
  

Abstract— This paper provides new LMI-based conditions 
for the design of H2 gain scheduled controllers for rational 
linear parameter varying systems (LPV). Such systems are 
equivalently recast as affine descriptor LPV systems. Based on 
this, new sufficient LMI-based conditions for H2 performance 
analysis are proposed. These conditions can be turned to a 
finite set of LMIs and allow the use of parameter-dependent 
Lyapunov functions. Accordingly, new LMI conditions for the 
H2 gain scheduled controller synthesis problem are given. A 
numerical example highlights the effectiveness of the proposed 
conditions. 

I. INTRODUCTION 
HE interest for analysis and control of linear parameter 
varying models has been growing during the last two 

decades (see e.g. in [2], [16]). Such models potentially allow 
the description of a wide set of practical systems including 
some non-linear ones. Several approaches concerning gain 
scheduling control of LPV systems can be found in the 
literature. One of them consists into interpolating several 
invariant controllers tuned for different operating points. 
This classical gain scheduling design is obtained in three 
steps: define the operating points for the LPV system, design 
a linear time invariant controller for each of them and finally 
build the gain scheduled controller via interpolation 
techniques. Numerous schemes can be used, as for instance 
state-space matrices or poles-zeros-gains interpolations of 
the controllers (see e.g. [10],  and [14]). This simple scheme 
often suffers from the drawback that the closed-loop 
stability is not guaranteed a priori. One exception can be 
found in [13], where the stability is ensured thanks to some 
additional constraints. 
 An alternative method to design gain scheduled 
controllers is the extension of the Lyapunov based LMI 
conditions known in the LTI case. The main advantage of 
this approach is that the closed-loop system stability is 
ensured. Recently, significant progress has been made in this 
area for some special class of LPV systems: e.g. LFT (linear 
fractional transformation), affine, polytopic, representations. 
In the case of polytopic systems, the design of a gain 
scheduled controller was considered in [1], [2], [6]. The 
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particular case of the H2 state-feedback control problem for 
polytopic systems is considered in [17]. Even if conditions 
proposed in [17] are less conservative than usual ones, they 
can hardly be exploited when considering a larger class of 
systems, as for instance rational LPV systems. Indeed, these 
conditions induce an infinite set of LMIs which makes it 
difficult to synthesize gain-scheduled state-feedback 
controllers for rational systems. To overcome these 
difficulties, parameterized LMIs can be solved as done in 
[12] thanks to full block S-procedure. 
 In this note, the design of H2 gain scheduled controller for 
rational LPV systems is considered. Descriptor realizations 
are interesting tools for analysis and control of rational LPV 
systems (see e.g. [9], and [4]). This comes from the fact that 
state space equations with rational dependency on the 
parameter can be transformed into a polytopic descriptor 
form as pointed out in [8] , [9] and proved in [3]. Starting 
from this transformation, the present paper proposes new 
sufficient conditions for the design of H2 gain scheduled 
controllers for rational LPV systems. 

This paper is organized as follows: in section II, the class 
of systems considered is defined. The transformation of 
rational LPV systems into an equivalent descriptor 
realization is recalled, just as the H2 norm evaluation for 
both classical state-space and descriptor LPV cases. In 
section III, a new strict LMI formulation is proposed for the 
characterization of H2 performance analysis of rational LPV 
systems. Based on this, a gain scheduled controller 
achieving a given H2 performance is proposed in section IV. 
Finally, a numerical example is presented in section V 
before concluding. 
Notation: The notation 0A>  stands for A  definite 
positive. The notation { }He A  stands for TA A+  and •  for 
terms that are induced by symmetry. { }ker A  (respectively 

{ }Img A ) denotes the kernel (respectively the image) of 
matrix A . 

II. PROBLEM FORMULATION 

A. Class of systems considered 
The LPV systems considered have the following form: 
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where the state matrices are assumed to be rational functions 
of the time varying vector ( )tθ .  

( ) 1
1

nx t ∈  is the state, ( ) wnw t ∈  the exogenous 
disturbance, ( ) unu t ∈  the input, ( ) znz t ∈  the 
controlled output and ( ) yny t ∈  is the measured output. 

