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Abstract— We consider a problem of stabilization of the
Euler-Bernoulli beam. The beam is controlled at one end (using
position and moment actuators) and has the “sliding” boundary
condition at the opposite end. We design the controllers that
achieve any prescribed decay rate of the closed loop system,
improving upon the existing “boundary damper” controllers.
The idea of the control design is to use the well-known
representation of the Euler-Bernoulli beam model through the
Schrödinger equation, and then adapt recently developed back-
stepping designs for the latter in order to stabilize the beam.
We derive the explicit integral transformation (and its inverse)
of the closed-loop system into an exponentially stable target
system. The transformation is of a novel Volterra/Fredholm
type. The design is illustrated with simulations.

I. INTRODUCTION

In this paper we present a novel control design for the

Euler-Bernoulli beam, which achieves arbitrary decay rate

of the closed-loop system by boundary feedback. The beam

is controlled at one boundary using position and moment

actuators and has the “sliding” boundary condition at the

uncontrolled boundary (Fig. 1). We assume that the full state

(displacement and velocity) measurements are available.

The idea of our method is to use the well-known rep-

resentation of the Euler-Bernoulli beam model through the

Schrödinger equation [13]. For the Schrödinger equation,

recently developed controllers [6] based on the backstepping

method [16] improved on the common “passive damper”

controllers by moving all open-loop eigenvalues arbitrarily

to the left in the complex plane. In this paper we adapt the

design from [6] to the Euler-Bernoulli beam. We should note

that the design does not carry over trivially from one system

to another because the boundary conditions of the beam do

not directly correspond to the boundary conditions of the

Schrödinger equation.

We derive the invertible integral transformation which,

together with boundary feedbacks, converts the beam into

an exponentially stable target system. The kernels of the

transformation and control gains are given explicitly, ex-

pressed in terms of Kelvin functions. In contrast to other

backstepping designs, that have been developed for more

compicated models of the beams, such as the shear beam

model [5] and the Timoshenko beam model [7], [8], here
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Fig. 1. Uncontrolled Euler-Bernoulli beam with the “sliding” boundary
condition at x = 0 and the “hinged” boundary condition at x = 1.

the transformation is not of a strict-feedback form. Instead,

it contains both Volterra- and Fredholm-type integrals.

The existing literature on the control of the Euler-Bernoulli

beam is extensive (see, e.g. [1], [2], [3], [10], [11], [9],

[12] and references therein), however, unlike for the wave

equation, the popular “passive damper” controllers provide

only a limited damping for the beam. Two constructive

approaches have been used to achieve an arbitrary decay rate

for beams. In [4], and later in [17], by choosing a special cost

function the authors design the controllers that do not require

a solution of the Riccati equation. A pole assignment (or

Riesz basis) approach was used in [15], with an application

to Euler-Bernoulli beam with structural damping. In these

three papers, the unbounded control operator is assumed to

be admissible, which is not satisfied at least for the moment

control for Euler-Bernoulli beam considered in this paper. An

interesting extension of Riesz basis approach, which removes

the admissibility assumption, was presented in [18], where

a necessary and sufficient condition was given to assign the

poles by bounded feedback. However, the resulting feedback

is not as explicit as the controllers presented in this paper,

as it is represented as an infinite sum of infinite products.

II. PROBLEM FORMULATION

Consider the Euler-Bernoulli beam model

wtt(x, t) + wxxxx(x, t) = 0, 0 < x < 1 . (1)

We assume the “sliding end” boundary conditions at x = 0

wx(0, t) = wxxx(0, t) = 0 . (2)

and the following boundary conditions at x = 1:

w(1, t) = u1(t), wxx(1, t) = u2(t) . (3)

Here w is a beam displacement and u1, u2 are the position

and moment control inputs. The open-loop case u1 = u2 ≡ 0
corresponds to the “hinged end” (Fig. 1). The objective is to

stabilize the zero equilibrium of the beam.
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Let us introduce a new complex variable

v = wt − jwxx , (4)

where j is the imaginary unit. The direct substitution shows

that v defined in this way satisfies the Schrödinger equation

vt(x, t) = −jvxx(x, t) (5)

vx(0, t) = 0, v(1, t) = u(t) . (6)

In a recent paper [6], the backstepping controllers were de-

signed that achieve an arbitrary decay rate for the closed-loop

system (5)–(6). This gives an idea to adapt the control design

from [6] to the Euler-Bernoulli beam (1)–(3). However, the

design is not going to be trivial because, as can be seen from

(4), regulation of v to zero does not necessarily imply the

regulation of w to zero.

