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Abstract—Necessary and sufficient conditions for the
existence of diagonal, block-diagonal and triangular decoupling
controllers in linear multivariable systems are presented for the
most general setting. The plant model in this paper is general
enough to accommodate non-square plant and non-unity
feedback cases with 1DOF (one-degree-of-freedom) or 2DOF
controller configuration. It is shown that the existence condition
is finally described in terms of rank conditions on coefficient
matrices in partial fraction expansion.

I. INTRODUCTION

HE existence condition of decoupling controllers in linear

multivariable systems has been studied in the past.

Vardulakis [10] proposed a sufficient condition that a

diagonal decoupling controller exists if there is no
unstable pole-zero coincidence of the plant. Necessary and
sufficient conditions for decoupling controllers were
obtained in various ways. Lin [5,6] exploited the internal
stability requirement as the constraints in constructing
diagonal and block-diagonal input-output maps. Youla and
Bongiorno [13] took similar approach with that of [5,6] for a
diagonal decoupling problem but the class of all stabilizing
decoupled transfer matrices were explicitly parameterized,
which made it possible to derive the optimal H> decoupling
controller. Gomez and Goodwin [2] adopted an algebraic

approach based on coprime factorizations to treat diagonal
and triangular decoupling designs. In [12], a unifying
approach was suggested to treat diagonal, block-diagonal and
triangular decoupling problems. Above mentioned papers,
however, considered the conventional model with unity
feedback [2,5,6,10] or with state- feedback [12]. In [13], the
unity feedback constraint was loosened but arbitrary
non-unity feedback was still not assumed. Deseor and
Gondes[15] derived all diagonal input-output maps

achievable by stabilizing 2DOF(two-degree-of-freedom)
controllers. Their derivation was based on a general setting
which included delay or infinite dimensional systems.

In this paper, necessary and sufficient conditions for the
existence of decoupling controllers are presented in the
generalized plant model which accommodates non-square
plants and non-unity feedback case with 1DOF or 2DOF
configuration. The approach taken in this paper is so simple
and direct that diagonal, block- diagonal and triangular
decoupling problems are treated in a unified frame. It turns
out that the existence condition is described in terms of rank
conditions on the coefficient matrices in partial fraction
expansion.
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Notations; Throughout the paper, only real rational
matrices are considered. The notation T, stands for the
transfer matrix from ¢ to 4. A rational matrix G(s) is said
to be stable if it is analytic in Res > 0 and iff stands for “if

and only if’. The Kronecker product of two matrices is
denoted as G® R . vec(G) denotes the vector formed by

stacking all the columns of the matrix G . The Khatri-Rao
product of two matrices is denoted as G ® R and is the matrix
whose ;-column is given by g, ® r, where g, and y, are the
i-column of G and i- column of R, respectively. For a
diagonal matriX, vecd (G) denotes the vector formed by
stacking all the diagonal elements of the matrix G. When
V is a diagonal matrix, vec(AVD)= (D'®A)vec(V)=
(D'® A)yvecd(V) [1].

II. INTERNAL STABILITY AND REALIZABILITY CONDITIONS

The generalized plant model under consideration is shown
in Figure 1. The variable » is an exogenous input and the
variable v is the target variable we are interested in. The
variables » and y are the control input and the measured
variable, respectively. The variables » and v are the ones
such that the transfer matrix 7 is to be decoupled. In most
cases, r is the reference input and v is the plant output. The
transfer matrix of the generalized plant is given by

|:Vj|:P|:r:|, P:|:P00 f)oz:| (1)
y u Py Py

The variables v and » have the same dimension of mx1.
The variables u and y have the dimensions m x1 and

m, x 1, respectively.

s) us)
u(s) P(s) y (52

C(s) e

Figure 1. The generalized plant model

The following assumption is necessary and sufficient for
the existence of a stabilizing controller [9].

