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Abstract— An entanglement control strategy is presented for
two-qubit quantum systems against Markovian noises. This
proposal is realized by a tunable coupling between qubits
which is induced by varying the parameters of an intermediate
squeezed field. Its applications to the independent and collective
amplitude damping decoherence channels and their mixture
show that entanglement can be efficiently enhanced.

I. INTRODUCTION

Quantum entanglement [1], [2], [3] is a unique quantum

phenomenon in which the states of multiple quantum ob-

jects are correlated and the operations on one object will

disturb the rest ones. Quantum entanglement is critical to

the realization of high-speed quantum computation and high-

security quantum communication. However, in reality, the

quantum systems exposed in environments [4] may suffer

from decoherence effects that may lead to the deterioration

of quantum entanglement [5]. Hence, the active protection of

quantum entanglement against decoherence effects becomes

important.

In existing entanglement-protection strategies, a collec-

tive decoherence channel (e.g., a common heat bath) for

all subsystems [6], [7] is often assumed. In this special

case, a subspace of quantum states, called decoherence-free

subspace, that is unaffected by decoherence can be found to

storage entangled states. However, in more general cases,

the entanglement would tend to disappear, especially via

independent decoherence channels [8] (i.e., each subsys-

tem is coupled to independent modes in the environment).

Even worse, a combination of independent decoherence

channels and collective decoherence channels may destroy

the decoherence-free subspace and lead to the failure of

entanglement-protection. This paper shows that in such cases

entanglement can be partially protected at least for two-

qubit systems by coupling the two qubits with an auxiliary

manipulatable squeezed field. Here, “qubit” refers to the

simplest unit of quantum information which is physically

implemented by a two-level quantum-mechanical system.

The paper is organized as follows: Section II introduces the

model and derives the effective two-qubit Hamiltonian by

tracing out the degrees of freedom of the auxiliary field in

the dispersive regime. Section III proposes the entanglement

control under three kinds of decoherence channels, and more

general cases are discussed in Section IV. Conclusions and

perspectives are drawn in Section V.
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II. MODEL FORMULATION

This paper discusses a system of two (identical) qubits

that are indirectly interacted with each other through an

intermediate single-mode squeezed field, e.g., a pair of two-

state atoms in a single-mode optical cavity [9], [10] or two

superconducting qubits both coupled to a one-dimensional

transmission line resonator [11]. Under the rotating-wave

approximation, the total Hamiltonian of the two qubits and

the single-mode field can be expressed as:

H = ωca†a+
2

∑
j=1

ωa

2
σz j +

2

∑
j=1

g(a†σ− j +aσ+ j)

+ξ
[

e−i(Ωt+φ0)a†2 + ei(Ωt+φ0)a2
]

, (1)

where the Planck constant h̄ has been assumed to be 1. The

first term in H is the free Hamiltonian of the field with ωc

being the oscillating frequency. a and a† are the annihilation

and creation operators of the field mode. The second term in

H denotes the free Hamiltonian of the two qubits, where ωa

is determined by the energy gap between the two eigen states

of a single qubit and σz j is the z-axis Pauli matrix of the qubit

j. The third term in H represents the interaction between the

two qubits and the field with the coupling strength g ∈ R.

σ± j = σx j ± iσy j denote the ladder operators of the qubit j.

The last term in H represents the squeezed effects of the

field, where the effective amplitude ξ , the frequency Ω, and

the initial phase φ0 of the squeezed field are all tunable

parameters in our strategy. Such a controllable squeezed

field could be realized in optical cavities (see, e.g., [12] and

[13]), and our recent work shows that it is also realizable in

superconducting circuits (see Sec. V of Ref. [14]).

Under the dispersive-detuning condition: ∆ = ωa −
ωc, |ξ | ≫ |g|, the Hamiltonian H can be diagonalized by

the following unitary transformation [14], [15]:

U = exp

[

g

∆

2

∑
j=1

(aσ+ j −a†σ− j)

]

.

In fact, expanding the exponential terms to the first two
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orders of g/∆, we can obtain:

UHU† ≈ ωca†a+ξ e−i(Ωt+φ0)a†2 +ξ ei(Ωt+φ0)a2

+
2

∑
j=1

[

ω̃a

2
+

4g2

∆2
(ξ e−i(Ωt+φ0)a†2 +h.c.)+

4g2

∆
a†a

]

σz j

+
2

∑
j=1

[(

2gξ

∆
a† +

g2ξ

∆2

)

e−i(Ωt+φ0)σ+ j +h.c.