Before we proceed, we summarize the backstepping con-

trol design for (5)–(6).

III. SUMMARY OF BACKSTEPPING DESIGN FOR THE

SCHRÖDINGER EQUATION

As shown in [6], the controller

v(1, t) =

∫ 1

0

k(1, y)v(y, t) dy , (7)

and the transformation

ψ(x, t) = v(x, t) −
∫ x

0

k(x, y)v(y, t) dy , (8)

where k(x, y) is a complex-valued function that satisfies

kxx(x, y) = kyy(x, y) + cjk(x, y) (9)

ky(x, 0) = 0, k(x, x) = −cj
2
x (10)

with c > 0, map (5), (6) into the following exponentially

stable target system

ψt(x, t) = −jψxx(x, t) − cψ(x, t) (11)

ψx(0, t) = ψ(1, t) = 0 . (12)

The eigenvalues of this system are σ = −c + j π2(2n+1)2

4 ,

n = 0, 1, 2, . . ., therefore the parameter c allows to move

them arbitrarily to the left in the complex plane.

The solution to the PDE (9)–(10) is

k(x, y) = −cjx
I1

(

√

cj(x2 − y2)
)

√

cj(x2 − y2)

= x

√

c

2 (x2 − y2)

[

(j − 1)ber1

(

√

c (x2 − y2)
)

−(1 + j)bei1

(

√

c (x2 − y2)
)]

. (13)

Here I1(·) is the modified Bessel function and ber1(·) and

bei1(·) are the Kelvin functions, which are defined in terms

of I1 as

ber1(x) = −Im

{

I1

(

1 + j√
2
x

)}

(14)

bei1(x) = Re

{

I1

(

1 + j√
2
x

)}

. (15)

The inverse transformation

v(x, t) = ψ(x, t) +

∫ x

0

l(x, y)ψ(y, t) dy (16)

with

l(x, y) = −cjx
J1

(

√

cj(x2 − y2)
)

√

cj(x2 − y2)
(17)

maps (11)–(12) back into (5), (6), (7).

IV. TARGET SYSTEM

In this section we choose the target system which sets the

desired behavior of the beam. Let us define

α(x, t) =

∫ 1

x

∫ y

0

Im {ψ(ξ, t)} dξdy , (18)

where ψ is the state of the target system (11)–(12) for the

Schrödinger equation. It is straightforward to verify that α
satisfies the following fourth-order PDE:

αtt + 2cαt + c2α+ αxxxx = 0 (19)

with boundary conditions

αx(0, t) = αxxx(0, t) = 0 (20)

αxx(1, t) = α(1, t) = 0 . (21)

That this target system is exponentially stable is easily

seen from the definition (18) and the fact that (11)–(12) is

exponentially stable. With a straightforward computation we

obtain the eigenvalues of (19)–(21):

σn = −c± j
π2

4
(2n+ 1)2, for n = 0, 1, 2, . . . (22)

To state the precise result, we define the energy state space

Hα = H2
L(0, 1) × L2(0, 1), with

H2
L(0, 1) = {f ∈ H2(0, 1)|f ′(0) = f(1) = 0} (23)

and with the inner product induced norm

‖(f, g)‖2
Hα

=

∫ 1

0

[f ′′(x)2 + g(x)2] dx (24)

for all (f, g) ∈ Hα. The system (19)–(21) can be written as

d

dt
(α, αt) = C(α, αt) + D(α, αt) , (25)

where C is a skew-adjoint operator given by

C(f, g) = (g,−f (4)), ∀ (f, g) ∈ D(C), (26)