The vector ( ) ( ) ( ) ( )1 2 ...
T

qt t t tθ θ θ θ =     is assumed 

to be real, continuously time varying and satisfying the 
following constrains 

i) Each parameter ( )i tθ  is measured and ranges 
between a priori known extremal values 

( )i i itθ θ θ ∈    . 

ii) The variation rate of each parameter ( )i tθ  is 

limited as ( )i i itθ τ τ ∈    .  

As a consequence, the varying parameter is such that 
and θ θ  evolve respectively in the hyper-rectangles P  and 

Ω : ( ) { }{ }1 2,..., \q i i iω ω ω θ θΡ = ∈  

 ( ) { }{ }1 2,..., \q i i iτ τ τ τ τΩ = ∈ .  

The set of the admissible trajectories of ( )tθ  is noted Θ . 
( )rΣ  is supposed to admit a well-posed LFT representation. 
We assume, without loss of generality, that matrices 

( ) ( ) { },  , 1, 2
i ir rB C iθ θ ∈  are constant matrices.  

Otherwise this can be obtained using a pre-filtering 
technique as proposed in [1].  
It has been shown in [3] that this class of systems can be 
equivalently recast into a descriptor realization:  

 ( )
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( )
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:d
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z t C x

y t C x

θ = + +Σ = =

 (2) 

where the descriptor state vector is partitioned as: 

 1 2
TTT nx x x = ∈    with 2

2
nx ∈ ,  1 2n n n= +  

while the state matrices are given by 

  
1

0

0 0

nI
E

  =    
, ( )
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  =   
,  

 { }1,2i∀ ∈ : 
0

i
i

B
B

  =    
, ( )0i iC C= , 

with ( )( ) { }1,2,3,4i iA θ ∈  affine functions of ( )tθ  and 

iB , { }, 1, 2iC i ∈  constant matrices. Moreover, the matrix 
( ) 2 2

4
n nA θ ×∈  is non singular for all admissible 

trajectories ( ).θ ∈ Θ . The following equations describe the 
relation between ( )rΣ  and ( )dΣ : 

 ( ) ( ) ( ) ( ) ( )1
1 2 4 3rA A A A Aθ θ θ θ θ−= −  (3) 

 { }1, 2 :  
ir ii B B∀ ∈ =  (4) 

 { }1, 2 :  
ir ii C C∀ ∈ =  (5) 

 

Remark 1: The non singularity of matrix ( )4A θ  is due to 
the existence of a well-posed LFT representation of the 
rational system ( )rΣ . Moreover, it can be shown that 

( ) 1
4A θ −  is continuously differentiable (see [3] for details). 

 

B. H2 cost function  
1) H2 performance index for LPV systems  

Let us recall the notion of H2 norm for the LPV system 
( )rΣ . Generally, the definition of the H2 performance index 
has been extended to linear time-varying (LTV) systems as 
the 2L -norm of the output signal when the system input 
considered is either a unit impulse or a stationary white 
noise (see [11]). This second interpretation is considered 
from now on. 
 
Definition 1: Let ( )rΣ  be exponentially stable. The H2 
norm can be defined as 

2
2

0

1
lim ( ) ( )

h
T

r
h

z t z t dt
h→∞

    Σ = Ξ     
∫  

when 1(0) 0x =  and ( )w t is a non zero-mean white process 
with an identity power spectrum density matrix. The symbol 
Ξ  above denotes the mathematical expectation. 
 
Following the lines of [17], ( )rΣ  will be said H2 γ -
suboptimal if the H2 performance index is such that 

2r γΣ < . A characterization of the H2 performance index 
for a LPV system is recalled next. 
 
Lemma 1: For a given 0γ > , the LPV system ( )rΣ  is 
said exponentially stable and 2r γΣ <  if there exists a 
continuously differentiable function ( ):Q Qθ θ→  of 
appropriate dimensions such that for all ( )θ ⋅ : 

 ( ) ( ) 0TQ Qθ θ= >  (6) 

 ( ) ( ){ }
( )

1 1
0T

r r r
dQ

He A Q B B
dt
θ

θ θ + + <  (7) 

 ( ){ }1 1

2T
r rtr C Q Cθ γ<  (8) 

 
2) H2 performance index for LPV descriptor systems  

Considering the class of descriptor systems described by (2), 
the H2 index is characterized next.  
Let us first remark that the following condition:  
 { } { }1ker C ker E⊇  (9) 
holds for system (2), since:  

 
1

0

0 0

nI
E

  =    
 and ( )1 1 0C C=  

This condition ensures the finiteness of the H2 index (see [7] 
and [15]).  
At second, let us consider the sufficient condition for the 
admissibility of ( )dΣ , using the constant matrices 
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n n

I
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×
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. 

