achieved by u(x) when applied to the

critical system (2). �

So the main problem addressed in this paper can be

stated as follows: Suppose that u is a class of stabilizing

bifurcation controllers for the nonlinear system (1) with

w = 0. What is the L2 gain achieved by u with respect

to a norm-bounded uncertainty signal w?

III. LOCAL L2 GAIN ANALYSIS

The solution to the main problem will lead to the finding

of the most robust controller, which has the least L2 gain in a

given class of stabilizing control u. The general procedures to

find such a controller can be summarized as follows [15]: 1)

Synthesize a class of local stabilizing bifurcation controllers

u for the system (1) with w = 0; 2) Construct Lyapunov

function V (x) for the corresponding critical system; 3)

Apply the HJB inequality to find an upper bound of the

local L2 gains η for all the stabilizing bifurcation controllers

u; 4) Find the smallest upper bound of the local L2 gain,

say η0 and its corresponding controller u0.

Then the u0 will be the ‘most robust’ controller among the

given class achieving the best performance. For presentation

simplicity, only local state feedback stabilizing bifurcation

controllers u = Kx [1], [7] will be considered to illustrate

the ideas in this paper. It is noted that the results can be

generalized (not very trivially) to the other control law u
given that its Taylor series expansion exists around the origin.

For Lyapunov functions, the result in [6] is applied, where

algorithms have been developed to construct a family of

Lyapunov functions for nonlinear systems in critical cases.

We next introduce a proposition that will be useful to show

the local definiteness of the time derivative of Lyapunov

function.

Proposition 3.1: [6] For the real variables s and t, the

scalar bivariate function

δ(s, t) = c20s
2 + c04t

4 + c12st
2 + c21s

2t + c30s
3

+c13st
3 + c22s

2t2 + c31s
3t + c40s

4 + O(|(s, t)|5)
is locally negative definite at a small neighborhood (s, t) =
(0, 0) if the coefficients c20 < 0, c04 < 0 and |c12| <
2
√

c20c04, where O(|(s, t)|5) stands for the fifth and higher

order terms of |(s, t)|. �

Consider the critical system (2) with a feedback controller

u = Kx, where the Hypothesis H applies. The Taylor

expansion of system (2) can be expressed as

ẋ = f∗(x) + bw

= L∗
0x + Q∗

0[x, x] + C∗
0 [x, x, x] + · · · + bw + · · ·

where L∗
0, Q∗

0[x, x], and C∗
0 [x, x, x] are vector valued lin-

ear, quadratic, and cubic terms of f∗(x), respectively; and

f∗(x) = f(x) + g(x)Kx. Denote ℓ∗ and r∗ as a left and a

right eigenvector of L∗
0 associated with the eigenvalue jωc

with ℓ̄∗ and r̄∗ being the conjugate such that ℓ∗r∗ = 1.
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As such ℓ̄∗ and r̄∗ are a left and a right eigenvector of L∗
0

associated with the eigenvalue −jωc. Let

β2 = 2ℜe{2ℓ∗Q∗
0[r

∗, ς] + ℓ∗Q∗
0[r̄

∗, τ ] +
3

4
ℓ∗C∗

0 [r∗, r∗, r̄∗]},
(5)

where

ς = − 1
2L∗−1

0 Q∗
0[r

∗, r̄∗], τ = 1
2 (2jωcI − L∗

0)
−1Q∗

0[r
∗, r∗].

The Lyapunov function V (x) is in the form:

V (x) = α(xT Px + ρ[x, x, x] + ϕ[x, x, x, x]), α > 0,

where each term is obtained as follows.

Algorithm 3.2: [6] Construction of Lyapunov functions.

1) Compute ℓ∗ and r∗ and choose a basis

{r∗1, r∗2, ..., r∗n} for Rn with r∗1 = r∗, r∗2 = r̄∗,

and for which {r∗3, r∗4, ..., r∗n} is a basis for stable

subspace Es, which is defined as the eigenvectors

(and the generalized eigenvectors, if any) of L∗
0

corresponding to the stable eigenvalues of L∗
0. Let

ℓ∗1 = ℓ and ℓ∗2 = ℓ̄. Calculate the row vectors

{ℓ∗3, ℓ∗4, ..., ℓ∗n} of the associated dual basis. Check

that β2 < 0 where β2 is defined in Equation (5).