D(C) = {(f, g) ∈ Hα|f ∈ H4(0, 1), g ∈ H2
L(0, 1),

f ′′′(0) = f ′′(1) = 0}, (27)

and D is a bounded operator given by

D(f, g) = (0,−2cg − c2f), ∀ (f, g) ∈ Hα. (28)

Theorem 1: Let C,D be defined by (27)-(28). Then:
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(i) There is a family of eigenfunctions of C + D, which

form a Riesz basis for Hα. Hence C + D generates a C0-

semigroup e(C+D)t on Hα. For any (α(·, 0), αt(·, 0)) ∈ Hα,

there exists a unique (mild) solution to (25):

(α(·, t), αt(·, t)) = e(C+D)t(α(·, 0), αt(·, 0)) ∈ C(0,∞;Hα),

and if (α(·, 0), αt(·, 0)) ∈ D(C), then

(α(·, t), αt(·, t)) ∈ C1(0,∞;D(C)).

(ii) The spectrum-determined growth condition holds for

the semigroup e(C+D)t: ω(C +D) = S(C +D) = −c, where

ω(C + D) is the growth bound of e(C+D)t and S(C + D) is

the spectral bound of C + D.

(iii). The system (25) is exponentially stable: for any given

ε > 0, there exists Cε > 0 such that

Eα(t) ≤ Cεe
(−c+ε)tE(0), (29)

Eα(t) =
1

2

∫ 1

0

[α2
xx(x, t) + α2

t (x, t)]dx. (30)

Proof. Omitted.

V. CONTROL LAWS THAT STABILIZE THE BEAM TO A

CONSTANT PROFILE

From (18) and (11)–(12) it follows that the state ψ is

expressed through α in the following way:

ψ = αt + cα− jαxx . (31)

Taking the real and imaginary parts of the transformation

(8), we get

αt(x, t) + cα(x, t) = wt(x, t) −
∫ x

0

r(x, y)wt(y, t) dy

−
∫ x

0

s(x, y)wxx(y, t) dy (32)

αxx(x, t) = wxx(x, t) +

∫ x

0

s(x, y)wt(y, t) dy

−
∫ x

0

r(x, y)wxx(y, t) dy , (33)

where the gains r(x, y) and s(x, y), defined correspondingly

as the real and imaginary part of k(x, y) = r(x, y)+js(x, y),
satisfy two coupled PDEs

rxx(x, y) = ryy(x, y) − cs(x, y) (34)

ry(x, 0) = r(x, x) = 0 (35)

and

sxx(x, y) = syy(x, y) + cr(x, y) (36)

sy(x, 0) = s(x, x) = − c

2
x . (37)

The solutions to these PDEs are obtained from (13):

r(x, y) = x

√

c

2 (x2 − y2)

[

−ber1

(

√

c (x2 − y2)
)

−bei1

(

√

c (x2 − y2)
)]

(38)

s(x, y) = x

√

c

2 (x2 − y2)

[

ber1

(

√

c (x2 − y2)
)

−bei1

(

√

c (x2 − y2)
)]

. (39)

The control laws are obtained by setting x = 1 in (32), (33):

wt(1, t) =

∫ 1

0

r(1, y)wt(y, t) dy +

∫ 1

0

s(1, y)wxx(y, t) dy

(40)

wxx(1, t) =

∫ 1

0

r(1, y)wxx(y, t) dy −
∫ 1

0

s(1, y)wt(y, t) dy.

(41)

Note that the feedback (40) would be implemented as inte-

gral, not proportional, control.

The control laws (40), (41) stabilize the beam to a constant

profile. To see this, we use the equations (4), (31), and the

inverse transformation (16) to get

wt(x, t) = αt(x, t) + cα(x, t) +

∫ x

0

s(x, y)αxx(y, t) dy

−
∫ x

0

r(x, y)(αt(y, t) + cα(y, t)) dy (42)

wxx(x, t) = αxx(x, t) −
∫ x

0

s(x, y)(αt(y, t) + cα(y, t)) dy

−
∫ x

0

r(x, y)αxx(y, t) dy . (43)

In deriving (42), (43) we used the fact that l(x, y) =
−r(x, y)+ js(x, y), which can be shown from (17). We can

see that when α converges to zero, wt and wxx converge

to zero. Since wx(0) = 0, this implies that w converges to

a constant. Therefore, the straightforward application of the

control design for the Schrödinger equation to the Euler-

Bernoulli beam equation results in controls that suppress

oscillations without necessarily bringing the beam to the zero

position.