 
Lemma 2: The descriptor LPV system ( )dΣ  is admissible 
if there exist continuously differentiable functions 

( ):W Wθ θ→  and ( ):S Sθ θ→  of appropriate 
dimension such that for all ( ).θ : 
 ( ) ( ) 0TW Wθ θ= >  (10) 

 
( ) ( ) ( )( ){ }

( ){ }( )
0

0

TT T

T

He A UW U S U

d
U W U
dt

θ θ θ

θ

+

+ <
 (11) 

⁯ Proof:  Is omitted for brevity reasons ⁯ 
 
The H2 index for the descriptor system (2) is now 
characterized in next lemma. 
Lemma 3: For a given scalar 0γ > , the descriptor LPV 
system ( )dΣ  is admissible and 2d γΣ <  if there exist 
continuously differentiable functions ( ):W Wθ θ→  and 

( ):S Sθ θ→  of appropriate dimensions such that for all  
( ).θ : 

 ( ) ( ) 0TW Wθ θ= >  (12) 

 
( ) ( ) ( )( ){ }

( ){ }( )
0

1 1 0

TT T

T T

He A UW U S U

d
U W U B B
dt

θ θ θ

θ

+

+ + <
 (13) 

 ( ){ } 2
1 1

T Ttr C UW U Cθ γ<  (14) 
 
Note that a dual version of Lemma 3 can be given when 
considering the dual system of (2). If it is usual to assume 
the following condition 
 { } { }1Img ImgE B⊇  
for the dual form of Lemma 3, in our case this condition 
naturally holds since we have: 

 
1

0

0 0

nI
E

  =    
 and 

1
1

0

B
B

  =    
 

Remark 2: If ( ) ( )( )0
T TUW U S Uθ θ+  is non singular 

for all ( ).θ  with ( ) 0W θ >  then there exist ( )W θ  and 
( )S θ  such that 

 ( ) ( )( ) ( ) ( )( )1
0 0

T T T TUW U S U UW U S Uθ θ θ θ−+ = +  

with ( ) ( ) 1 0W Wθ θ −= > . This property is a direct 
consequence of the particular structure of matrix E  (see 
[18] for more details) and will be useful when dealing with 
the H2 gain scheduling control as it will be shown in the 
sequel. 
Now that the H2 performance index have been characterized 
for the descriptor LPV system ( )dΣ  in Lemma 3, we shall 
examine the relations between the state-space realization 
( )rΣ  and the descriptor system ( )dΣ  and their H2 
performance indexes. 

 

C. State-space rational LPV systems versus descriptor 
affine LPV systems 

In this paper, rational LPV systems are treated through a 
descriptor realization with an affine dependence on the 
varying parameter. In this subsection, we give some 
preliminary results concerning the relation between these 
two realizations. Let us consider two descriptor systems 
given by 
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( ) ( ) ( )

( ) ( )

( ) ( )

1 2
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ˆˆ ˆ:

ˆ ˆ

Ex A x B w B u
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θ θ θ
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 = + +Σ = =

 

 
Definition 2: “Strong Equivalence” 
The descriptor realizations ( )Σ  and ( )Σ̂  are said strongly 

equivalent if and only if there exist two continuously 
differentiable functions ( ):M Mθ θ→ , ( ):N Nθ θ→  
such that: 

i) ( )M θ  and ( )N θ  are non singular matrices 
ii) ( ) 1 ,M θ −  ( ) 1N θ −  are continuously differentiable  

and the following equations hold 
 ( ) ( ) ˆM EN Eθ θ =  (15)  

  ( ) ( ) ( ) ( )ˆM A N Aθ θ θ θ=  (16)  

 ( ) ( )( ) 0
d

M E N
dt

θ θ =  (17) 

 { } ( ) ( ) ( )ˆ1, 2 :  i ii M B Bθ θ θ∀ ∈ =  (18) 
 { } ( ) ( ) ( )ˆ1, 2 :  i ii C N Cθ θ θ∀ ∈ =  (19) 
We assume next that condition (9) hold for both systems 

( )Σ  and ( )Σ̂ . It’s also assumed that 
1

0

0 0

nI
E

  =    
. 