Assumption 1: The general plant block P(s) is free of
hidden modes in Res > 0 and ¥, =¥, "

PZ'.’
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The notation ¥, denotes the characteristic denominator [14]
of the rational matrix P(s) and P,” absorbs all the zeros in
Res >0 . Consider the polynomial coprime fractional
expressions for P, ;

Py = A7 (5)B(s) = B, ()4, (s5)- 2

There always exist polynomial matrices X(s),Y(s), X, (s)
and Y, (s) such that

X, 04 -v]_ 4 -vTx, n]_[1 0] (3
-B A|B x| |B X |-B 4| |0 I
with det X (s)det X, (s)#0 . (Adopting proper stable rational

coprime fractions does not affect the remaining results of this
paper). It is well known [7] that the condition ¥," =, * in

Assumption 1 is equivalent to the one that
Poo _PozAlYleo’ POZAI and Aon (4)

are stable. 7 (s)is the transfer matrix to be decoupled and is
given by

T:=T,(s)= Py + Py (I = CPy,) " CPy. (&)

Definition 1: A rational matrix 7(s) s said to be realizable
for the given plant p(s) if there exists a stabilizing controller
C(s) that realizes the transfer matrix 7, (s) of the system as
the matrix 7(s).

From (1), it follows that v = P,  » + P,, u and, usually, the

variable v is the plant output and it does not contain a direct
term of the reference input . Hence, in almost all cases

P, becomes a null matrix. When P, =0, it follows that

T:Poz(I_CP22)71CP20 (6)

In decoupling design, the transfer matrix 7 is required to be
of full rank as well as the diagonal requirement. In view of (6)
it is necessary that m <m, and rank(P,,)=m for the full
rank requirement of 7. Similarly, it is required that m < m,
and rank(P,,) = m . Although we presume that p, =0, we

don’t assume this to keep the plant model as general as
possible and assume only the following rank conditions.

Assumption 2:
m< m, m < m, and rank(Poz) = rank(PzO) =m.

Next, consider the class of all stabilizing controllers
characterized by the formula

C(s) =—~(X, ~KB)™ (¥, + KA) @)

where K (s) arbitrary real rational stable matrices such that
det(X, — KB) £ 0. Inserting this formula to (5), we obtain

ThCO03.5
T =T, - P, 4,KAP,, (8)

where
To = Poo _POZAIYIPZO (9)

is a stable matrix by (4). Notice that T is also stable
since P,A, > AP, and K are stable. Since rank(P,,)) =

rank(P,,) =m, the ranks of P, A4, and AP, are also m and
in this case it is well known that there exist m, x m, and

m, x m, unimodular matrices ¥, and ¥, [3,4] such that

R
PadV, =[R, 0] and y 4p :[ (ﬂ (10)
with rank(Rm) = rank(Rzo) =m. So it follows that

~| R
T=T, - PyAKAP, = T, -[R, 0]1{ (ﬂ .
where K = V'KV, Now, consider the following partition

K=VKy :|:K11 K12:| (12)
1 2 5 5
Ky Ky

where the dimensions of 1%1 . and K 5 AT€ mxm and
(m, —m) x (m, —m), respectively. Then it follows that

T'=T, =R K, Ry (13)

and hence
K, =R, T,R; —RTR; - (14)
In view of (7) and (14), a stable rational matrix T is
realizable for p(s) iff it makes R '7 R, — R;'TR;' stable.
As we can see, a realizable T determines only 1%11, a part

of K, and the other parts of K can be obtained by other
criterions of control system design.

The equation in (14) has the typical structure to which
many realizability problems ultimately reduce. So, instead of
solving the specific equation of (14) we will stick to the more
general form in the following:

Standard problem for realizability(SPR): Given matrices
®,,i=a,pB,y,findastable T that makes @  stable where

D =0, -D,TD, (15)

and the dimensions of DD, and T arem, xn, nxm,and

nxn, respectively.