VI. CONTROL LAWS THAT GUARANTEE REGULATION TO

ZERO

To achieve regulation to zero, we are going to modify the

control law (40) to make it proportional, not integral, control.

To this end, we want to express wxx in (40) through the time

derivatives wt and wtt and then integrate (40) with respect

to time.

A. Control Laws

First, let us calculate (integrating by parts twice)
∫ 1

0

s(1, y)wxx(y, t) dy

= −γ1wxx(1, t) −
∫ 1

0

(
∫ 1

y

∫ z

0

s(1, ξ) dξ dz

)

uxxxx(y, t) dy,

(44)

where

γ1 = −
∫ 1

0

s(1, y) dy = sinh

(
√

c

2

)

sin

(
√

c

2

)

. (45)

Since
∫ 1

y

∫ z

0

s(1, ξ) dξ dz = (1 − y)

∫ 1

0

s(1, ξ) dξ

−
∫ 1

y

s(1, ξ)(ξ − y) dξ (46)
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and wxxxx = −wtt, from (44) and (40) we get

wt(1, t) =

∫ 1

0

r(1, y)wt(y, t) dy − γ1wxx(1, t)

−
∫ 1

0

wtt(y, t)

∫ 1

y

s(1, ξ)(ξ − y) dξ dy

−
∫ 1

0

γ1(1 − y)wtt(y, t) dy . (47)

In a similar way, we get
∫ 1

0

r(1, y)wxx(y, t) dy

= (1 − γ2)wxx(1, t) −
∫ 1

0

(γ2 − 1)(1 − y)wtt(y, t) dy

−
∫ 1

0

wtt(y, t)

∫ 1

y

r(1, ξ)(ξ − y) dξ dy , (48)

where

γ2 = 1 −
∫ 1

0

r(1, y) dy = cosh

(
√

c

2

)

cos

(
√

c

2

)

. (49)

Substituting (48) into (41) gives

wxx(1, t) = − 1

γ2

∫ 1

0

s(1, y)wt(y, t) dy

− 1

γ2

∫ 1

0

(γ2 − 1)(1 − y)wtt(y, t) dy

− 1

γ2

∫ 1

0

wtt(y, t)

∫ 1

y

r(1, ξ)(ξ − y) dξ dy .

(50)

Substituting (50) into (47), after simplifications we get

wt(1, t) =

∫ 1

0

(r(1, y) + γs(1, y)wt(y, t) dy

+

∫ 1

0

wtt(y, t)

∫ 1

y

(γr(1, ξ) − s(1, ξ))(ξ − y) dξdy

−
∫ 1

0

γ(1 − y)wtt(y, t) dy , (51)

where

γ =
γ1

γ2
= tanh

(
√

c

2

)

tan

(
√

c

2

)

. (52)

The control gains in (51) involve a division by γ2, which

may become zero for certain values of c. Therefore, c should

satisfy the condition

c 6= π2

2
(2n+ 1)2, n = 0, 1, 2, . . . , (53)

which is easily achievable because c is the designer’s choice.

We now integrate (51) with respect to time to get the

controller

w(1, t) =

∫ 1

0

(r(1, y) + γs(1, y)w(y, t) dy

+

∫ 1

0

wt(y, t)

∫ 1

y

(γr(1, ξ) − s(1, ξ))(ξ − y) dξ dy

−
∫ 1

0

γ(1 − y)wt(y, t) dy , (54)

where the constant of integration is chosen to be zero since

this choice ensures the regulation of w to zero. To see this,

note from the transformation (42), (43), and the boundary

condition wx(0, t) = 0 that w converges to a constant.

