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Abstract— This paper addresses the optimization and stabi-
lization problem for networked control systems (NCSs). The
memoryless state feedback controller is considered, and the
resulting closed-loop NCS is modeled as a discrete-time switch
system. By defining a state-dependent Lyapunov function, the
stability conditions are derived for NCSs in terms of linear
matrix inequalities (LMIs). Based on the obtained stability
conditions, the corresponding controller design problem is
solved, and Estimation of Distribution Algorithm (EDA) is
used to select the optimal state feedback stabilizing gain. It is
shown that the proposed method can be easily implemented to
various applications, since it is simple and has no assumptions
on time delays and packet losses. Simulation results are given
to demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

Networked control systems (NCSs) are spatially dis-

tributed control systems with the control loops closed over

communication networks. Recently, NCSs have attracted

significant attention from research communities and a wealth

of literature have appeared. For example, the discussions of

NCSs under effects of time delays [1]–[6], packet losses [7],

[8], network constraints [9], [10], signal quantization [11],

[12], and scheduling [13] were presented and some useful

results were reported. In addition, due to the advantages

of reduced system wiring, simple installation, increased

system flexibility, and the great benefits from sharing of the

resources [6], [8], NCSs have been finding applications in

DC motors [4], robots [5] and vehicles [14], etc.

Time delays and packet losses are two major causes for

the NCSs performance deterioration and potential NCSs

instability. On the other hand, memoryless state feedback

control is a simple and effective control method. It has a

simple structure and does not require controller memory to

store a large amount of past information such as historical

plant state values. Therefore, memoryless state feedback

control for NCSs with both time delays and packet losses

has received considerable attention in the past few years. The

memoryless state feedback control for NCSs, either in the

continuous-time domain ( [15], [16], [17]), or in the discrete-

time domain ( [8], [19]–[22]), have been investigated with

results reported in the literature. It is noticed that, for the

memoryless state feedback controller design methods in the

aforementioned results, most of them are derived from the

stability conditions, and none of them considered the control
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performance of NCSs. As a results, the designed memoryless

state feedback controller can only guarantee the NCSs to

be asymptotically stable while the control performance of

NCSs may be not satisfied. However, in control practice, it

not only requires a NCS to be asymptotically stable, but also

requires the NCS to meet some performance specifications.

Therefore, the memoryless state feedback controller design

method with both system stability and control performance

taken into account is much needed, which motivates the

present study.

In this paper, we investigate the memoryless state feedback

control for NCSs in the discrete-time domain, where both sta-

bility and performance are considered during the controller

design. For the NCSs with time delays and packet losses,

this paper proposes a new discrete-time switch system. In

terms of the given model, the stability conditions are derived

for NCSs in terms of LMIs. Based on the obtained stability

conditions, the corresponding controller design problem is

solved, and Estimation of Distribution Algorithm (EDA) is

used to select the optimal state feedback stabilizing gain.

It is shown that the proposed method can be easily imple-

mented to various applications, since it is simple and has

no assumptions on the time delays and the packet losses.

Simulation results demonstrate that the proposed controller

shows better performance than the existing memoryless state

feedback stabilizing controllers.

Notation. Throughout this paper, R
n and R

n×m denote

the n dimensional Euclidean space and the set of all n ×
m real matrices respectively. The superscript “T ” denotes

matrix transposition; and for symmetric matrices X and Y ,

the notation X > Y means that X − Y is positive definite.

I is the identity matrix with appropriate dimensions, and the

notation Z
+ stands for the set of nonnegative integers.

II. PROBLEM FORMULATION

The NCS considered in this paper is depicted in Fig.1,

where the plant is modeled by a linear discrete-time system:

x(k + 1) = Fx(k) + Gu(k), (1)

where x(k) ∈ R
n and u(k) ∈ R

m are the plant state and

the control input, respectively. F and G are known matrices

with appropriate dimensions.