2) Pick any Π satisfying: i) Πr∗ = Πr̄∗ = 0; ii) aT Πa >
0; iii) aT (L∗T

0 Π+ΠL∗
0)a < 0 for all a∈Es, and a 6=0,

and such that β2 + ∆H(Π) < 0, where

∆H(Π) = Q∗T
0 [r∗, r̄∗]((L∗−1

0 )T Π+ΠL∗−1
0 )Q∗

0[r
∗, r̄∗]

−1

4
Q∗T

0 [r∗, r∗]{Π(L∗
0 + 2jωcI)−1

+((L∗
0 − 2jωcI)−1)T Π}Q∗

0[r̄
∗, r̄∗]

3) Set P = Π + ℓ∗T ℓ̄∗ + ℓ̄∗T ℓ∗

4) Set ρ[x1, x2, x3]

=

n
∑

i=1

n
∑

j=1

n
∑

k=1

γijk(ℓ∗ix1)(ℓ∗jx2)(ℓ∗kx3) (6)

and

γ111 = − 2

3jωc

ℓ̄∗Q∗
0[r

∗, r∗] (7)

γ112 = − 1

3jωc

{

4ℓ̄∗Q∗
0[r

∗, r̄∗] + 2ℓ∗Q∗
0[r

∗, r∗]
}

(8)

γi11 = −1

3

{

4ℓ̄∗Q∗
0[r

∗, (2jωcI + L∗
0)

−1r∗i]

+2Q∗T
0 [r∗, r∗]Π(L∗

0 + 2jωcI)−1r∗i
}

(9)

γi12 = −2

3

{

ℓ̄∗Q∗
0[r̄

∗, L∗−1
0 r∗i] + ℓ∗Q∗

0[r
∗, L∗−1

0 r∗i]

+Q∗T
0 [r∗, r̄∗]ΠL∗−1

0 r∗i
}

(10)

where i = 3, 4, ..., n in Eq. (9) and (10).

5) Set ϕ[x1, x2, x3, x4] =
∑n

i=1

∑n
j=1

∑n
k=1

∑n
p=1 {

εijkp(ℓ∗ix1)(ℓ∗jx2)(ℓ∗kx3)(ℓ∗px4)
}

(11)

where, ε1111 = ϕ[r∗, r∗, r∗, r∗] and ε1112 =
ϕ[r∗, r∗, r∗, r̄∗] are selected according to

2ℓ̄∗C∗
0 [r∗, r∗, r∗] + 3ρ[r∗, r∗, Q∗

0[r
∗, r∗]]

+4jωcϕ[r∗, r∗, r∗, r∗] = 0 (12)

and

ℓ∗C∗
0 [r∗, r∗, r∗] + 3ℓ̄∗C∗

0 [r∗, r∗, r̄∗]

+3ρ[r∗, r∗, Q∗
0[r

∗, r̄∗]] + 3ρ[r∗, r̄∗, Q∗
0[r

∗, r∗]]

+4jωcϕ[r∗, r∗, r∗, r̄∗] = 0 (13)

6) All structural coefficients γijk and εijkp which have

not been specified in the above steps are assigned

arbitrarily, modulo the symmetry requirement and the

conjugate symmetry requirement: γ̄ijk = γ[i][j][k] and

ε̄ijkp = ε[i][j][k][p] with [i] ≡ 2 if i = 1, [i] ≡ 1 if

i = 2, and [i] ≡ 0 otherwise. �

Now we are in the position to present the main theorem

in this paper.