Suppose w(x,∞) ≡ A, then passing to the limit t → ∞
in (54) we get

A = A

∫ 1

0

(r(1, y) + γs(1, y)) dy . (55)

Computing the integral on the right hand side of (55), we

obtain

0 = A
cosh(a)2 − sin(a)2

cosh(a) cos(a)
, (56)

where a =
√

c/2. Note that cosh(a)2 − sin(a)2 > 1 for all

c > 0, and cos(a) 6= 0 due to the condition (53). Therefore,

A = 0.

The other controller (33) can also be represented in terms

of w and wt as follows

wxx(1, t) = −
∫ 1

0

s(1, y)wt(y, t) dy +
c2

8
w(1, t)

+

∫ 1

0

ryy(1, y)w(y, t) dy . (57)

B. Transformation

To find out what the transformation from w to α is, we

start with the definition (18) and note that

Im {ψ(x, t)} = Im

{

v(x, t) −
∫ x

0

k(x, y)v(y, t) dy

}

= −wxx(x, t) +

∫ x

0

r(x, y)wxx(y, t) dy

−
∫ x

0

s(x, y)wt(y, t) dy . (58)

Substituting this into (18), we get

α(x, t) = w(x, t) − w(1, t)

+

∫ 1

x

∫ y

0

∫ z

0

r(z, ξ)wxx(ξ, t) dξdzdy

−
∫ 1

x

∫ y

0

∫ z

0

s(z, ξ)wt(ξ, t) dξdzdy . (59)

Integrating by parts the term with wxx, changing the order of

integration in both integral terms, and using (54), we obtain

the final form of the transformation:

α(x, t) = w(x, t) −
∫ x

0

(r(x, y) + cS(x, y))w(y, t) dy

+

∫ 1

0

wt(y, t)

[

−S(1, y) + γ(1 − y)

+

∫ 1

y

(s(1, ξ) − γr(1, ξ))(ξ − y) dξ

]

dy

+

∫ 1

0

(cS(1, y) − γs(1, y))w(y, t) dy

+

∫ x

0

S(x, y)wt(y, t) dy , (60)
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where

S(x, y) =

∫ x

y

(x− ξ)s(ξ, y) dξ . (61)

Note that this integral transformation is not strict-feedback,

it is of a mixed Volterra/Fredholm type.

VII. INVERSE TRANSFORMATION

To prove stability of the closed-loop system through

the stability of the target system, we need to derive the

transformation which is inverse to (60).

It is natural to assume that the inverse transformation

has the same structure as the direct one, consisting of two

Volterra and two Fredholm integrals of the state of the target

system and its time derivative. Therefore, we look for it in

the form

w(x, t) = α(x, t) +

∫ x

0

A(x, y)α(y, t) dy

+

∫ x

0

B(x, y)αt(y, t) dy +

∫ 1

0

C(y)α(y, t) dy

+

∫ 1

0

D(y)αt(y, t) dy , (62)

where A, B, C, D are the gains to be determined. Differ-

entiating (62) w.r.t. time and space (twice) and matching the

result to the equations (42) and (43) and to the boundary

conditions wx(0, t) = wxxx(0, t) = 0, one can show that

(we omit these straightforward calculations)

A(x, y) = −r(x, y) − 2cS(x, y) , (63)

B(x, y) = −S(x, y) , C(y) = 2cD(y) , (64)

and D(y) satisfies the ODE

D′′′′(y) = −c2D(y) (65)

D′(0) = D(1) = D′′(1) = 0, D′′′(0) = −c , (66)

which has the solution

D(y) =
sinh(ay) cos(a(y − 2)) + cos(ay) sinh(a(y − 2))

4a(cosh(a)2 − sin(a)2)

− sin(ay) cosh(a(y − 2)) + cosh(ay) sin(a(y − 2))

4a(cosh(a)2 − sin(a)2)
.

Note that the explicit form of the above transformation allows

one to write the solution of the closed-loop system in closed

form using the explicit solution of the target system.

VIII. MAIN RESULT

The design procedure presented in previous sections makes

it clear why the system (1)–(2) with the controllers (54), (57)

is exponentially stable. In this section we give the precise

statement of well-posedness and stability of the closed-loop

system.