The realizability problem of T' for the generalized plant
model in Fig. 1 reduces to the SPR with

®, =R, TRy, ®, =R, and &, =R (16)

For different realizability problems, we have different values
of o _, ® p and @ , (see section V).
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III. DECOUPLING PROBLEMS

In the previous section, we have defined SPR in which we
find a stable transfer matrix T that guarantees the existence
of a stabilizing controller ¢ .  When an additional
requirement is added to the transfer matrix 7', we need to add
this constraint on 7 in solving SPR. It will be shown shortly
that when a decoupling constraint is added, the standard
equation in SPR can be transformed to a new standard
equation by vector operation and this invokes introduction of
a new standard problem.

Standard Problem for Decoupling Design (SPDD): Given
a vector ¢ and a matrix ¥, find a stable vector /(s) that makes

¢, stable where

¢, =¢—Yh; h:7ix1,¥:mgxii. (17)

In the following, we will consider the three decoupling
problems and explain the procedure of transforming SPR
with a given decoupling constraint to SPDD.

A. Diagonal Decoupling

Suppose that we ask T to be diagonal in SPR. Taking
vector operation on both sides of eq. (15) we get SPDD
equation in (17) with

p=vec(®,),¥Y=0,0d, andj =vecd(T). (18)

B. Block Decoupling
Suppose that 7 in SPR is a block diagonal matrix of the
form 7 = diag {T,}\ , where T,isanp, x n, block matrix and

n,+n, +--+n, =n - Consider the partitions
O, =[] @] (LY 19)
=[(@]) (@) (@)1 (20)
where the dimensions of @ and ®/ are m, xn,

and n,xm, s respectively. Then it follows that

O TP, =" DT/ (21)

Taking vector operation on both sides of (15) with (21), we
get the equation (17) with
=[ (@)oo

(@))®D]; (@)yee;] (22)

o= vec((Dy) > h= [vec(T1 ) vec(T,) vec(T, )']' . (23)

C. Triangular Decoupling

We consider only the lower triangular case here. The
formula for the upper triangular case can be obtained by
minor modification of the results given below. Suppose that

ThC03.5

Tin SPR is a lower triangular form of T=[t,]-1,=05
for ;> ;. Inthis case, it can be shown that
o7 (24)

1,(n+1-0)

O T0, =3P

in (l 1)d

where (DZ,CZ is the matrix consisting of the columns of @
from ¢, - column to ¢, - column and cI)f’r2 is the matrix
consisting of the rows of @ s from 7, — Tow to r, — row
and T, denotes the lower ;—¢h off-diagonal matrix of

T with the dimension (n —i)x (n—i) . That s,

T, = diag{l‘m)l s livans Lizss s T } (25)
for i=0,1, ---,n—1. Taking vector operation on both sides of
(15) with (24), we get (17) with

=@/ yoor (@ _)yods, (@)oo, ]
¢ =vec(®,) (26)

and
hzl_vecd(TOd)' vecd (T},)' vecd(T(n,l)d)'J'~ (27

IV. SOLVABILITY CONDITION OF SPDD

In the previous section, we have shown that the
realizability problems associated with various decoupling
constraints are reduced to SPDD. Now we will find the
necessary and sufficient condition for the existence of a
solution to SPDD.

A. Simple Pole Case

Suppose that 5, i=1,2,..-,v are distinct unstable poles of
gor¥in (17) and they are simple. Then it is possible to
express ¢ and ¥ as

$=207

where , and R, are the residues of ¢ and ¥ at S,

+¢0(s) and g - Z +\1!O(s), (28)

respectively, and g, (s) and ¥ (s) are stable . Then it follows
from (17) that

=2

and the vector g is stable iff the summation term is stable,
which is equivalent to the condition that R i(s,)=r,,
i=12,---,v . This linear equation has a solution j(s,) iff

K, h(” £ (5) — ¥y (5)(s) (29)

rank(R;) = rank([R;: 7;]) (30)