The sensor is time-driven. At each sampling period,

the sampled plant state and the time it is sampled (i.e.,

timestamp) are encapsulated into a packet and sent to the

controller via the network. The timestamp will ensure the

controller determine the order of the sensor packets, and
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Fig. 1. The structure of the concerned networked control systems

correspondingly select the right one to compute the control

signal. In practice, the data packets in NCSs usually suffer

time delays and packet losses during network transmissions.

As shown in Fig.1, for the considered NCSs, we use τsc

and τca to denote the sensor-to-controller delay and the

controller-to-actuator delay, and use two switches S1 and

S2 to model the packet losses in the backward network and

the forward network. For example, when S1 is open, the

sensor packet is lost during the network transmission from

the sensor to the controller; whereas when S1 is closed, the

packet is successfully transmitted to the controller with a

sensor-to-controller delay τsc. Similar arrangements are for

the forward network.

The controller has a buffer denoted as buffer A. The buffer

size used in this paper is 1, which implies that the sensor

packet with the latest timestamp is used to update the buffer

content. In more details, when a sensor packet arrives at

the controller, it will be compared with the timestamp of

the plant state in buffer A. The recent plant state (i.e., the

one with the recent timestamp) and its timestamp will be

put into buffer A. The networked controller is a memoryless

state feedback controller with the following form:

u = Kbuffer(A), (2)

where K is the feedback gain to be designed, buffer(A) is

the updated plant state in buffer A. The controller is event-

driven, i.e., whenever there is new data in buffer A, the con-

troller starts calculating the control signal. Immediately after

the calculation, the new control signal and the timestamp of

the used plant state are encapsulated in a packet and sent to

the actuator via the network. The timestamp will ensure the

actuator select the right control signal to control the plant.

The actuator is time-driven. It is assumed that the actuator

and the sensor have the same sampling period h and they

are synchronized. As shown in Fig.1, the actuator also has a

buffer size of 1, which means that the latest control packet is

used to control the plant. For analysis purpose, we let τk �
τsc(k) + τca(k) express the Round Trip Time (RTT) delay

encountered by kth sampling time packet from the sensor,

i.e., τk is from the time instant when the sensor samples the

plant state to the time instant when the control signal based

on this packet reaches the actuator. To simplify the analysis,

we only use the control packets with τk ≤ 2h to control the

plant (i.e., when a control packet reaches the actuator, it is

used to update the buffer if its RTT delay is no longer than 2h
and its timestamp is newer than that of the control signal in

Buffer. Otherwise, it will be discarded), but the idea behind

this paper can be easily extended to the case τk > 2h. The

actuator uses a zero-order hold (ZOH). At each sampling

period, the ZOH reads the control signal from buffer B and

uses it to control the plant.

Remark 1: Note that the actuator and the sensor are at

the same location. Theretofore, the synchronization between

the actuator and the sensor can be easily archived by hard-

ware synchronization, for instance, using special wiring to

distribute a global clock signal to the sensor and the actuator.

It also worths noting that, the plant (1) can be considered as

discretized from a continuous-time system given by

ẋp(t) = Axp(t) + Bu(t), (3)

with sampling period h and

F = eAh, G =
∫ h

0

eAτdτB. (4)

III. MODELING OF NCSS

This section will present a discrete-time switch model for

NCSs. To address this problem, we introduce the definition

of an effective sensor packet as follows.

Definition 1. A packet from the sensor is called an

effective sensor packet for the controller (2), if its RTT delay

is no longer than 2h.

Let S � {i1, i2, · · ·}, a subsequence of {0, 1, 2, · · ·},

denote the sequence of time index of effective sensor packets.

As mentioned in the previous section, for the NCSs under

investigation, only effective sensor packets are used to control

the plant. Therefore, the sensor packets between two effective
sensor packets, i.e., the sensor packets with time index k ∈
(im, im+1), can all be considered as dropped packets, where

im ∈ S. Based on this idea, the following mathematical

model is used to capture the nature of packet losses in NCSs.