First, we define the state space

H =
{

(f, g) ∈ H2(0, 1) × L2(0, 1)|f ′(0) = 0,

f(1) =

∫ 1

0

(r(1, y) + γs(1, y))f(y)dy

+

∫ 1

0

g(y)

∫ 1

y

(γr(1, ξ) − s(1, ξ))(ξ − y)dξ dy

−γ
∫ 1

0

(1 − y)g(y) dy

}

. (67)

It is easy to check that
∫ 1

0
[r(1, y) + γs(1, y)]dy 6= 1.

Therefore, we can define the inner product induced norm

of H as the energy of the system:

‖(f, g)‖2
H =

∫ 1

0

[|f ′′(x)|2 + |g(x)|2] dx (68)

for all (f, g) ∈ H . The system (1)–(2), (54), (57) can be

written as

d

dt
(w(·, t), wt(·, t)) = A(w(·, t), wt(·, t)) , (69)

where

A(f, g) = (g,−f (4)), ∀ (f, g) ∈ D(A), (70)

D(A) = {(f, g) ∈ H | A(f, g) ∈ H, f ′′′(0) = 0

f ′′(1) =
c2f(1)

8
+

∫ 1

0

[ryy(1, y)f(y) − s(1, y)g(y)] dy

}

Next two lemmas establish the existence and boundedness

of A−1 and the existence and uniqueness of a classical

solution. The proofs are straightforward and we omit them.

Lemma 2: Let A be defined by (70) and let the condition

(53) hold. Then ρ(A), the resolvent set of A, is not empty.

In fact, 0 ∈ ρ(A).

Lemma 3: Let A be defined by (70) and let the condition

(53) hold. Then for any (w(·, 0), wt(·, 0)) ∈ D(A) there

exists a unique classical solution to (69).

Now we are ready to state the main result of the paper.

Theorem 4: Let A be defined by (70) and let the condition

(53) hold. Then:

(i) A generates a C0-semigroup on H . For any initial value

(w(·, 0), wt(·, 0)) ∈ H , there exists a unique (mild) solution

to (69):

(w(·, t), wt(·, t)) = eAt(w(·, 0), wt(·, 0)) ∈ C(0,∞;H),

(ii) The system (69) is exponentially stable at the ori-

gin: for any given ε > 0, there exists Mε > 0, which

depends only on ε, such that for all initial conditions

(w(·, 0), wt(·, 0)) ∈ H ,

E(t) ≤Mεe
(−c+ε)tE(0)

E(t) =
1

2

∫ 1

0

[w2
t (x, t) + w2

xx(x, t)] dx . (71)

Proof. Statement (i) follows from Lemmas 2, 3 and

Theorem 1.3 of [14] on p.102. Statement (ii) follows from

the density of D(A) in H and (42), (43) and Theorem 1.
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Fig. 2. Control gains for c = 9: from w(x) to w(1) (solid), from wt(x) to
w(1) (dashed), from w(x) to wxx(1) (dash-dotted), from wt(x) to wxx(1)
(thin solid).

IX. SIMULATION RESULTS

The results of simulation of the Euler-Bernoulli beam with

the controllers (54), (57) are presented in Figs. 2–4. In Fig.

2 the control gains are shown for c = 9. In Fig. 3 we can

see the oscillations of the uncontrolled beam. With control,

the beam is quckly brought to the zero equilibrium (Fig. 4).

X. FUTURE WORK

In future work there are two extensions of the result

of the paper to pursue. First, one would like to control

beams with other types of boundary conditions. From the

design procedure presented in the paper it is clear that an

extension to a hinged type of the uncontrolled end should

not pose any difficulties. One would just change the type

of the uncontrolled boundary condition in the Schrödinger

equation from Neumann to Dirichlet. However, it is not clear

how to exploit the connection of the Euler-Bernoulli beam

with the Schrödinger equation in case of the beam with a

free uncontrolled end, the most important case from practical

point of view.

One would also like to extend the results of the paper

to the output-feedback case. For the Schrödinger equation,

successful observer-based output-feedback design was devel-

oped in [6]. It seems that there are no conceptual obstacles

in adapting this design to the Euler-Bernoulli beam.
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