Theorem 3.3: Given a class of local stabilizing bifurcation

(Hopf) controllers u = Kx for the Hopf bifurcated system

(1). Let

V (x) = α
(

xT Px + ρ[x, x, x] + ϕ[x, x, x, x]
)

be the Lyapunov function constructed from Algorithm 3.2

for the system (2). If there is an η > 0 such that

M := α(L∗T
0 Π + ΠL∗

0) +
2α2

η2
ΠbbT Π +

1

2
cT c ≤ 0,

then there exists a small neighborhood D ⊂ Rn of the origin

such that, ∀x(0) ∈ D, the local L2 gain achieved by u
will be no greater than η as a function of α. Furthermore,

the smallest possible η can be obtained through a search

conducted on varying α.

PROOF :
The time derivative of V (x) evaluated along trajectories

of the controlled system (2) under u = Kx (with w = 0)

can be written in Taylor series as

∂V

∂x

∣

∣

∣

∣

f∗(x)

= α
{

xT (L∗T
0 P + PL∗

0)x + 2Q∗T
0 [x, x]Px

+3ρ[x, x, L∗
0x] + 2C∗T

0 [x, x, x]Px

+3ρ[x, x, Q∗
0[x, x]] + 4ϕ[x, x, x, L∗

0x]...}
The HJB (4) of this system, for an η > 0, can then be

obtained as:

HJB = H(2) + H(3) + H(4) + O(x5)

where the integer subscripts represent the quadratic, cubic

and quartic terms in x, and O(x5) represents terms of fifth

and higher orders of x. H(2) is given by

H(2) = xT

{

α(L∗T
0 P + PL∗

0) +
2α2

η2
PbbT P +

1

2
cT c

}

x

= xT

{

α(L∗T
0 Π + ΠL∗

0) +
2α2

η2
ΠbbT Π +

1

2
cT c

}

x

= xT Mx

While M ≤ 0 (or M < 0 in Es) implies H(2) ≤ 0
(or H(2) < 0 in Es), it does not of course guarantee that
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HJB ≤ 0 in the entire support space. Next we shall show

that the HJB is indeed negative definite by following the

method similar to that of [6].

Recall that, in Hypothesis H , any vector x ∈ Rn has

a unique representation x = dr∗ + d̄r̄∗ + a, where d is a

complex scalar, r∗ is the right eigenvector of L∗
0 associated

with the eigenvalue jωc, and a ∈ Es. From Equations (7)

and (8), we readily obtain:

ρ[r∗, r∗, r∗] = − 2

3jωc

ℓ̄∗Q∗
0[r

∗, r∗] (14)

ρ[r∗, r∗, r̄∗] = − 1

3jωc

{

4ℓ̄∗Q∗
0[r

∗, r̄∗] + 2ℓ∗Q∗
0[r

∗, r∗]
}

(15)

Since the vectors r∗k, k = 3, 4, · · ·, n, form a basis for Es,

Equation (9) is a solution of

n
∑

i=3

γi11(ℓ
∗iã) = −1

3

{

4ℓ̄∗Q∗
0[r

∗, (2jωcI + L∗
0)

−1ã]

+2Q∗T
0 [r∗, r∗]Π(L∗

0 + 2jωcI)−1ã
}

(16)

where ã = r∗k, k = 3, 4, · · ·, n. Moreover, knowledge of a

vector ã ∈ Es is tantamount to knowledge of another vector

a = (L∗
0 + 2jωcI)−1ã ∈ Es. Thus above equation can be

further written as
n

∑

i=3

γi11

(

ℓ∗i(L∗
0 + 2jωcI)a

)

= −1

3

{

4ℓ̄∗Q∗
0[r

∗, a]

+2Q∗T
0 [r∗, r∗]Πa

}

(17)

In addition, from Equation (6), we have

ρ[r∗, r∗, (L∗
0 + 2jωcI)a] =

n
∑

i=1

n
∑

j=1

n
∑

k=1

γijk(ℓ∗ir∗)(ℓ∗jr∗)(ℓ∗kL∗
0a) =

n
∑

i=2

γi11

(

ℓ∗i(L∗
0 + 2jωcI)∗a

)

(18)

Combining Equation (17) and (18), we have

ρ[r∗, r∗, (L∗
0 + 2jωcI)a] = −1

3

{

4ℓ̄∗Q∗
0[r

∗, a]