Definition 2. The packet losses process in the NCSs is

defined as {
η(im) � im+1 − im, im ∈ S

}
, (5)

which means that, from im to im+1, the number of dropped

packets is η(im) − 1. Especially, when two consecutive

sensor packets are effective sensor packets, we have η(im) =
1, which means no packet is dropped because η(im) −
1 = 0. For the sake of analysis, we define Ndrop �
maxim∈S{η(im)}. Then we can conclude that η(im) takes

values in a finite set Ω � {1, 2, · · · , Ndrop}.

Let τim
express the RTT delay encountered by the mth ef-

fective sensor packet. As illustrated in Fig.2, three cases may

arise in NCSs during the time interval between two effective
sensor packets, i.e., [imh, im+1h]. As discussed in [21], the

dynamics of NCSs corresponding to the three different cases

can be described as three different subsystems. If we intro-

duce the augmented state z(im) =
[
xT

im
, xT

im−1
, xT

im−2

]T

into the three different subsystems, the three subsystems can
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Fig. 2. The illustration of time delays and packet losses of NCSs.

be synthesized into a general framework, which is described

by the following discrete-time switch system:

z(im+1) = M r(im)z(im) (6)

where r(im) is a piecewise constant function called a switch-
ing signal, which takes values in a finite set S � {1, 2, 3}.
For r(im) ∈ S, we have

M 1 =

2
664

Υ +
η(im)−2P

j=0

F rGK F η(im)−1GK 0

I 0 0
0 I 0

3
775

(7)

M 2 =

2
664

Υ +
η(im)−3P

j=0

F rGK
η(im)−1P

j=η(im)−2

F rGK 0

I 0 0
0 I 0

3
775

(8)

M3 =

2
664

Υ +
η(im)−3P

j=0
F rGK Fη(im)−2GK Fη(im)−1GK

I 0 0
0 I 0

3
775

(9)

where Υ = F η(im), η(im) ∈ Ω.

Moreover, for im < l < im+1, the behavior of NCSs can

be expressed by

z(l) = M̄ r(im)z(im) (10)

where r(im) ∈ S, z(l) �
[
xT

l xT
im−1

xT
im−2

]T

, M̄ r(im) is

similar to (7)-(9) but with η(im) replaced by l − im.

For more details of the modeling process and the used

notations, please refer to our previous work [21]. [21] has

also shown that networked DC motor system (6) in the

presence of time delays and packet losses is asymptotically

stable, if for i, j ∈ S, there exist positive definite matrices

P i ∈ R
3n×3n, P j ∈ R

3n×3n satisfying

MT
i P jM i − P i < 0 (11)

where M i is of form (7)-(9).

IV. THE OPTIMAL STABILIZING GAIN SELECTION

This section will present a optimal state feedback sta-

bilizing gain selection method. In this paper, the optimal

stabilizing gain design problem is transformed into an op-

timization problem, and then solved based on a heuristic

search algorithm.

• The optimization variables

In the optimization problem, the optimization variables are

the elements of the controller gain K. For future use, we

transform the optimization variables into a vector:

V = (v1, v2, . . . , vS̄) (12)

where S̄ is the dimension of V .

• The cost function

Different engineering applications have their performance

measures, which can be used to construct their cost function.

In this paper, the mean square error is used to evaluate

the NCSs step response. The corresponding cost function

is defined as follows:

J =
1
N

N∑
k=0

(r(k) − y(k))2 (13)

where N is the appropriate time index such that the tracking

has arrived at the steady state, r(k) and y(k) are the

reference input and plant output at time index k.

• Stable Region Constraint (SRC)

A set Ψ ⊂ R
1×S̄ is called the Stable Region of the

concerned NCSs, if any element in Ψ can satisfy the stability

conditions described in (11), i.e., Ψ is composed of controller

gains that can guarantee the NCSs to be asymptotically

stable. Obviously, the controller gains that can provide sat-

isfactory control performance for NCSs must be within the

defined Stable Region, since satisfactory control performance

not only requires the system to be asymptotically stable,

but also require the system to meet some performance

specifications. Therefore, it is sufficient to search the optimal

controller gain within the Stable Region, which can effec-

tively reduce the search space and guarantee the stability of

NCSs during the optimization procedure. Based on this idea,

Stable Region Constraint (SRC) is introduced as follows:

SRC : V ∈ Ψ, ∀ V (14)

which means that the optimization variables are constrained

to the defined Stable Region throughout the optimization

procedure.