 
Theorem 1: Suppose that realizations ( )Σ  and ( )Σ̂  are 

strongly equivalent. If ( )Σ  is admissible and for a given 

0γ > , ( )Σ  satisfies inequalities (12)-(14) for all ( ).θ , 

then ( )Σ̂  is admissible and achieves the same H2 

performance level 0γ > .  
 ⁯Proof: This result can be demonstrated following the 
same lines as done for the admissibility condition in [5]. The 
proof is omitted here for brevity reasons. ⁯ 
 
Note that the rational LPV system ( )rΣ  and the descriptor 
system given by ( )dΣ  are strongly equivalent. Indeed, 
when considering the following non singular and 
continuously differentiable functions (see Remark 1)  
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I
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A A I
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θ θ−

  =  −  
  

it is easy to see that for all trajectories ( ).θ  

 ( ) ( ){ } 0
d

M E N
dt

θ θ =  

 ( ) ( )M EN Eθ θ =  

 ( )
( ) ( )

( ) ( )
( )

( )1 3

2 4

0

0

rA A A
M N

IA A

θ θ θ
θ θ

θ θ

       =      
 

 { } ( )1, 2 :  
0 0

ii rB B
i M θ

      ∀ ∈  =         
 

 { } ( ) ( ) ( )1, 2 :  0 0
ii ri C N Cθ∀ ∈ =  

 
Consequently, if there exist matrices ( )W θ  and ( )S θ  such 
that inequalities (12), (13) and (14) hold for the descriptor 
system ( )dΣ  then we can prove that there exist a matrix 

( )Q θ  such that (6), (7) and (8) hold for the state-space 
rational LPV system ( )rΣ  according to Theorem 1. 
Moreover, the H2 performance index is the same for both 
systems. 
 
Remark 3: The descriptor system ( )dΣ  is affinely 
dependent on the time varying parameter. Hence it provides 
a suitable tool for analysis and gain scheduling control of the 
rational LPV system ( )rΣ . Indeed, when considering 
quadratic stability, conditions (12), (13) and (14) lead to a 
finite set of LMIs since the descriptor matrices are polytopic. 
On the contrary, when considering the rational state-space 
realization even with constant matrices, conditions (6), (7) 
and (8) remain hardly tractable. 

III. NEW LMI CONDITIONS FOR H2 PERFORMANCE 
CHARACTERISATION 

In this section we consider the polytopic descriptor system 
( )dΣ  given by (2).  
 
Theorem 2: For a given scalar 0γ > , the descriptor LPV 
system ( )dΣ  is admissible and 2d γΣ <  if there exist 

continuously differentiable functions ( ):W Wθ θ→  
( )1 1: ,S Sθ θ→  ( )2 2: ,S Sθ θ→  ( )3 3:S Sθ θ→  and 
( )4 4:S Sθ θ→  of appropriate dimensions such that for all 

( ).θ : ( ) ( ) 0TW Wθ θ= >  (20) 

( ){ } ( ) ( )

( ){ }
( )

( ) ( )( )

1 1 1 0

2 0

3 4 0

T T T T

T

T T

d
U W U B B UW U S U
dt

He S U

A
He S S

I

θ θ θ

θ

θ
θ θ

  + +     •   
    + <   −    

(21) 

 ( ){ } 2
1 1

T Ttr C UW U Cθ γ<  (22) 

⁯ Proof: Is omitted for brevity reasons ⁯ 
 
Conditions proposed in Lemma 3 can be turned into a finite 
set of LMIs when choosing constant matrices for the 
solutions ( )W θ  and ( )S θ . The conservatism induced by 
this choice can be reduced thanks to Theorem 2 since there 
is no multiplication between the state matrices and matrices 