+2Q∗T
0 [r∗, r∗]Πa

}

(19)

In a similar fashion, we obtain from Equation (10) that

ρ[r∗, r̄∗, L∗
0a] = −2

3

{

ℓ̄∗Q∗
0[r̄

∗, a]

+ℓ∗Q∗
0[r

∗, a] + Q∗T
0 [r∗, r̄∗]Πa

}

(20)

Since ℓ∗r∗ = 1, the r-component of any vector x is given

by (ℓ∗x)r∗, the r̄∗-component is (ℓ̄∗x)r̄∗, and the Es-

component is xs = x−(ℓ∗x)r∗−(ℓ̄∗x)r̄∗, then by Equations

(14), (15) and (19), we have

ρ[r, r, x] = − 2

3jωc

(ℓ∗x)ℓ̄∗Q∗
0[r

∗, r∗]− 2

3jωc

(ℓ̄∗x) {ℓ∗Q∗
0[r

∗, r∗]

+2ℓ̄∗Q∗
0[r

∗, r̄∗]
}

− 1

3

{

2Q∗T
0 [r∗, r∗]Π(L∗

0 + 2jωcI)−1xs

+4ℓ̄∗Q∗
0[r

∗, (L∗
0 + 2jωcI)−1xs]

}

Letting x = Q∗
0[r̄

∗, r̄∗], we may rewrite the above equation

as

ρ[r∗, r∗, Q∗
0[r̄

∗, r̄∗]] =
8

3
ℓ̄∗Q∗

0[r
∗, τ̄ ] +

4

3
Q∗T

0 [r∗, r∗]Πτ̄

− 2

9jωc

{

(ℓ∗Q∗
0[r̄

∗, r̄∗])(ℓ̄∗Q∗
0[r

∗, r∗])
}

− 2

3jωc

{

(ℓ̄∗Q∗
0[r̄

∗, r̄∗])(ℓ∗Q∗
0[r

∗, r∗])
}

Therefore, we obtain

ℜe {ρ[r∗, r∗, Q∗
0[r̄

∗, r̄∗]]} = ℜe

{

8

3
ℓ̄∗Q∗

0[r
∗, τ̄ ]

+
4

3
Q∗T

0 [r∗, r∗]Πτ̄

}

(21)

In a similar way, we have

ℜe {ρ[r∗, r̄∗, Q∗
0[r

∗, r̄∗]]} = ℜe

{

8

3
ℓ∗Q∗

0[r
∗, ς]

+
4

3
Q∗T

0 [r∗, r̄∗]Πς

}

(22)

From Algorithm 3.2 Step 2 we know that β2 +∆H(Π) < 0.

From Equations (21) and (22) we can verify that

ℜe {2ℓ∗C∗
0 [r∗, r∗, r̄∗] + ρ[r∗, r∗, Q∗

0[r̄
∗, r̄∗]]

+2ρ[r∗, r̄∗, Q∗
0[r

∗, r̄∗]]} < 0 (23)

Then the quadratic and cubic terms of the HJB are given by

H(2) = aT

{

α(L∗T
0 Π + ΠL∗

0) +
2α2

η2
ΠbbT Π +

1

2
cT c

}

a

= aT Ma (24)

H(3) = α
{

d3
{

2ℓ̄∗Q∗
0[r

∗, r∗] + 3jωcρ[r∗, r∗, r∗]
}

+d2d̄
{

2ℓ∗Q∗
0[r

∗, r∗] + 4ℓ̄∗Q∗
0[r

∗, r̄∗]

+3jωcρ[r∗, r∗, r̄∗]} + d2
{

4ℓ̄∗Q∗
0[r

∗, a]

+2Q∗T
0 [r∗, r∗]Πa + 3ρ[r∗, r∗, L∗

0a]

+6jωcρ[r∗, r∗, a]} + dd̄
{

4ℓ̄∗Q∗
0[r̄

∗, a]

+4ℓ∗Q∗
0[r

∗, a] + 4Q∗T
0 [r∗, r̄∗]Πa

+6ρ[r∗, r̄∗, L∗
0a]} + O(H(3))