(or, equivalently, r, is included in the range space of R, ) for
each j=12,..-,v. Suppose that the above rank condition is
satisfied and let a solution for /(s,) be y, . It is not difficult to
show that there always exists a stable vector j(s) satisfying
the interpolation conditions i(s,)= u,,i=1—v . Hence the

rank condition in (30) is the necessary and sufficient
condition for SPDD to have a solution.
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B. General Case

Now we consider the general case. Let 5,, i=1,2,---,v be
the distinct unstable poles of ¢ or ¥ in (17) and let
p; =max(p,,p,) where p and p, are the multiplicities

of 5, as the pole of ¢ and ¥ , respectively. Then ¢
and ¥ are expressed as
k
¢ = zllzkl —s) + 4, (s) G
k
Y=L Tyt (32)

where ¢, (s) and ¥ (s) are stable. From (17), it follows that

¢s = Z::1¢si +¢0(5)_qj0(5)h(5) (33)
where
_—— ]M (34)
-5;)"

Since ¢, (s),¥,(s)and h(s) are stable, ¢ is stable iff 4 is
stable for each j=12,..-,». Let’s find the partial fraction
expansion of g at the poles,. For ease of presentation, we
will consider the case p, =3 After straightforward

calculation, we get the results

= 5’3 5:‘2 5:‘1 35)
& (s—s,)° +(S—si)2 * —s, +,0(s)
where
5:’3 = ”i} - R,~3h(si) (36.2)
E1 = =R (s,)+ 1 = RIAGs,) (36.b)

éi] = _(1/2)Ri3h”(si) - Rizh'(si) + }"[] - Rilh(s[) (360)
and ¢~ astable vector. Since ¢ is stable, ¢ is stable iff
&=0,k=1,2,3. (37)

Resolving (36) and (37), we get the following linear equation

Rh,=T (38)
with

R 0 0

R =|R* R} 0 (39)
R R’ R

r h(s;)

7= riz and 7 (s, (40)
r (A72)h"(s,)

Hence the condition in (37) is satisfied iff there exists a
solution }7[ for the equation (38) and this leads to the

ThC03.5

condition
rank (R,) = rank (R, 7. ]) - (41)

Suppose that the above rank condition is met and let
I =[(u") (u!) 1/2(u?)]" beasolution forj, so that

h(si):,uioa h'(si):;uil and h”(si)::uiz' (42)

The remaining thing is to show that there exists a stable
rational vector (s) satisfying the interpolation conditions in

(42). Let’s denote the elements of the vectors A(s) and
u!,q=1-3 as following;

h(s)=[h,(s) hy(s) -+ by (s)] (43)
pf =L py e pg 15 g =1,2,3. (44)

Then finding a vector i(s) satisfying the interpolation

conditions in (42) becomes finding a scalar function
h, (s) satisfying the following interpolation conditions for

k=1->17;
h k(si) = lui(l)(’ hk’(si) = Iuilk and hk”(si) = /uzi’ (45)

Let h (s)=m,(s)/g,(s) where m, (s) 1is an arbitrary
polynomial and g, (s) is an arbitrary fixed strict-Hurwitz
polynomial. Then,
gi () hy () =m;(s) (46)
&' () h () + g, ()h ' (s) =m,'(s) (47)
2" () h () +2g, " (A" (5) + g, (h"'(s) = m,"'(s) (48)

Hence the values of m, (s,), m,'(s,) and m, "(s,) are
obtained from 4 (s,), &, '(s,) and h,'"(s,) and let’s denote
them as [¢,4=1,2,3 . Now the problem of finding
h, (s) satistying (45) becomes one of finding the polynomial
m, (s) satisfying the interpolation conditions

mk(si):ﬁi(lz’mky(si):ﬁilk and mk”(si):/jii (49)

and such a polynomial m, (s) always exists. Now let’s extend

these results to the general case. Since the interpolation
conditions in (45) should be satisfied for each value of
i=1,2,---,v , the scalar function 4, (s) should satisfy the

interpolation conditions

hliq)(si):;ugm qzoalyzs".ap,'_l; i:1,2,"’,V (50)

As shown previously, the problem can be changed to one of
finding a polynomial m, (s) satisfying the interpolation
conditions

mP(s)=put, q=012,,p, -1 i=12,--,v (51)

It is well known that such a polynomial m, (s) always exists
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[page 49, 11]. Hence the rank equality in (41) for each ; is

the necessary and sufficient condition for SPDD to have a
solution. Now we are ready to state the main theorem.