( )W θ , ( )1S θ  and ( )2S θ . 
Corollary 1: For a given scalar 0γ > , the descriptor LPV 
system ( )dΣ  is admissible and 2d γΣ <  if there exist 

affine functions ( ):W Wθ θ→  ( )1 1: ,S Sθ θ→  
( )2 2: ,S Sθ θ→   and constant matrices 3 4,  S S  of 

appropriate dimensions such that for all admissible  ( ).θ , 
( ), :i jω τ∀ ∈ Ρ×Ω  

 ( ) ( ) 0T
i iW Wω ω= >  (23) 

 

( ) ( ) ( )

( ){ }
( )

( )

1 1 1 0

2 0

3 4 0

T T T T
j i i

T
i

i T T

UW U B B UW U S U

He S U

A
He S S

I

τ ω ω

ω

ω

 + +      •   
    + <   −    

 (24)

 ( ){ } 2
1 1

T T
itr C UW U Cω γ<  (25) 

 
It has been shown in section II that ( )rΣ  and ( )dΣ  are 
strongly equivalent. This means that the results presented in 
Theorem 2 and Corollary 1 are also sufficient conditions 
for the stability and the H2 performance level of ( )rΣ . 

IV. H2 GAIN SCHEDULED CONTROLLER DESIGN 
In this section, we consider the output feedback H2 control 
problem for the affine LPV descriptor system given by (2). 
We seek a gain scheduled controller given by:  

 ( )
( ) ( )

( )
:

K

K K K K
d

K K

Ex A x B y

u C x

θ θ

θ

= +Σ  =
 (26) 

with n
Kx ∈ , ( )( ) n n

KA tθ ×∈ , ( )( ) yn n
KB tθ ×∈  

and ( )( ) un n
KC tθ ×∈  are unknown matrices. The 

resulting closed-loop system is given by: 

 ( )
( )

:
C

c c c c c
d

c c

E x A x B w

y C x

θ= +Σ  =
 (27) 

with: 
TT T

c Kx x x =    , 

  
0

0c

E
E

E

  =   
, ( )

( ) ( )

( ) ( )

2

2

K

c
K K

A B C
A

B C A

θ θ
θ

θ θ

  =   
, 

 
1

0c

B
B

  =    
 and ( )1 0cC C= .  

 
Remark 4: Note that conditions { } { }Img Imgc cE B⊇  and 
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{ } { }c cker C ker E⊇  still hold for the resulting closed-loop 
(27). 
  
Theorem 3: For a given scalar 0γ > , there exists a 

controller given by (26) such that the closed-loop ( )
CdΣ  is 

admissible and 
2Cd γΣ <  if there exist symmetric 

matrices 1 0W > , 2 0W > , matrices 1S  and 2S , polytopic 
functions ( ):F Fθ θ→  and ( ):L Lθ θ→  such that the 
following inequalities hold for all ( ).θ : 

( ) ( )( ){ }2 1 1 0 1 1( ) 0T T T THe A L C UWU S U B Bθ θ+ + + <  (28) 

( ) ( )( ){ }2 2 2 0 1 1( ) 0T T T THe A B F UWU S U B Bθ θ+ + + <  (29) 
 2 1 0W W− >  (30) 
and ( ) 2

1 2 1
T Ttrace C UWU C γ<  (31) 

Moreover such a controller is given by    

( )

( )

( ) ( ) ( ) ( ) 11 1
2 2

1 1

( )

T

T
K

T

PA

A A B F L C X X P

B B

θ

θ θ θ θ −− −

     = + + + −     +  

 (32)  

 ( ) ( )KB Lθ θ=  (33) 

 ( ) ( ) 11 1 T
KC F X X Pθ −− −= − −  (34)  

 1 1 0( )T TP UWU SU= +  (35) 
 1

2 2 0( )T T TX UWU S U− = +  (36) 
⁯ Proof: Is omitted for brevity reasons ⁯ 
 
Remark 5: Note that matrix inequalities (28) and (29) are 
not linear. However, these conditions can be turned into 
LMIs. Indeed, using the following change of variables 