}

where O(H(3)) represents the terms that have no impact

on the local definiteness of the HJB equation, from the

Proposition (3.1)’s point of view; and the coefficients of d̄3,

d̄2d and d̄2 are not listed since they are simply the conjugate

of the coefficients of d3, d2d̄ and d2 respectively. Substituting

Equations (14), (15), (19) and (20) into the above equation,

we have

H(3) = αO(H(3))

The quartic term of the HJB is given by

H(4) = α
{

d4
{

2ℓ̄∗C∗
0 [r∗, r∗, r∗] + 3ρ[r∗, r∗, Q∗

0[r
∗, r∗]]
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Fig. 2. A modified Van der Pol circuit.

+4jωcϕ[r∗, r∗, r∗, r∗] + 2d3d̄ {ℓ∗C∗
0 [r∗, r∗, r∗]}

+3ℓ̄∗C∗
0 [r∗, r∗, r̄∗] + 3ρ[r∗, r∗, Q∗

0[r
∗, r̄∗]]

+3ρ[r∗, r̄∗, Q∗
0[r

∗, r∗]] + 4jωcϕ[r∗, r∗, r∗, r̄∗]}
+6d2d̄2 {2ℓ∗C∗

0 [r∗, r∗, r̄∗] + ρ[r∗, r∗, Q∗
0[r̄

∗, r̄∗]]

+2ρ[r∗, r̄∗, Q∗
0[r

∗, r̄∗]]} + O(H(4))
}

where O(H(4)) has the same meaning as O(H(3)), and the

coefficients of d̄4 and d̄3d are not listed since they are simply

the conjugate of the coefficients of d4 and d3d̄ respectively.

Substituting Equations (12) and (13) into above equation, we

obtain

H(4) = α
{

6d2d̄2 {ℓ∗C∗
0 [r∗, r∗, r̄∗] + ρ[r∗, r∗, Q∗

0[r̄
∗, r̄∗]]

+2ρ[r∗, r̄∗, Q∗
0[r

∗, r̄∗]]} + O(H(4))
}

Let s ≡ a, t ≡ d, c20 = M , c12 = 0, and c04 be

the coefficient of d2d̄2 in H(4), then from inequality (23)

and Proposition (3.1), we conclude that the HJB is indeed

negative definite.

Since only H(2) contains η, therefore if M ≤ 0, then there

exists a small neighborhood D ⊂ Rn of the origin such that,

∀x ∈ D, the local L2 gain achieved by u = Kx will be less

than or equal to η.

It is clear from this theorem that, although only the second

order term of x contains η (in Es), we may need to compute

up to the fourth order to verify the local definiteness of the

HJB equation. In other words, we may construct a family

of Lyapunov functions containing cubic and quartic terms,

but only quadratic term contributes to the analysis of local

L2 gain of the bifurcated systems. Thus, the cumbersome

computation of the cubic and quartic terms may be omitted.

Also note that for all state feedback stabilizing bifurcation

controllers synthesized from theorems in [1], [7], the L2 gain

could be calculated by applying Theorem 3.3. Hence, the

best robust controller could be determined by comparing all

of these L2 gain values and the controller corresponding to

the smallest value will be the one.

IV. APPLICATION TO A VAN DER POL OSCILLATOR

Van der Pol oscillator and its modified forms have been

widely studied for their rich nonlinear dynamical behaviors

[11]. The one used in this paper is shown in Fig. 2 [5], where

a battery with voltage a volts is added, and the nonlinear

negative conductance has a voltage-current characteristic

f(x1) = −a1x1+a3x
3
1, a1, a3 > 0. Applying the Kirchhoff’s

laws, we have

C0ẋ1 = −f(x1) + x3−x1

R
− x2

Lẋ2 = x1 − a, Cẋ3 = −x3−x1

R

Using the dimensionless variables x1 = V0x̄1, x2 = V0

ωL
x̄2,

x3 = V0x̄3, τ = ωt with ω = 1√
LC

, V0 =
√

a1

3a3

; defining

new parameters ǫ = C0

C
, ā = a

V0

, ̺ = a1

ωC
, R̄ = RωC; and

omitting the bars, we can re-write the above equations as:

ǫẋ1 = −g(x1) + x3−x1

R
− x2

ẋ2 = x1 − a, ẋ3 = −x3−x1

R

where g(x1) = ̺(x3
1/3 − x1). we take a as bifurcation

parameter with ǫ = 0.95, ̺ = 2 and R = 1. It can be shown

that subcritical Hopf bifurcation is born at a = 0.897 [5].