In summary, the optimization problem can be expressed

as:
OP : min J
s.t. SRC : V ∈ Ψ, ∀ V

(15)

Obviously, the SRC can guarantee the stability of NCSs. On

the other hand, by minimizing the cost function, the control

performance of NCSs is optimized. Therefore, both stability

and control performance can be guaranteed by solving the

optimization problem (15).

In this paper, a population-based, heuristic search algo-

rithm namely Estimation of Distribution Algorithm (EDA)

is used to solve the optimization problem (15). EDA has

recently been recognized as a new computing paradigm in
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evolutionary computation. Unlike other Evolutionary Algo-

rithms, EDA does not use crossover or mutation. Instead,

it explicitly extracts global statistical information from the

selected solutions, and subsequently builds a probability

model of promising solutions based on the extracted infor-

mation. Thus, the relationships between the variables are

explicitly and effectively captured and exploited. For more

details on EDA, please refer to [23] and [24]. A typical

EDA algorithm is used in this paper, where the optimization

variables in the search space are modeled as a multivariate

normal distribution p(q) =
∏S̄

i=1 p(qi), which is a product

of S̄ independent univariate normal distributions p(qi). As a

result, the solutions of EDA can be replaced by two vectors,

the mean values of Gaussian normal distribution, μi, and the

standard deviation, σi. No interactions among variables are

considered. The EDA algorithm used in this paper can be

summarized as follows:

1. Under Stable Region Constraint, generate W1 individ-

uals randomly in search space to form an initial population.

2. Repeat the following steps:

a. Select the best W2 individuals from the parent

generation, where W2 ≤ W1.

b. Update the multivariate Gaussian distribution using

the selected individuals according to

μi =
1

W2

W2∑
j=1

vj
i (16)

σi =

√√√√ 1
W2

W2∑
j=1

(vj
i − v̄j

i )2 (17)

where the selected W2 individuals V̄ i (i = 1, . . . , W2) are

denoted as V̄ i = (vi
1, . . . , v

i
S̄
), v̄j

i is the mean of vj
i , j =

1, . . . W2.

c. Generate the next population: The best individual

is copied to the next population. Under Stable Region Con-
straint, the rest W1 − 1 individuals are generated with the

new multivariate normal distribution.

Remark 2: Although we do not know the exact Stable
Region of a NCS, we can realize the Stable Region Constraint
based on the stability conditions described in (11). Taking

Step 1 for example, we can generate an individual candidate

in the search space randomly, and then check whether it satis-

fies the stability conditions described in (11). If it does, it will

be selected as an individual of the population. Otherwise, we

discard the candidate point and repeat the above steps until

we obtain one satisfying the stability conditions described in

(11). Similar arrangement is for Step 2-c.

V. ILLUSTRATIVE EXAMPLES

Consider a NCS with setup shown in Fig.1, where the

controlled plant was used in [15] and [19], and is given by

ẋp(t) =
[

0 1
0 −0.1

]
xp(t) +

[
0
0.1

]
u(t). (18)

When the plant is sampled with a sampling period h =
0.6s, the discretized plant is system (1) with

F =
[

1.0000 0.5824
0 0.9418

]
, G =

[
0.0176
0.0582

]
. (19)

Due to the application variations of comparative control

methods, two operating conditions are considered and dis-

cussed as follows.

Case 1.1: The RTT delays are less than h.