]

+µ1(e
−i(Ωt+φ0)σ+1σ+2 + ei(Ωt+φ0)σ−1σ−2)

+µ2(σ+1σ−2 +σ−1σ+2),

where

ω̃a = ωa +
4g2

∆
, µ1 =

2g2

∆2
ξ , µ2 =

g2

∆
, (2)

and h.c. means Hermitian conjugate. The Hamiltonian can be

reduced by adiabatically eliminating the degrees of freedom

of the field mode:

H̃eff
A =

2

∑
j=1

ωa

2
σz j + µ2(σ+1σ−2 +σ−1σ+2)

+µ1(e
−i(Ωt+φ0)σ+1σ+2 + ei(Ωt+φ0)σ−1σ−2).

Here, we have omitted all the single-qubit terms induced by

the interaction between qubits and the field mode due to the

fact that:

ωa

2
≫ g2

∆
,

gξ

∆
,

g2ξ

∆2
,

under the dispersive-detuning condition ∆ ≫ g and ωa ≫
ξ (from experimental parameters in optical cavities and

superconducting circuits). In the interaction picture, H̃eff
A can

be further expressed as:

Heff
A =

(

e
i∑2

j=1
ωat

2 σz j

)

H̃eff
A

(

e
−i∑2

j=1
ωat

2 σz j

)

= µ1

(

e−iφ0 σ+1σ+2 + eiφ0σ−1σ−2

)

+µ2 (σ+1σ−2 +σ−1σ+2) , (3)

when the frequency Ω is set to be 2ωa.

According to Eq. (2), one can continuously tune the

coupling strength µ1 by varying the amplitude ξ of the inter-

mediate squeezed field. Thus, in the following discussions,

µ1 and φ0 are taken as control parameters.

III. THREE SPECIAL DECOHERENCE CHANNELS

Besides the single-mode control field, the qubits also

interact with decoherence channels. The ab initio model

for this open quantum system can be constructed from

the Schrödinger equation of the composition of the two-

qubit system plus their environment. Since the environment

is generally an infinite-dimensional system, it is extremely

difficult to analyze the composite system. In this regard,

the environmental freedoms are usually averaged out when

the Born-Markov approximation is satisfied, leaving the

dynamics of the two-qubit system represented by the so-

called master equation [16].

This section will consider three kinds of decoherence

channels, namely, the independent amplitude damping de-

coherence channel, the collective amplitude damping deco-

herence channel and a mixture of them. More general cases

will be discussed in the next section.

A. Independent amplitude damping decoherence channel

The independent amplitude damping decoherence channel

can be expressed as the following master equation:

ρ̇ = −i[Heff
A ,ρ]+Γ

2

∑
j=1

D [σ− j]ρ, (4)

where [A,B] = AB − BA and the superoperator D [L]ρ is

defined as:

D [L]ρ = LρL† − 1

2
L†Lρ − 1

2
ρL†L;

Γ > 0 represents the relaxation rate of each qubit. Such deco-

herence channels can describe two qubits in an environment

when they are spatially so separated that their surrounding

environments are completely independent. For the example

of two atoms in an optical cavity, decoherence channels on

two atoms can be taken as independent channels when the

distance between two atoms is far larger than the resonant

wavelength of a single atom [9].

In this work, we will use the concurrence C(ρ):

C(ρ) = max{λ1 −λ2 −λ3 −λ4,0}, (5)

to measure the quantum entanglement between two

qubits [17], where λi’s are the square roots of the eigen-

values, in decreasing order, of the matrix:

M (ρ) = ρ(σy1σy2)ρ
∗(σy1σy2).

ρ∗ in the above equation is the complex conjugate of ρ .

The concurrence of an uncontrolled system always de-

creases to zero when coupled to independent amplitude

damping decoherence channels [8]. This fact can be shown

from the solution ρ(t) of Eq. (4) for Heff
A = 0, which decays

to the two-qubit ground state ρu
∞ = |00〉〈00| when t → ∞,

where the superscript “u” refers to the “uncontrolled” qubit

system. Since ρu
∞ = |00〉〈00| is a separable state, i.e., a

non-entangled state with zero concurrence, the entanglement

between the two qubits is completely lost.