Once again, taking the transformation x̂ = [x̂1, x̂2, x̂3]
T =

[x1 − a, x2 + g(a), x3 − a]T ; letting u = Kx̂ be the

stabilization controller and taking the disturbance w into

consideration, we can re-write the above system equations

into the following form by omitting the hats:

ẋ = f(x) + u + bw = f∗(x) + bw
z = cx

(25)

with f∗(x) = f(x) + u. Applying theorems in [1] or [7], a

class of stabilization controllers can be synthesized as:

K = k





0.2386 0.1530 −0.3916
0.2350 0.1507 −0.3857
−0.3721 −0.2386 0.6107





where 0.0797 < k < 1.6413. It can be verified that the

critical modes remain unchanged under these controllers.

In this example, we take b = [0.3156,−0.1923,−0.4921]T

and c = [1, 0.6413,−1.6413]. Following Algorithm 3.2 to

construct a Lyapunov function, we have:

Π = p33





1 0.6413 −1.6413
0.6413 0.4113 −1.0526
−1.6413 −1.0526 2.6940





where p33 > 0 is a dummy constant that satisfies the criteria

in Step 2 of Algorithm 3.2 but has no effect on our next

computation .

From Theorem 3.3 and after some algebra, we can reduce

the matrix inequality M ≤ 0 to the following inequality

2αp33(k − 1.6413) + 2α2

η2 p2
33 + 1

2≤0

The minimum value of η can be obtained as η0 = 1
1.6413−k

when α = 1
2p331.6413−k

. From Theorem 3.3, we conclude

that the local L2 gain of the system (25) is less than or

equal to 1
1.6413−k

. Since 0.0797 < k < 1.6413, it is obvious

that the most robust controller, which has the lowest L2 gain,

is k = 0.0797.

To illustrate the effectiveness of L2-gain analysis, we

compare two controllers under different uncertainties: k =
0.1 and k = 1.0, which represent approximately the upper

bound and medium of all stabilizing controllers. Assume

that x(0) = 0. First, a comparatively small uncertainty w is
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Fig. 3. Comparison of state x1 between two controllers with different uncertainties: (a) Small uncertainty w = 0.1 lasting for 1 second. (b) Large
uncertainty w = 1.0 lasting for 10 seconds. System with the controller k = 0.1 that has a smaller L2 gain is stable.

set as a rectangular signal with amplitude 0.1 and duration

lasting for 1 second. Transient responses of the state x1 of the

controllers are depicted in Fig. 3(a). It is clear that oscillation

of the controller k = 0.1 is very small, while oscillation of

k = 1.0 with a larger L2 gain is considerably big. Second,

comparison under a comparatively large uncertainty w = 1
for a duration of 10 seconds is also plotted in Fig. 3(b).

Apparently, the system under the controller k = 0.1 that

has the smaller L2 gain is stable, while another becomes

unstable.

V. CONCLUSION

In this paper, robust analysis results based on the L2 gain

approach are derived for a class of stabilizing controllers

for nonlinear bifurcated/critical systems with the linearized

system at the equilibrium point possessing a pair of pure

imaginary eigenvalues. Simplified sufficient conditions for

computing the local L2 gain achieved by the controllers

is synthesized. Robust design can be conducted through

searching the most robust controller among all the given

controllers based on the L2 gain value. The theoretical results

provide useful guidance for selecting a robust controller from

a given class of Hopf bifurcation stabilizing control. The

general idea presented in this paper is also applicable to an

entire family of feedback controllers developed recently for

Hopf bifurcations with two uncontrollable modes [8].
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