In this scenario, we assume that τk ∈ (0s, 0.6s] and

Ndrop = 5, which means that the RTT delays encountered

by the sensor packets are less than h and up to 4 consecutive

packets can be lost during the network transmissions. For

the above NCS, [19] designed a non-networked controller

u = [−3.75 − 11.5] x. With the initial state x0 = [−2, 0]T

and output equation y(k) = [1, 0] x(k), the simulation result

of the NCS under this controller is depicted by the dot-

dashed line in Fig.3. The corresponding network condition is

shown in Fig.4, where the time delays are represented by the

height of stem and the packet losses are indicated with circles

on the packet number axes. Then, by using the Theorem 11

in [8] to this NCS, we obtain a discrete-time state feedback

controller u = [−0.6989,−3.6859] x. For fair comparisons,

the network condition shown in Fig.4 is used and the

simulation result of the NCS with this networked controller

is depicted by the dashed line in Fig.3. Now, we apply the

Theorem 1 in [15] to this NCS, and obtain a continuous-

time state feedback controller u = [−0.2183,−0.7774] x.

With the network condition shown in Fig.4, the simulation

result of the NCS using this controller is depicted by dot-

solid line in Fig.3. Finally, let us consider the proposed OSFC

controller design method. This simulation uses a population

size of 50 (i.e., W1 = 50 in the EDA algorithm), with the

best 20 individuals (i.e., W2 = 20 in the EDA algorithm)

selected from the parent generation to update the multivariate

Gaussian distribution for the next generation. Applying the

OFSC controller design method to the above NCS, we obtain

u = [−0.9965 − 4.2252] x. Fig.5 depicts the corresponding

population distribution of EDA at different generations and

scales, where the circles represent the individuals of pop-

ulation and the crosses represent the discarded individual

candidates based on the Stable Region Constraint criteria.

Fig.5 clearly shows that, from generation to generation, the

population evolves towards the optimal solution and the

search space gets smaller and smaller. From Fig.5(a), we

can also approximate the boundary of the Stable Region
for the NCS. With the network condition shown in Fig.4,

the simulation result of the NCS using the OFSC controller

is depicted by the solid line in Fig.3. Fig.3 clearly shows

that, the proposed OSFC controller achieves much better

performance than the three comparative ones. This comes no

surprise since the optimization of the control performance is

only considered in the OSFC controller design.

Remark 3: As shown in Fig.5, by sampling from a prob-

ability model built on the promising solutions in the parent

generation, EDA can generate a new population in the

Stable Region for the next generation. It avoids unnecessary
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repeating steps as discussed in Remark 2, and provides faster

search speed by making the search space smaller and smaller.

This is the main reason of using EDA in this paper.

Case 1.2: The RTT delays can be larger than h.

In this scenario, we assume that Ndrop = 5 and τk ∈
(0.05s, 1.9s], where τk can be larger than h. Note that the

methods in [8] and [19] assumed τk is either equal to h or

random but smaller than h. Therefore, the methods in [8] and

[19] can not be applied to this NCS. We apply the Theorem

1 in [15] to the above NCS, and obtain a continuous-

time state feedback controller u = [−0.0591,−0.1190] x.

With the initial state x0 = [−2, 0]T and output equation

y(k) = [1, 0] x(k), the typical simulation result of the NCS

using this controller is depicted by dashed line in Fig.6,

where the corresponding network condition is shown in

Fig.7. Now, we apply the proposed OSFC controller design

method to this NCS, and obtain u = [−0.9406,−4.4168] x.

With the network condition shown in Fig.7, the simulation

result of the NCS using the OSFC controller is depicted by

the solid line in Fig.6. Fig.6 clearly shows that the proposed

SFSC controller achieves much better performance than the

published one in [15].
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Fig. 6. Typical NCS performance using different networked controllers.
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Case 1.1 and Case 1.2 demonstrate that the proposed

method shows more generality than the ones in [8] and [19],

and shows much better control performance than the ones in

[8], [19], and [15].

VI. CONCLUSIONS

This paper has investigated the optimization and stabiliza-

tion problem for NCSs with time delays and packet losses.

The memoryless state feedback controller is considered, and

the resulting closed-loop NCS is modeled as a discrete-

time switch system. By defining a state-dependent Lyapunov

function, the stability conditions are derived for NCSs in

terms of LMIs. A controller design technique with both

system stability and control performance taken into account

is proposed to design the corresponding controller. Simu-

lation results demonstrate the effectiveness of the proposed

approach.
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