Theorem: Let s5,, i=1,2,---,v, be the distinct unstable poles
of g or¥ in (17) with multiplicity p, =max(py, py) - The
SPDD has a solution iff R, }71 = 7 has a solution 4, for each;
or, equivalently, the following rank conditions are satisfied;

rank (R,) = rank ([R,} 7 1), for i=1,2,--.,v  (52)

where
'R 0 0 - 0 ]
R’ RM 0 T e
B SOORPe T Tl (53)
LR T 0
R} R’ . R’ R O
Ril Ri2 Ri3 Ripﬁ1 Rip'
) [ h(s;)
e h'(s;)
o I I (VS VAC B R S

1 A/(p; —2)!:)h(””2)(5,-)
LW/ (p, =A™ (s) |

Here, r7and R¢ are the coefficients of the term 1/(s —5,)? in
partial fraction expansions of ¢ and ¥, respectively.

To sum up, checking the existence of a decoupling
controller for the generalized plant model is finally reduced
to checking the rank conditions in (52). A realizable
decoupling matrix 7 can be obtained by finding a
stable s(s) satisfying the interpolation constraints. Note also

that Ei in (53) is a lower triangular block Toeplitz matrix.

V. SPECIAL CASES

The plant model in Fig. 1 is general enough to include the
cases of non-square plants, non-unity feedback, IDOF and
2DOF controller configurations. When we make some
assumptions on the structure of the transfer matrices of P(s) ,

we get more specified results.

A. Square Plant with 1DOF Controller Case
Suppose that P, =0, m = m, (square plant case) and P, =/

(1DOF case). In this case, we can show from (8) that a stable
rational matrix 7(s) is realizable iff p,~'1 , P0271T[’22 ,

PpPy T and  (I+P,R, TP, are
det(I + P,,P,,"'T) # 0 (This condition can also be obtained by

stable and

input-output stability requirement [8]). These five matrices
can be compactly described by

ThC03.5
[ 02m 1322 1+ ﬁzzP();lT[[m P, 1=, (55)

where
P, =[0,,, P,']' and ﬁzzz[lm Pyl (56)

Hence 7(s) is realizable iff @ is stable, which leads to the
SPR in (15) with
® =[0

¥

ﬁzz]’ q)a:ﬁzzpozl and q)ﬂ =[[m Pzz]'(57)

2mxm

The existence condition of various decoupling controllers for
this special case can be checked by the procedures in sections
IIT and IV and notice that, in this case, we don’t need coprime
factorizations.
When a diagonal decoupling 7 is sought, we can
parameterize it further. From (55), 7 is realizable iff
P,P;'T and P, + P,P;'T P, are stable. For the term

P,, P,;;'T to be stable, T must be of the form 7 =A,A where
Ais an arbitrary diagonal stable matrix and A, = diag {0,}",
with g, being the monic polynomial of the minimal degree
such that { ; — column of P, p;' }x@,is stable. Hence T is
realizable iff P, + P, P;'A,A P,, is stable which leads to the
SPDD with

¢:vec(ﬁ22), Y=(-Py'")° (ﬁzzP();lAg) (58)

h(s)=vecd (A(s)) - (59)

B. Other Cases

By exploiting the results of Theorem we can easily prove
that a diagonal decoupling controller exists for the following
cases; 1) P, =0and the plant p,,(s)is stable. 2) p, =0,

Py, =[I 0] and P, =[0 P,']' RQDOF case). 3) P, =0,
m =m, (square plant), p,, = 1 (1IDOF case), p,, = —P,, (unity
feedback case) and there is no unstable pole-zero
coincidence of the plant p,, .