However, the entanglement can be partially protected via

the intermediate squeezed field, because the solution ρ(t) of

Eq. (4) tends to a stationary state

ρ∞ =

(

2µ1Γ

4µ2
1 +Γ2

)

ρm +

(

1− 2µ1Γ

4µ2
1 +Γ2

)

ρs, (6)

as a convex combination of a maximally-entangled state, i.e.,

an entangled state with maximum concurrence,

ρm =
1

2











1 e−i(φ0− π
2 )

0

0

ei(φ0− π
2 ) 1











, (7)
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and a diagonal separable state

ρs = diag(1−3β ,β ,β ,β ),

where

β =
1

8



1−
√

1−
(

4µ1Γ

4µ2
1 +Γ2

)2



 .

The corresponding stationary concurrence and fidelity be-

tween the stationary state ρ∞ and the maximally-entangled

state ρm are, respectively,

C(ρ∞) = max

{

2µ1(Γ−µ1)

4µ2
1 +Γ2

,0

}

,

F(ρ∞) = tr(ρmρ∞) =
µ1(Γ−µ1)

4µ2
1 +Γ2

+
1

2
. (8)

It can be verified from Eq. (8) that the maximum concurrence

and fidelity

Cmax =

√
5−1

4
≈ 0.31, Fmax =

√
5+3

8
≈ 0.65 (9)

are achieved when the control parameter µ1 is tuned to be:

µ1 =
1√

5+1
Γ, (10)

which is realizable in a low-decay open quantum system

(e.g., a low-decay atom-optical system [10] or a supercon-

ducting circuit-QED system [11]).

It should be pointed out that, as shown in Eq. (9), the

fidelity between the stationary state ρ∞ and the maximally-

entangled state ρm (≤ 0.65) may not be strong enough to

be applied in quantum information processing. Nonetheless,

the proposed strategy is still effective for entanglement-

protection. Since the maximum fidelity exceeds 0.5, we can

in principle asymptotically obtain the maximally-entangled

states by the entanglement-purification strategies [18], i.e.,

to purify the given quantum state by quantum measurements

and unitary operations to increase the proportion of the

maximally-entangled state.

B. Collective amplitude damping decoherence channel

The master equation for collective amplitude damping

decoherence channel is as follows:

ρ̇ = −i[Heff
A ,ρ]+ΓD [S−]ρ, (11)

where the collective lowering operator

S− = σ−1 +σ−2,

and Γ > 0 denotes the collective damping rate. Such a

decoherence channel can be used to describe the case in

which the two qubits are strongly coupled to each other. For

the example of two atoms in an optical cavity, a collective

decoherence channel can be obtained when the distance

between the two atoms is far shorter than the resonant wave

length of a single atom [9], i.e., when the two atoms are so

close and strongly coupled to each other that they see almost

the same environment.

In absence of controls, i.e., Heff
A = 0 in Eq. (11), the

stationary state of the two-qubit system

ρu
∞ = (1−λ )ρ̃m +λρ0 (12)

is a convex combination of the maximally-entangled state

ρ̃m =
1

2









0

1 −1

−1 1

0









(13)

and the two-qubit ground state ρ0 = |00〉〈00|. The weight

λ ∈ [0,1] is determined by the initial density matrix ρ(t0):

λ = tr

[(

1

4
σz1σz2

)

ρ(t0)

]

+

√
2

2
tr(Ωx

23ρ(t0))+
3

4
,

where

Ωx
23 =

1√
2









0

1

1

0









.

The concurrence of ρu
∞ is C(ρu

∞) = 1−λ .

In presence of controls, the stationary state of Eq. (11) is

the following convex combination

ρ∞ = qρ̃m + pρm +(1−q− p)ρ̃s, (14)

of two maximally-entangled states ρ̃m and ρm defined in

Eqs. (7) and (13), and a diagonal separable state

ρ̃s = diag

(

β̃1 + β̃2,
1

2
− β̃2,

1

2
− β̃2, β̃2 − β̃1

)

,

where

β̃1 =
λΓ2

2(Γ2 +3µ2
1 )

, β̃2 =
λ (Γ2 +2µ2

1 )

2(Γ2 +3µ2
1 )

.

The weights q and p in Eq. (14) are, respectively,

q = 1− 7

6
λ +

Γ2 −3µ2
1

Γ2 +3µ2
1

λ , p =
2Γµ1λ

Γ2 +3µ2
1

.