( ) ( ) 1N F Xθ θ −= , inequality (29) becomes a LMI in 

2,N W  and 2S . Therefore, using the fact that P  is non 

singular and pre- and post-multiplying (28) by 1P−  and TP−  
leads to 

  
( ) ( )( ){ } 1

2 1
0

T THe A L C P P B

I

θ θ − − +   <  • −  
 

Then, considering the following change of variables 
( ) ( )T TM L Pθ θ −=  we obtain a LMI condition in 1P−  

and M . Hence, according to Remark 2, there exist matrices 

1 1,W S  of compatible dimensions satisfying  

 1
1 1 0( )T TP UW U S U− = +  

with 1
1 1W W −= , (28) becomes then a LMI in 1 1,W S  and 

M . Finally, (30) can be rewritten as 2

1

0
W I
I W

 
> 

 
.  

The choice of constant variables in Theorem 3 induces 
some conservatism. The theorem proposed next reduces this 
conservatism by allowing parameter-dependent variables.  
 
Theorem 4: For a given scalar 0γ > , there exist a 

controller such that the closed-loop ( )
CdΣ  is admissible and 

2Cd γΣ <  if there exist affine functions ( )1 0W θ >  

( )2 0W θ > , ( )1
1 ,S θ  ( )1

2 ,S θ  ( )2
1 ,S θ  ( )2

2S θ , ( )F θ , 
( )L θ  and constant matrices 1

3S , 2
3S  of appropriate 

dimensions such that the following inequalities hold for all 
( ).θ : 

 
( ){ } ( ) ( )

( ){ }
( ) ( )

( )

1
1 1 1 1 1 0

1
2 0

2
1 1
3 3 0

T T T T

T

T T

d
UW U B B UW U S U

dt
He S U

A L C
He S S

I

θ θ θ

θ

θ θ

  + +     •   
+    + <   −    

 (37)  

 
( ){ } ( ) ( )

( ){ }
( ) ( )

( )

2
2 1 1 2 1 0

2
2 0

2
2 2
3 3 0

T T T T

T

T T

d
UW U B B UW U S U

dt
He S U

A B F
He S S

I

θ θ θ

θ

θ θ

  + +     •   
+    + <   −    

 (38) 

 ( ) ( )2 1 0W Wθ θ− >  (39) 
and ( )( ) 2

1 2 1
T Ttrace C UW U Cθ γ<  (40) 

Moreover such a controller is given by 

( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) 11 1
2 2

1 1

( )

T

T
K

T

P A

A A B F L C X X P

B B

θ θ

θ θ θ θ θ θ θ
−− −

     = + + + −     +  

(41)

 ( ) ( )KB Lθ θ=  (42)

 ( ) ( ) ( ) ( )( ) 11 1 T
KC F X X Pθ θ θ θ −− −= − −  (43)

with ( ) ( )1 1 0
ˆ( )T TP UW U S Uθ θ= +  (44) 

 ( ) ( ) ( )1
2 2 0

ˆ( )T T TX UW U S Uθ θ θ− = +  (45) 

 ( ) ( ) ( ) ( ) ( )( )1 1 1
1 1 2 2

ˆ TS S S A L Cθ θ θ θ θ= + + (46) 

and ( ) ( ) ( ) ( ) ( )( )2 2 2
1 1 2 2

ˆ TS S S A B Fθ θ θ θ θ= + + (47) 
⁯ Proof: Is omitted for brevity reasons ⁯ 
 
Remark 6: Note that matrix inequalities (37) and (38) are 
not linear. However, they can be turned into LMIs by using 
the same technique as in Remark 5. 
The descriptor controllers obtained in this section can be 
transformed into state-space rational controllers ensuring the 
stability and the H2 performance for the rational LPV system 
( )rΣ . 

V. NUMERICAL EXAMPLES 

A. Analysis of H2 performance 
We consider the following rational LPV system: 

 

3 3
2 2

1 1

3 3
22 2 2

1

2

3 11 1
0

1 1
1 1

1 1

1 0

x x
wxx

x
z x

θ θ
θ θ

θ θ
θ θ

θ θ θ
θ θ

  − − − − −       + +     = +               + − − − − −   + +
 −      =        

 

with ( )( ), ( ) 0.9 0.9 1 1t tθ θ    ∈ − × −       . 