Since the proofs of 1) and 2) are trivial, only the proof of 3)
is given. Under the assumptions in 3), the equation in (14)
becomes

K,=K=K=-Y,A" +B'T4™". (60)
This leads to the standard equation of SPDD with

¢=vec(Y,A"), ¥=(47")e B (61)

h(s) = vecd(T(s)) - (62)

Any unstable pole of gor¥, if exists, comes from that of
A7l or Bl‘1 . Let’s consider an unstable pole s, of Bl‘1 . Since
the poles of 4™'and B! are different by assumption, the
coefficient vector 7 for s, is zero and hence the condition
rank (Ei) =
consider an unstable pole s, of 47'. From (3), we have
X, A, +Y,B, =1 and it follows that X 4, B4~ +Y,47" =
B;' 47" and hence

rank([R,: 7 1) is trivially satisfied. Next,
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X B'+Y, A" =B"4". (63)
Taking vector operation on both sides, we obtain
vec(X,B™")+vec(Y, A" )= ((A47")° B )vecd(I,) - (64)

Inserting this equality to (61), we obtain another expression
for ¢(s)as

#(s)= (A7) B vecd(I,) —vec(X,B™").  (65)

Let’s denote the partial fraction coefficient matrix of W for
s; as 13]_. Since B™' dose not have the pole s the partial

fraction coefficient vector 7, of ¢ for s, becomes
E/.vecd( I1,) and this implies that 7/ is a linear combination
of the columns of ﬁ},. Hence the condition rank(ﬁ/.):

rank ([ Ej : 7, 1) 1s satisfied and this completes the proof.

VI. EXAMPLE

Consider the case of 1DOF controller configuration with the
square plant P, (s) and the non-unity feedback sensor F. In

this case the transfer matrices in (1) are given by

Py =0, By =P, (s), Py =1, and Py, ==FP,(s) (66)

Consider the following plant [13] and the non-unity feedback

s—1 s—1

s+2  s+2 | and le L (67)
P, = 01

s+2 20s+2)

s—1 s—1

Notice that we can use the formulas in (58) and (59). Since

2(s+2) 1-s

P s—1 s+2| (68)
’ s+2 s—1
1-s s+2

we obtain A, = diag{s —1, 1 } after simple calculations. The
vector ¢(s)and the matrix ¥(s) have a simple pole at 5, =1.
The residue values at 5, =1 are obtained as

7 =[00-3-300-6 —6]' (69)

R - 0o 0 -3 -3 0 0 -6 -6\ (70)
8 -9 0 0 36 -18 0 0

Since rank (R,) = rank ([R, r,]) = 2, a diagonal decoupling
solution exists. Taking a solution for the equation
R, h(s,)=r as h(1)=[01]', then a diagonal solution for
T(s) is parameterized as

ThC03.5

T(S):{o o}{s O}{hu o} 71)
0 1] [0 s—1]0 &,

where p_and p, are arbitrary stable rational functions. The
controller C(s) in this case can be obtained from (5).

VII. CONCLUSION

The existence condition of diagonal, block-diagonal and
triangular decoupling controllers are obtained for the
generalized plant model. It is shown that these decoupling
problems can be transformed to a solvable standard form
SPDD and procedures to obtain solutions of SPDD by
solving interpolation problems are explained. The existence
condition of a solution for SPDD is described in terms of rank
condition on a block Toeplitz matrix whose elements are the
coefficient matrices in partial fraction expansion.

Possible future research works include the characterization
of solution j(s) for SPDD, analyzing the relationship with

the previous related works on the existence conditions of
decoupling controllers, and investigating the algebraic
properties of lower-triangular block Toeplitz matrices.
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