When the control parameter µ1, which is used to adjust the

stationary entanglement, is in the range:

λ −
√
−9λ 2 +22λ −12

6−5λ
≤ µ1

Γ
≤ λ +

√
−9λ 2 +22λ −12

6−5λ
,

the stationary concurrence under control exceeds that of the

uncontrolled system, i.e.,

C(ρ∞) =
(Γ2 +2µ2

1 +2Γµ1)λ

Γ2 +3µ2
1

−1 ≥C(ρu
∞) = 1−λ .

Note that the above interval of the control parameter µ1

is non-empty only when λ ∈
[

11
9
− 1

9

√
13,1

]

. Otherwise,

our strategy cannot improve the stationary entanglement.

Calculations also show that when λ ∈
[

11
9
− 1

9

√
13,1

]

the

controlled stationary concurrence C(ρ∞) is maximally valued

when

µ1 =
2√

13+1
Γ, (15)
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and the corresponding maximum value is

Cmax =

√
13+5

6
λ −1. (16)

The above analysis shows that the stationary state of the

uncontrolled system may stay entangled under the collective

amplitude damping decoherence channel. This is the starting

point of some existing dissipation-induced entanglement-

protection strategies (see, e.g., [6], [7]). The analysis also

exhibits evident enhancement of the stationary entanglement

by our strategy when λ is large enough. The resulting

controlled stationary entangled state (14) is indeed a mixture

of two maximally-entangled states ρ̃m and ρm, where ρ̃m

is induced by the collective decoherence channel and ρm

comes from our strategy. When ρ̃m is less dominant in the

uncontrolled stationary state, i.e., the parameter λ is large,

the tradeoff between ρ̃m and ρm may increase the final

entanglement. In the opposite situation, such a tradeoff may

not increase the final entanglement and our strategy does not

work.

C. Mixed amplitude damping decoherence channel

The analysis in subsection III-B shows that the dissipation-

induced strategy may outperform our strategy for a perfect

collective decoherence channel. However, in laboratory the

decoherence channel is impossible to be perfectly collective.

For the example of two atoms in an optical cavity, a

perfect collective amplitude damping decoherence channel is

available only when the distance between the two atoms is

far shorter than the resonant wavelength of a single atom,

which is actually impossible in reality. The present atom

trapping and cooling techniques can only hold two atoms

approximately at the distance of the same order of the

resonant wavelength of the atom (see, e.g., Ref. [9]). Thus,

the resulting decoherence channel is between an independent

amplitude damping decoherence channel and a collective

amplitude damping decoherence channel, as shown in the

following master equation:

ρ̇ = −i[Heff
A ,ρ]+

2

∑
i=1

ΓD [σ− j]ρ

+Γ12

(

σ−1ρσ+2 −
1

2
{σ+2σ−1,ρ}

)

+Γ12

(

σ−2ρσ+1 −
1

2
{σ+1σ−2,ρ}

)

, (17)

where 0 < Γ12 < Γ.

It can be verified that the stationary state of the uncon-

trolled system (i.e., Heff
A = 0) is the separable two-qubit

ground state ρu
∞ = |00〉〈00|, implying that entanglement will

be completely lost in absence of control. The stationary

behavior of this kind of mixed decoherence channels is just

the same as the independent decoherence channel. Further,

when we set the parameter µ1 as in Eq. (10), we can obtain

the same maximum concurrence and fidelity in Eq. (9).

IV. GENERALIZED DECOHERENCE CHANNELS

Considering the case that the system undergoes simulta-

neously the relaxation and dephasing decoherence channels,

we can obtain the following master equation:

ρ̇ = −i[Heff
A ,ρ]+L (ρ), (18)

where

L (ρ) = ∑
i, j=x,y

(

Ai j

[

σi1ρσ j1 −
1

2
{(σ j1σi1),ρ}

]

+Ci j

[

σi2ρσ j2 −
1

2
{σ j2σi2,ρ}

]

+Bi j

[

σi1ρσ j2 −
1

2
{σ j2σi1,ρ}

]

+B∗
i j

[

σ j2ρσi1 −
1

2
{σi1σ j2,ρ}

])

+Azz[σz1ρσz1 −ρ]+Czz[σz2ρσz2 −ρ]

+Bzz

[

σz1ρσz2 −
1

2
{σz2σz1,ρ}

]

+B∗
zz

[

σz2ρσz1 −
1

2
{σz1σz2,ρ}

]

,

and {A,B} = AB+BA.