Setting 3 1 2( )x x xθ=− +  and 
2

4 1 2( )
1

x x x
θ
θ

= − +
+

 leads to 

the following equivalently affine descriptor realization: 
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1 1

2 2

33

4
4

3 01 0 0 0 1

1 1 00 1 0 0

00 0 0 0 1 0

00 0 0 0 0 0 1

1

x x

x x
wxx

xx

z

θ θ

θ θ θ

θ θ

θ θ

 −                 + −           = +                         +             

=
1 0 0

1 0 0 0
x

 −      

 

For this example, we apply the proposed analysis conditions 
of Lemma 3 and Theorem 2. The minimum H2 guaranteed 
cost obtained are respectively 1.209γ =  and 0.837γ = . 

B. Design of Gain scheduled H2 controllers 
To compare the gain scheduling techniques based on  
Theorem 3 and Theorem 4, a numerical example is given 
in this section.  
Let us consider the following rational LPV system: 

 
2

1 1

22

1 2

3 4 2 2
2 2

1 11 1

x x
w uxx

z x x

θ θ θ
θ θ

  + +                 + + = + +                       −     = +

 (48) 

with  ( )( ), ( ) 1.5 1.5 1 1t tθ θ    ∈ − × −       . 

Setting ( )3 1 22
x x x

θ
θ

= −
+

 leads to the following 

equivalent affine LPV descriptor representation: 

 
( )

( )

1 1

2 2

33

1

2

3

1 0 0 2 1 2 2

0 1 0 1 1 0 1 1

0 0 0 0 02

1 1 0

x x

x x w u

xx

x

z x

x

θ

θ θ θ

                                    = − + +                          − − +            
 
 
 =  
 
  




 

When the design of the controller is based on Theorem 3, 
the minimum H2 guaranteed level of 2.78γ =  can be 
achieved with controller  ( )1K θ .  
With the method of Theorem 4 the minimum H2 guaranteed 
level of 2.19γ =  can be achieved with controller  ( )2K θ . 

The matrices of the obtained controllers ( )1K θ  and ( )2K θ  

are given by (49) and (50) with: 
1 2

(1,1, 0)
K K
E E diag= = .  

VI. CONCLUSION 
In this paper, new LMI-based characterizations of the H2 
performance for rational LPV systems have been proposed 
using an equivalent descriptor affine LPV representation. 
Based on this, two methods for the design of H2 gain 
scheduled output feedback controllers have been presented. 
The novelty of this approach is that it guarantees stability 
and H2 performance of the rational LPV closed-loop system 
throughout the admissible parameter range using a finite set 

of LMIs. A comparison of the proposed methods has been 
shown through numerical examples. A practical application 
will be considered in a forthcoming paper.  
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( ) ( )
1 1

3 3

-5.62-0.31 -0.71-0.45 6.53+2.33 -2.38-1.22

 10 -3.19-0.31 -0.43-0.25 3.56+1.92 ,  10 -1.39-0.69 ,

 0.18+ 0.9 0.03+0.01 -0.14-0.22 0.09+0.04

K KA B

θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ

            = =               

( ) ( )1
  527.51+10.76 -33.96+2.38 0.07+0.10KC θ θ θ θ=

 (49)  

( )
2

2 2 3 2 3

2 3 2 3 2 3

2 3

122.67+2.63 -141.7 -15.61-0.84 -1310.9 +0.63 -132.76+3.70 -139.6 +0.31

 45.30+6.96 -293 +0.43 -3.49+0.92 -227 +0.25 -3.49+0.92 -227 +0.15

280.59+17.84 -4843 +0.22 -31.03+0.12 -

KA

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ

= ( ) ( )
2 2

2 3

2

2 3 2 3

2.56 112.17 71.02 0.268.01 0.57

,  19.44 0.22 ,  11.35 104.61 66.31 0.01

132.11 1.234480 +2.22 288.32+19.12 -552.4 +0.99

K KB C

θ θ θθ

θ θ θ θ θ

θθ θ θ θ θ

    + − −− −         = − − = + − −        − −     

3

2 317.68 5.45 10.75 0.15

T

θ

θ θ θ

          − − −  

(50) 
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