In order to simplify the discussions, we introduce the

so-called coherence vector picture (see, e.g., [19], [20],

[21]). Let the inner product 〈X ,Y 〉 = tr(X†Y ) and define the

following matrix basis for all two-qubit matrices:

{

1
2
I4×4, Ωx

14, Ωy
14, Ωx

23, Ωy
23,

1
2
σx1,

1
2
σy1,

1
2
σx2,

1
2
σy2,

1
2
σx1σz2,

1
2
σz1σx2,

1
2
σy1σz2,

1
2
σz1σy2, Ωz

14,Ω
z
23,

1
2
σz1σz2

}

, (19)

where Ωx
14, Ωy

14, Ωx
23, Ωy

23, Ωz
14, Ωz

23 are defined as:

Ωx
14 =











1√
2

0

0
1√
2











, Ωy
14 =











−i√
2

0

0
i√
2

0











,

Ωx
23 =











0
1√
2

1√
2

0











, Ωy
23 =











0
−i√

2
i√
2

0











,

Ωz
14 =











1√
2

0

0
−1√

2











, Ωz
23 =











0
1√
2

−1√
2

0











.

Under this matrix basis, the system density matrix can be

expanded as:

ρ =
1

4
I4×4 +

15

∑
i=1

miΩi,

where Ωi, i = 1, · · · ,15, are the traceless matrices in Eq. (19)

and mi = tr(Ωiρ).
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Let m = (m1, · · · ,m15)
T . The master equation (18) can be

rewritten as:

ṁ = 8µ1 cosφ0O1m+8µ1 sinφ0O2m+8µ2O3m+Dm+g,

where O1, O2, O3 are the adjoint representation matrices (see

Ref. [19]) of the non-local Hamiltonians:

H1 = 1
4
(σx1σx2 −σy1σy2),

H2 = 1
4
(σx1σy2 +σy1σx2),

H3 = 1
4
(σx1σx2 +σy1σy2),

and “Dm + g” is the coherence vector representation of the

Lindblad term L (ρ) in Eq. (18) with D≤ 0 and g a constant

vector.

Further, let

mp = (mx
14,m

y
14,m

x
23,m

y
23)

T ,

mη = (mz
14,m

z
23,mzz)

T , (20)

mε = (mx0,my0,m0x,m0y,mxz,mzx,myz,mzy)
T ,

where

mα
14 = tr(Ωα

14ρ), m
β
23 = tr(Ω

β
23ρ), α,β = x,y,z,

mαβ = tr
[(

1
2
σα1σβ2

)

ρ
]

, α,β = 0,x,y,z,

and σ0 j = I2×2, j = 1,2 is the 2×2 identity matrix acting on

the qubit j. Then, corresponding to mp, mη , mε , the matrices

D, g, Oi can be expressed as the following block forms:

D =





Dpp Dpη

Dη p Dηη

Dε



 , g =





0

gη

0



 ,

Oi =





0 O
η
i

−O
η T
i 0

Oε
i



 , i = 1,2,3.

If we define

Q1 =
1√
2









0 0 1 −1

1 1 0 0

0 0 1 1

−1 1 0 0









,Q2 =
1√
2





1 1 0

1 −1 0

0 0 1



 ,

the matrix blocks in D, g, Oi can be calculated as:

Dpp = −2Q−1
1









d1 2BRe
zz −CRe

xy −ARe
xy

2BRe
zz d2 −ARe

xy −CRe
xy

−CRe
xy −ARe

xy d3 −2BRe
zz

−ARe
xy −CRe

xy −2BRe
zz d4









Q1,

Dpη = 2Q−1
1









BIm
yy BIm

xx −BRe
yx

−BIm
xx −BIm

yy −BRe
xy

BIm
yx −BIm

xy BRe
yy

−BIm
xy BIm

yx BRe
xx









Q2,

Dη p = 2Q−1
2





−BIm
yy BIm

xx −BIm
yx BIm

xy

−BIm
xx BIm

yy BIm
xy −BIm

yx

−BRe
yx −BRe

xy BRe
yy BRe

xx



Q1,

Dηη = −2Q−1
2





d5 0 0

0 d6 0

−2CIm
xy −2AIm

xy d5 +d6



Q2,

gη = 2Q−1
2





AIm
xy

CIm
xy

0



 ,Oη
1 =









0 0 0

−1 0 0

0 0 0

0 0 0









O
η
2 =









1 0 0

0 0 0

0 0 0

0 0 0









,Oη
3 =









0 0 0

0 0 0

0 0 0

0 −1 0









,

where MRe (MIm) is the real (imaginary) part of the complex

coefficient M, and

d1 = Ayy +Cxx +Azz +Czz, d2 = Axx +Cyy +Azz +Czz,

d3 = Ayy +Cyy +Azz +Czz, d4 = Axx +Cxx +Azz +Czz,

d5 = ARe
xx +ARe

yy , d6 = CRe
xx +CRe

yy .

Here, the matrix blocks Dε , Oε
i do not affect the stationary

state of Eq. (18), so we omit them.

With the above preparations, we can present our main

results:

Proposition 1: Let v = (v1,v2,v3,v4)
T , ξ = (ξ1,ξ2,ξ3)

T

be the solution of the linear equation:

(

Dpp Dpη +O
η
A

−
(

O
η
A

)T
+Dη p Dηη

)(

v

ξ

)

=

(

0

−gη

)

, (21)

where

O
η
A = 8µ1 cosφ0O

η
1 +8µ1 sinφ0O

η
2 +8µ2O

η
3 ,

then the controlled stationary state

ρ∞ =
√

2(v2
1 + v2

2)ρ1m +
√

2(v2
3 + v2

4)ρ2m

+

(

1−
√

2(v2
1 + v2

2)−
√

2(v2
3 + v2

4)

)

˜̃ρs

is a linear combination of two maximally entangled states

ρ1m =
1

2









1 e−iφ1

0

0

eiφ1 1









, φ1 = arctan

(

v2

v1

)

,

and

ρ2m =
1

2









0 0

1 e−iφ2

eiφ2 1

0 0









, φ2 = arctan

(

v4

v3

)

,

and a diagonal separable state

˜̃ρs = diag

(

1

4
+

ξ1√
2

+
ξ3

2
,

1

4
+

ξ2√
2
− ξ3

2

1

4
− ξ2√

2
− ξ3

2
,

1

4
− ξ1√

2
+

ξ3

2

)

.
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The corresponding stationary concurrence is:

C(ρ∞) = max{G1,G2,0},
where

G1 =
√

2(v2
1 + v2

2)−

√

(

1

2
+ξ3

)2

−2ξ 2
1 ,

G2 =
√

2(v2
3 + v2

4)−

√

(

1

2
−ξ3

)2

−2ξ 2
2 .

Proposition 1 is a generalization of the results obtained

in subsections III-A and III-B. Actually, for the independent

amplitude damping decoherence channel, we have:

v1 =
√

2µ1Γ

4µ2
1 +Γ2 sinφ0, v2 = −

√
2µ1Γ

4µ2
1 +Γ2 cosφ0,

v3 = v4 = 0,

ξ1 = 0, ξ2 =
√

2ξ3 =
√

2Γ2

8µ2
1 +2Γ2 ,

while, for the collective amplitude damping decoherence

channel, we have:

v1 =
√

2Γµ1λ
Γ2+3µ2

1

sinφ0, v2 = −
√

2Γµ1λ
Γ2+3µ2

1

cosφ0,

v3 = − 1√
2

(

1− 7
6
λ +

Γ2−3µ2
1

Γ2+3µ2
1

λ
)

, v4 = 0,

ξ1 = 0, ξ2 =
√

2λΓ2

2(Γ2+3µ2
1 )

, ξ3 = λ − 1
2
− λ µ2

1

Γ2+3µ2
1

.

V. CONCLUSIONS

In summary, we propose a two-qubit entanglement control

strategy to protect entanglement against Markovian noises.

In this strategy, an auxiliary controllable squeezed field is

introduced to couple the two qubits. By varying the control

parameters, e.g., the amplitude, the frequency and the initial

phase, of this squeezed field, one can tune the coupling be-

tween the two qubits to control the stationary entanglement.

Under special conditions, our entanglement control strategy

exhibits evident enhancement of the stationary entanglement

compared with the uncontrolled systems.

Although the proposed strategy can remarkably recover

entanglement from decoherence, the resulting stationary en-

tanglement may still be insufficient in quantum information

processing (see, for example, the stationary entanglement

in subsection III-A is below 0.31). Additional entanglement

purification processes are required to increase the stationary

entanglement, which may tremendously complexify the total

experimental systems. More efficient strategies are still to be

pursued in future studies.
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